

Scientific

The Power of Machine Learning

Image analysis for particle size and shape

- Innopharma Labs founded 2009
- Expanded into:
 - Innopharma Education
 - Innopharma Technology
 - Innopharma Technical Services
- HQ: Dublin, Ireland
- ~120 employees experienced in STEM, pharma, manufacturing, IT, Software Development

The Journey

Solutions for Advanced Manufacturing

2	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Sensors – Process Analytical Technolog	ду													
nnovative sensors for process environments														
Eyecon - in-line real time particle size and shape													i .	
Eyecon ₂ - second generation, smaller GMP desi	ign												-	
Eyecon ₂ - EyePASS, Artificial Intelligence image	ige ana	alysis											-	_
Multieye - in-line real time NIR					-						→			
Multieye ₂ - second generation, discrete chann	nels									_			-	
Pharma 4.0 – Smart Manufacturing oT platform for automated development and manufa	acturin	n												
SmartX - Fluid bed granulation / coating	locarină	9									_		_	_
SmartX – Crystallisation													-	_
SmartX - Twin screw granulation														-
SmartX - ?													i i	
Ongoing			Adv	/ancing			•			Accom	plishec			•

Eyecon₂ Technical Specifications

Size Range	50 to 5500 µm
Casing materials	304 Stainless Steel, Glass,
	Silicon (gaskets)
Imaging Area	11.25 x 11.25 mm
Output	PDF. CSV, JPEG
	full PSD D5-D95.
Instrument	GMP compliant design
Ratings	EyePASS is both 21 CFR part
	11 & GAMP5 Compliant
	CE Marking
	ATEX zones 2/22, IP65.
Configurations	In-line and at/offline
Communication	Ethernet and USB
	OPC UA, OPC DA 3.0

- ✓ In-line
- ✓ At-line

Jocon

6 L

- ✓ Non product contact
- ✓ Real time

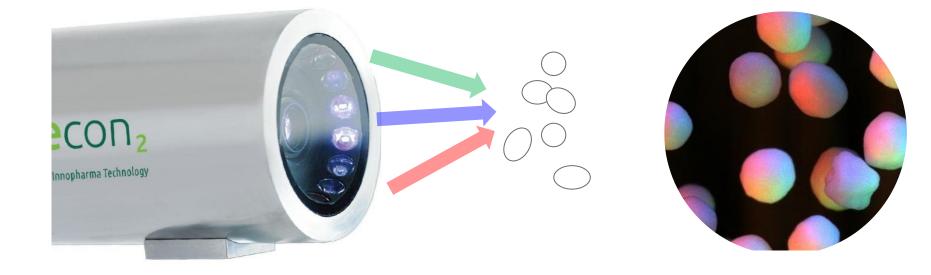
Small particles are Big deal

Configurations Processes Π Π Seyecon₂ wecon₂ 000000 000000 000000 Sample Off-Line At-Line 6 eyecon, eyecon₂ 00800 **⊂ eye**con₂ eyecon₂ □ E Seyecon, COMPRESSION ∘6,6 0 896,899,985 0 °8°°°°°°° In-Line On-Line Seyecon₂ Process Flow

eyecon₂

FLUID BED GRANULATION

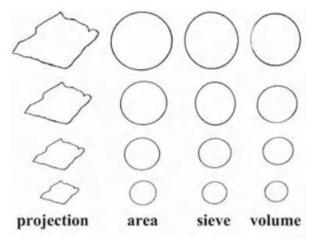
eyecon,


TWIN SCREW GRANULATION

Co.

