HORIBA

HORIBA NOTE No. LAQUAtwin_004

http://www.jp.horiba.com

株式会社 堀場製作所

LAQUAtwinCa2+による土壌中の交換性カルシウムイオン測定

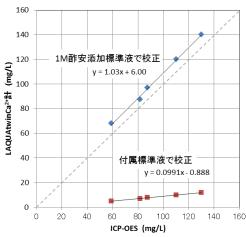
土壌中の交換性カルシウムイオンの測定法として、1mol/L 酢酸アンモニウム(酢安)にて抽出されたカルシウムイオンを原子吸光法(AA)や誘導結合プラズマ発光分析法(ICP-OES)等で全量測定することが慣用法とされている。しかし、AAやICP-OESは大型で高価な装置であり、現場や一般農家での測定は困難である。そこで、現場で簡易に測定する手段として、小型で安価なLAQUAtwinCa²⁺計(イオン電極法)を用いた測定法を開発した。イオン電極法でカルシウムイオン濃度を測定する場合、カルシウムイオン濃度に対して酢安が大量に存在すると、イオン強度の影響により電位シフトが生じ、正確な測定が困難になる。そこで、酢安の共存影響を受けない測定方法を検討した。

【方法】

5 種類の土壌試料を1週間室内にて風乾させ2mm角のふるいにかけた後、試料1gに対し、酢安(濃度1mol/L)20mLの割合にて振とう抽出した《条件:大洋科学工業(株)製RECIPRO SHAKER SR-IIW,振幅40m/m,振とう速度250rpm程度で1時間》。振とう後の液を濾紙(JIS規格:6種)でろ過し、LAQUAtwinCa²⁺計で測定した。またLAQUAtwinCa²⁺計の校正は、抽出液と同じ濃度の酢安で調製した150ppm,2000ppmカルシウム標準液の2点で行なった。

カルシウムイオンメータ

※LAQUAtwinCa²⁺計の測定範囲について: 40mg/L未満では測定範囲外のため表示値は点滅しますが、支持塩として塩化カリウム0.1mol/Lを含む標準液にて、4mg/Lまで直線性があることを確認し測定しています。


※土壌サンプルによっては相関性が異なる場合があります。

【結果】

1 mol/L酢安による土壌抽出液をICP-OESとLAQUAtwinCa²⁺計にて測定した結果を表1に示した。表1より付属の標準液にて校正したLAQUAtwinCa²⁺計の結果は土壌抽出液のICP-OESの結果に対して1/10の値を示した。これに対し、抽出液と同じ濃度の酢安を含む標準液で校正した場合ではICP-OESでの定量値とほぼ一致する結果が得られた。ICP-OESに対するLAQUAtwinCa²⁺計の値をプロットした図1では、1M 酢安含有標準液での校正の場合、1:1の関係を示す傾きがほぼ1であり、また高い相関性(R=0.998)を示した。このことから、簡易測定法として有効な手段となることが立証できた。

表1:1mol/L酢安抽出液のICP-OESとLAQUAtwinCa2+計によるカルシウムイオン定量の結果

栽培土壌	Caイオン濃度(mg/L)			CaO 換算值(mg/100g _{風乾土})	
	ICP-OES ^{※1}	LAQUAtwinCa ²⁺ 計			LAQUAtwinCa ²⁺ 計
		1M酢安含有標準液 で校正	付属標準液 ^{※2} で校正	ICP-OES	1M酢安含有標準液で 校正
ピーマン	130	140	12	360	390
トマト	110	120	10	310	340
ホウレンソウ	82	88	7	230	240
レタス	88	97	8	240	270
ケール	59	68	5	160	190

なお、土壌診断結果とする場合、測定で得られたCaイオン濃度は、 次の換算式にて CaO(mg/100g風乾土)へ換算する必要がある。

※1 ICP-OESの結果は前処理で行なった希釈を換算した後の値です。

※2 付属標準液には支持塩として塩化カリウム0.1mol/Lが含まれています。

CaO_(mo/100g風乾土)=[Caイオン濃度_(mo/L)]×(a/1000)×(100/b)×1.399

a:抽出に使用した酢安溶液量 (mL) b:抽出に使用した土壌試料量 (g)

参考として、今回の測定結果から算出したCaO値を表1に追記した。

図1:抽出液のICP-OES値とLAQUAtwinCa2+計の値の関係

この資料に記載されている内容は改良のため、予告なく変更することがあります。