



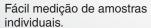
# THE **MESA-7220V2**

Analisador de Fluorescência de Raios X PARA ENXOFRE E CLORO EM PETRÓLEO



- Mede uma ampla faixa de diferentes tipos de combustível
- Escolha entre um analisador de bandeja simples ou para 8 amostra
- Sistema à vácuo, sem a necessidade de gases de purga
- Tela de manutenção para monitorar a vida útil do tubo de Raios X
- Atende a ASTM 7220 com PLOQ de 3 ppm para enxofre
- Seleção automática de curva de calibração




#### **TECHNOLOGIA**

O MESA-7220v2 mede enxofre e cloro em derivados do petróleo, conforme o método EDXRF monocromático. O uso de uma fonte de raios X monocromática minimiza o ruído de fundo, permitindo obter limites de detecção mais baixos para enxofre e cloro.

O tamanho da janela do detector foi aumentado para coletar mais raios X fluorescentes e atingir valores de ppm mais baixos, fornecendo um desempenho excelente e reprodutível em concentrações altas e baixas de ambos os elementos.

Ao ajustar o ângulo do cristal de grafite, há uma maior excitação do enxofre na amostra pelo o feixe de raios X, aumentando a sensibilidade da análise.







A bandeja giratória opcional de 8 posições permite maior flexibilidade.

Atende as normas ASTM D7220, D4294, D4929C, ISO 20847, ISO 13032 e ISO 8754.

A faixa para estes métodos inclui níveis de 1,0 ppm - % peso.

#### CARACTERÍSTICAS PRINCIPAIS

- Faixa de análise dinâmica:
  - Enxofre: 0,7 ppm 10,0 % pesoCloro: 0,6 ppm 10,0 % peso
- Seleção automática de curva de calibração.
- Não precisa de gases de purga.
- Máximo de 60 curvas de calibração e 300 pontos de dados por curva.
- As curvas de calibração podem ser editadas após serem salvas.
- Tempos de medição de 30 a 999 seg.
- A medição é repetida 1 a 99 vezes.
- O recurso de correção de oxigênio elimina interferências que podem afetar as leituras do Enxofre.
- É possível medir vários tipos de amostras\* [Sólidos, Líquidos, Pós, Pastas, Pellets e Filmes].
- É possível programar até 20 contas de Administrador e de Usuário.
- A janela Kapton pode ser facilmente substituída pelo analista.
- Ajuste micrométrico do ângulo do cristal de grafite para uma melhor sensibilidade.
- O computador permitir a atualização eletrônica do software.
- Proteções embutidas para proteger o analista contra os raios X
- Detector de derivação de silício (SDD).
- Janela de Raios X de berílio.

\*O desempenho é baseado em amostras de petróleo.

#### Principio de Medição

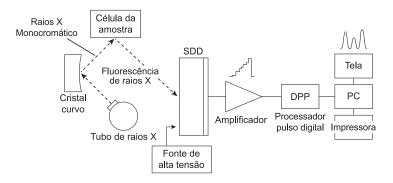
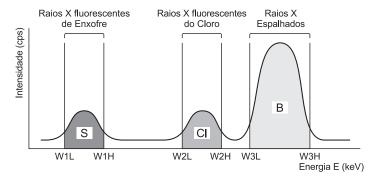




Diagrama de blocos do princípio de medição

Quando a tensão de alta voltagem é enviada para o tubo de raios X, os raios X primários são irradiados do tubo para o cristal curvo. Os raios X irradiados para o cristal curvo são monocromatizados pelo cristal curvo e irradiados para a célula da amostra. Alguns dos raios X irradiados excitam os átomos de enxofre e cloro, gerando raios X fluorescentes. Esses raios-X fluorescentes e os que permanecem dispersos são detectados pelo detector de raios-X *SDD*. No detector de raios X, os impulsos elétricos são gerados proporcionalmente à energia dos raios X de entrada. Esses pulsos elétricos são reforçados pelo amplificador de pulso antes de serem enviados como um sinal de tansão para o analisador de altura de pulso.

Os valores de altura da saída de pulso do amplificador são plotados no eixo horizontal, e as contagens de pulso detectadas dentro do intervalo de tempo são plotadas no eixo vertical. Este gráfico gera o espectro semelhante ao da figura abaixo.



Espectro de fluorescência de Raios X

Os resultados são entao armazenados na memória do computador e usados para os cálculos finais.