ь

Method of Operation: Image Capture



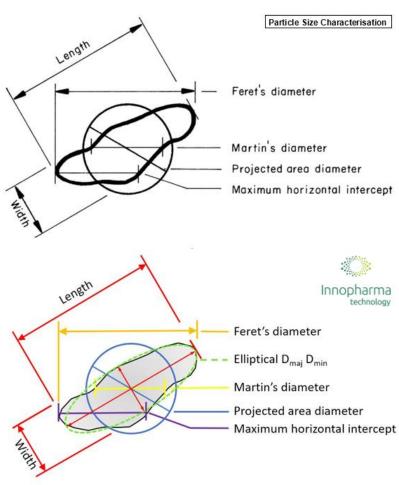
- A flash-imaging technique is used with an extremely short light-pulse to illuminate moving particles for image capture
- Red, Green and Blue LEDs illuminating the sample from different angles for detection of particle boundaries

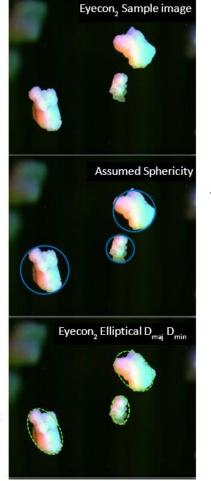
Particle size methods

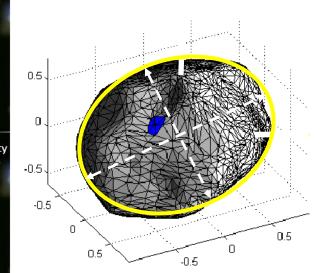
Particle size methods are not created equally, they all have their advantages and disadvantages

2.1 Particle Size

Fig. 2.2 Equivalent sphere concept for arbitrary particles


Horiba Particle Guidebook 2022



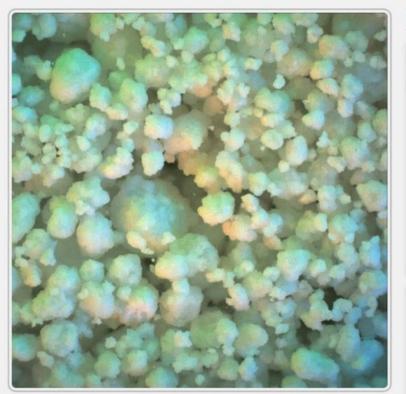

From: Particle Size Measurements, Fundamentals, Practice, Quality, Henk G. Merkus

From: <u>https://static.horiba.com/fileadmin/Horiba/Products/Scientific/Particle_Characterization/Particle_Guidebook_2022.pdf</u>

Method of Operation: Image Capture

- Each particle initially identified
- Best-fit ellipse calculated
- Major & minor diameters computed
- PSD/D-values determined

Innopharma technology


0

Eyecon₂ Data Output

eyepass

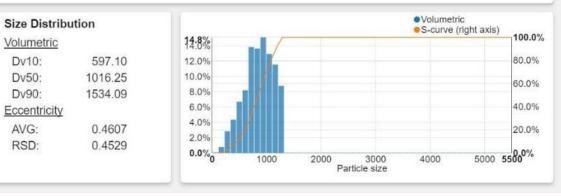
Ξ Administrator

Live Measurement

Material: Gran 171004 R2 Sublot: Starting operator: admin Elapsed time: 0d 01:22:06

Batch Number: attempt2 Configuration: Config_170922_Gran Time started: 2017-10-04 14:55:13 Integration Period: 120s

Volumetric Dv10:


Dv50:

Dv90:

AVG:

RSD:

.

Innopharma technology

0 ×

Stop

-

Eyecon₂ Data Output

Gran_171004_R2

attempt2

EYECON2

Batch Details Material

Batch Number

Instrument details

Sublot

Particle Size Report

Config_170922_Gran

admin

543602

P52003

Start time

End time

Duration

Eyepass version

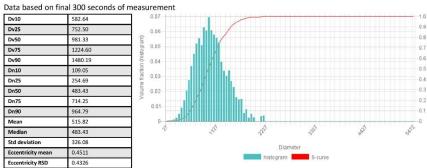
Configuration

Number of particles Eyecon serial number

Started by

2017-10-04 14:55:13

2017-10-04 16:28:59


1:33:47

1.1.4

Results: End Point

Sample Images

Signature:

2017-10-04 14:55:14

.

. .

Eyecon₂ Data Output

٦																																			
Eyecon Particle	Size Rep	oort - Innou	pharma 1	Technolos	gy																														
Batch Details	Ē.			Ī																															
	Batch Nu r	n/a C	Configur 5	Started F	Start dat	Start tim	End date	End time [Duration	(seconds)	1																								
Gran 171004 at			-					16:28:59			•																								
Instrument Deta																																			
		EvePASS ve	۹r																																
	S2003 1																																		
Configuration D																																			
-		Image of S	Short du 1	Integrati	Min Rer	Max Per	Max det	t False ag B	Edge cor	Analysic	Material	Marms = 4	Report to 1	Product	All came	R camera	Gramer	S camer: 5	LED #= 4	G LED #P	BIEDga	Focus nes	sition /Eve	PCOD 2 OP	v)										
Config 17092 In		111 12	0	120					60 Euge Cor	301			Default	300		100	40	75	60 KLED ga V	50 EED ga	-	pu													
End Point Resul			-				1400	0.20	00	501	U		scrout	500	20	100	-+0	13	00	50	162			<u> </u>			<u> </u>		++		<u> </u>	<u> </u>		<u> </u>	
2					D_v90		D n50	D n90	Mean di	Median (Std device	11 avera	12 avera 1	Shape m	Shape D	5% vol	10% vol	15% vol 0	10% 1/01	25% wol	30% vol 1	35% vol	40% vol	45% vol 1	50% wet	55% vol	60% vol	65% vol	70% vol 7	75% 201	80% vol	85% vol	90% vol	95% vol	100%
								_									582.64		700.41										1169.32						
Process Profile -	all res							204.13	-13.62	-03.40	520.00	555.10	-70.40	0.4011	0.4020	-771.23	502.04	043.20	700.41	12.5	002.01	004.17	550.13	200.90	501.33	-922.40	1003.00	1161.73	1105.32	1624.0	1003.09	±-ru0.04	1-00.19	1010.77	2203.35
		Elapsed D	-	- .				D n90	Mean di	Median (Std device	11 avera	12 avera 1	Shape m	Shape D	5% vol	10% vcl	15% אכן ר	10% 1/01	25% 101	30% vol 3	35% vol	40% vol	45% vol 1	50% wel	55% vol	60% vol	65% vol	70% vol 7	75% 101	80% vol	85% vol	90% vol	95% 101	100% vol
04/10/2017 14			-	-		-	-			124.48		149.11	d2 avera : 133.51	0.4027	Snape к 0.3867				20% VOI 2 126.04						197.14										100% VOI 469.02
04/10/2017 14												149.11 148.98	133.51 133.31	0.4027	0.3867	110.98		120.62	126.04						197.14	204.67									469.02
04/10/2017 14				195.99					141.15	124.53 124.37	45.74	148.98	133.31 133.27	0.4039	0.3853	111 110.83		120.55	125.89	131.59			1/5.21	188.15	195.99	203.27									469.02
																																			469.02
04/10/2017 14				196.7 196.65					141.3 141.25	124.55 124.46		149.01 148.97	133.58 133.54	0.4008	0.384	111.04 111.08		120.61 120.44	125.82 125.69						196.7 196.65	203.98 203.98				261.2					469.02
04/10/2017 14									141.17	124.43		148.88	133.45	0.4011	0.3842	111.11		120.45	125.59						196.38										469.02 469.02
04/10/2017 14				195.5 195.35						124.54	45.07	148.7 148.67	133.28 133.27	0.4012		111.01	115.57	120.4	125.51	130.87															469.02
,,										124.54	45.06			0.4011	0.3846	110.99	115.57	120.38	125.5																
04/10/2017 14		63.04							140.94	124.57	45.01	148.67	133.22	0.4018		110.98			125.47						195.18										469.02
04/10/2017 14										124.58		148.59	133.17	0.4016		110.98			125.51																541.35
04/10/2017 14										124.53	45.1	148.56	133.13	0.4015		110.95		120.42	125.46																541.35
04/10/2017 14						107.93			140.8	124.5		148.52	133.09	0.4017	0.3856	110.98	115.61	120.41	125.43				165.46												541.35
04/10/2017 14												148.43	133.01	0.4015		110.94	115.56	120.36	125.35																541.35
04/10/2017 14									140.65	124.42		148.37	132.94	0.4017	0.3864	110.93			125.26																
04/10/2017 14			115.55	195.2					140.7	124.43		148.42	132.99	0.4017	0.3864	110.97			125.31						195.2										541.35
04/10/2017 14			115.54	195.11					140.66	124.41	44.95	148.36	132.95	0.4016		110.97	115.54		125.27	130.7					195.11	203.02									541.35
04/10/2017 14			115.53	194.82					140.55	124.36	44.75	148.24	132.87	0.4014	0.3862	110.96	115.53	120.22	125.12	130.5					194.82	202.77									541.35
04/10/2017 14			115.49	194.6					140.41		44.6	148.07	132.74	0.4012	0.3865	110.94	115.49		124.96																541.35
04/10/2017 14			115.44	194.2			124.3			124.3		147.92	132.59	0.4013	0.3869	110.96			124.86																541.35
04/10/2017 14			115.3							124.16		147.68	132.37	0.4014	0.3869	110.89			124.64																541.35
04/10/2017 14						107.9			139.9	124.16		147.55	132.26	0.4014	0.3867	110.85	115.29		124.56						193.19	201.5									541.35
04/10/2017 14			115.26							124.09	43.94	147.39	132.14	0.4011	0.3872	110.8		119.78	124.44						193.08										541.35
04/10/2017 14									139.73	123.95		147.36	132.1	0.4011	0.3875	110.83			124.34						193.45										541.35
04/10/2017 14			115.18							123.9	43.85	147.19	131.98	0.4006		110.81	115.18	119.6	124.18						193.05	201.4									541.35
04/10/2017 14			115.1	192.9						123.81		147.02	131.85	0.4003		110.78			124.01																541.35
04/10/2017 14			115							123.72		146.87	131.7	0.4004	0.3881	110.75	115		123.82						192.31	200.95									480.5
04/10/2017 14				192				201.92		123.7	43.34	146.75	131.61	0.4001	0.3879	110.73		119.28	123.74						192										480.5
04/10/2017 14			114.93						139.1	123.67		146.64	131.55	0.3997	0.3875	110.71	114.93		123.65																480.5
04/10/2017 14	4:58:51	217.8	114.9	191.4	316	108.02	123.6	201.92	139.01	123.6	43.04	146.54	131.47	0.3996	0.3873	110.67	114.9	119.17	123.52	128.42	134.03	141.01	151.54	178.58	191.4	200.14	208.21	216.2	227.27	248.02	269.42	289.38	316	364.36	470.43
04/10/2017 14	4:58:59	225.6	114.88	191.06	316.34	108.02	123.56	201.66	138.88	123.56	42.94	146.41	131.35	0.3996	0.3866	110.64	114.88	119.12	123.43	128.29	133.82	140.72	151.04	177.46	191.06	199.9	207.93	216.2	227.23	247.5	269.02	289.44	316.34	364.42	480.28