O espectro de energia tem três faixas de energia previamente especificadas, conhecidas como janelas, que mostram (1) a janela equivalente aos raios X fluorescentes do enxofre (W1L-W1H), (2) a janela equivalente aos raios X fluorescentes do cloro (W2L-W2H), e (3) a janela equivalente aos raios X espalhados (W3L-W3H).

O analisador de altura de pulso conta o número de pulsos elétricos de raios X que entram em cada janela durante um certo tempo, obtendo os valores integrados. Esses valores são convertidos em contagens por segundo e utilizados nos cálculos. As intensidades dos raios X que entram nas janelas são correspondentes as de raios X fluorescentes do enxofre, NS (cps), cloro, NCI (cps) e raios X espalhados, NB (cps) respectivamente.

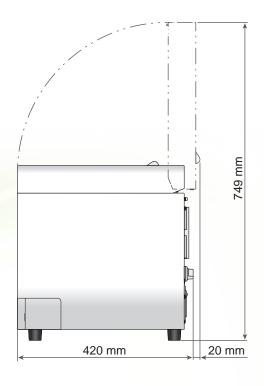
O analisador calcula o valor de K, que é a razão entre NS e NB (K = NS/NB) ou de NIC para NB (K = NIC/NB) e utiliza-o como valor medido. O valor determinado (ppm) é lido a partir do valor de K comparado com a curva de calibração.

## Variedades de Matrizes de Calibração

- ULSD (Diesel de Ultra Baixo Teor de Enxofre)
- Diesel
- Biodiesel / Misturas de biodiesel
- Óleo para transformadores
- Petróleo bruto
- Gasóleo para aquecedores domésticos #2
- Resíduo de petróleo
- Polímeros sólidos
- Querosene de aviação
- Amostras de catalisadores



## Especificações


| Dimensões do instrumento | Polegadas | mm  |
|--------------------------|-----------|-----|
| Largura                  | 11,69     | 297 |
| Profundidade             | 16,54     | 420 |
| Altura (fechado)         | 16,54     | 420 |
| Altura (aberto)          | 29,49     | 749 |

| Peso do | Equipamento |  |
|---------|-------------|--|
|         |             |  |

32 kg / 70.55 lb (PC, monitor e impressora não incluídos)

| Princípio                  | Análise por fluorescência de Raios X (EDXRF monocromático)                       |
|----------------------------|----------------------------------------------------------------------------------|
| Amostra                    | Produtos de petróleo                                                             |
| Elementos analisados       | Enxofre (S) e Cloro (CI)                                                         |
| Faixa de medição           | 0,00 – 100.000 ppm                                                               |
| Limite de detecção         | S: 0,7 ppm<br>Cl: 0,6 ppm                                                        |
| Volume da<br>amostra       | 7 – 10 ml para cada célula da<br>amostra                                         |
| Câmara da amostra          | Condições atmosféricas                                                           |
| Tubo de raios X            | Ag Target                                                                        |
| Detector                   | Detector de derivação de silicone (SDD)<br>Resolução de energia a Mn-Kα ≤ 175 eV |
| Nível de vácuo             | ≤ 4 kPa, bomba de diafragma                                                      |
| Conformidade com as normas | ASTM D7220 / D4294 / D4929C<br>ISO 8754 / 13032 / 20847                          |

| Impressora                  |                                                       |
|-----------------------------|-------------------------------------------------------|
| Modelo                      | CT-S4000 fabricada por CITIZEN                        |
| Papel / Largura<br>do papel | Impressora térmica (externa) / 112 mm / 4,4 polegadas |



| Computador             |                                                    |
|------------------------|----------------------------------------------------|
| CPU                    | Intel Core i5-8500 ou de maior velocidade          |
| Sistema<br>Operacional | Microsoft Windows 10 Pro, 64 bit,<br>Inglês (EUA.) |
| Memória                | 4GB ou mais                                        |
| Armazenamento          | 1TB ou mais                                        |

| Monitor           |                       |
|-------------------|-----------------------|
| Resolução         | Full HD (1920 x 1080) |
| Tamanho do painel | 17 - 23 polegadas     |



Por favor, leia o manual de operação antes de usar qualquer um destes produtos para assegurar sua manipulação de forma segura e adequada

### **HORIBA Instruments Incorporated**

9755 Research Drive Irvine, California 92618 800-446-7422

www.horiba.com/us/oil labinfo@horiba.com

Copyright 2020 HORIBA Instruments Incorporated