.

EyePASS Version 3.0

Machine learning image analysis

EyePASS

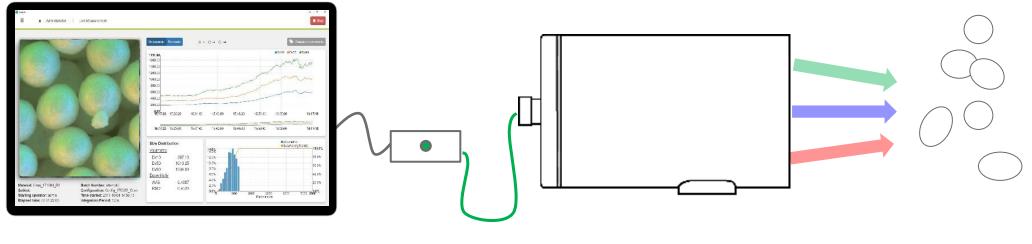
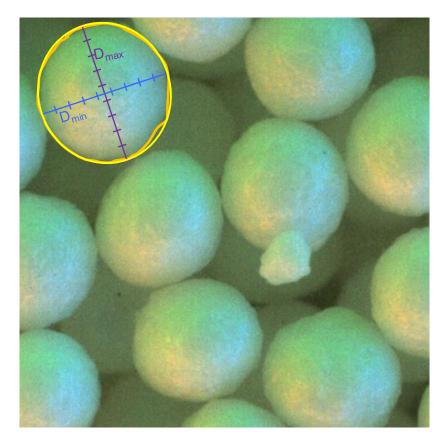


Image Analysis

Image Acquisition

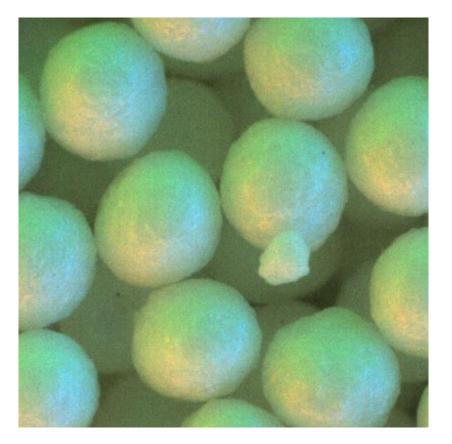

What is Image Analysis?

		D _{min}	D _{max}
		1046.2	1078.89
		1061.42	1138.09
		1147.19	1336.78
		1659.39	110.52
		840.353	1721.95
		1065.67	1133.62
.0.	Analysis	9.8.2 8	1140.41
	/ (ITCH y 515	1049.12	1151.69
		943.567	1142.3
		980.434	1178.46
		914.148	1095.72
		005 0 40	

What does it involve?

Vision Task Delineate objects of interest e.g., particles

...


Measure necessary attributes of each object e.g., major/minor axes lengths

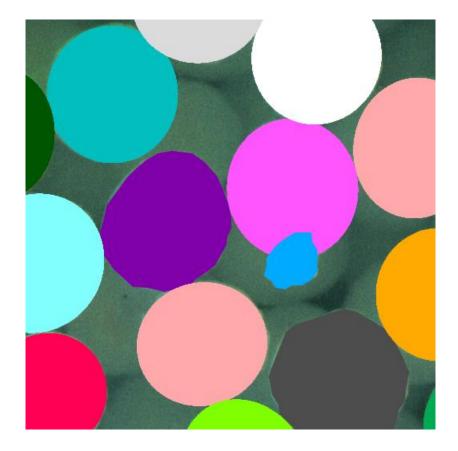
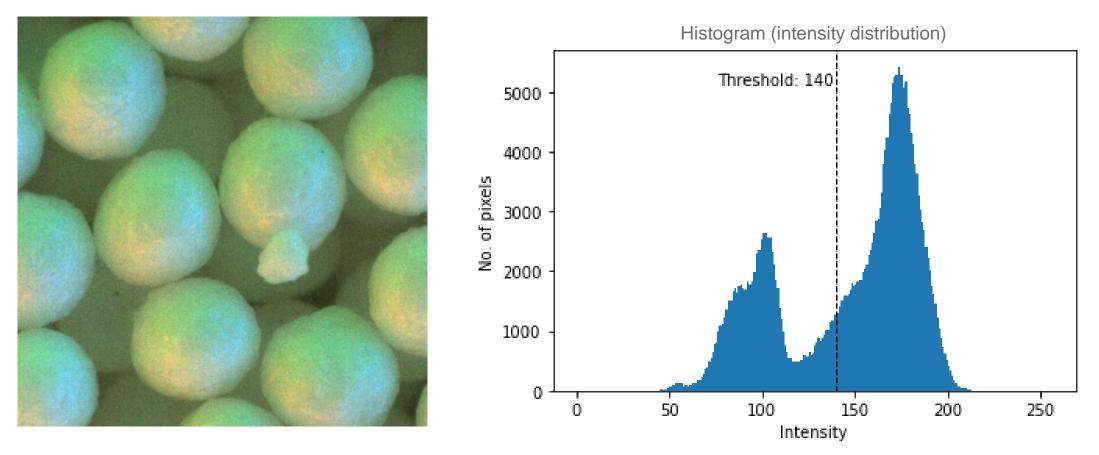
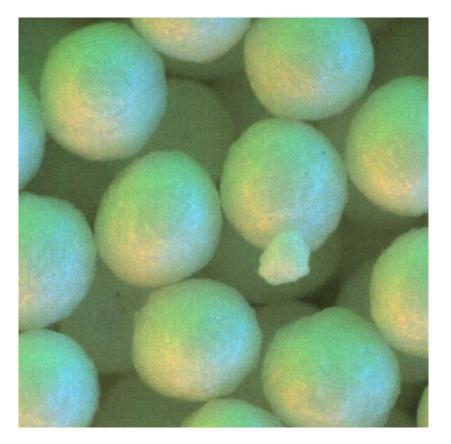


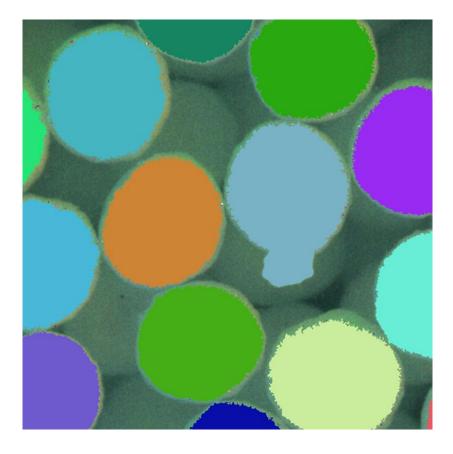
Image Segmentation



The goal as defined by a human observer

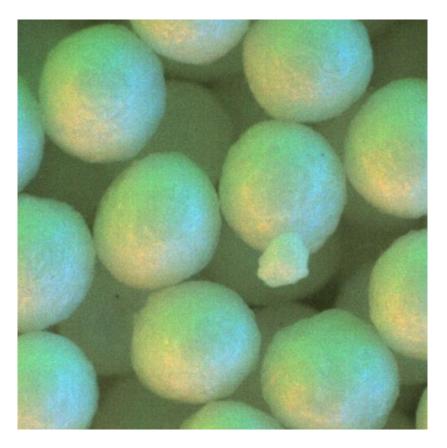
Image Segmentation





Classical Image Processing - Thresholding


Image Segmentation



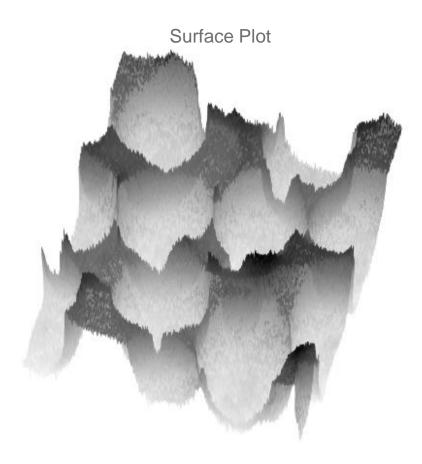
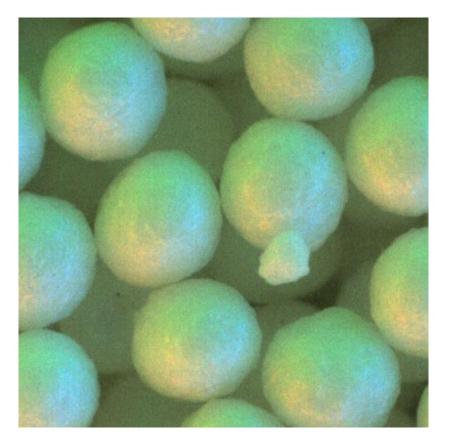
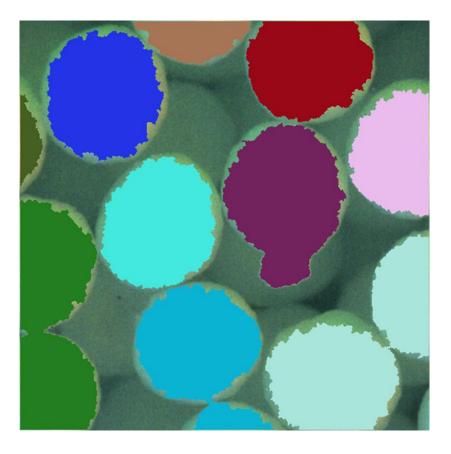

Classical Image Processing - Thresholding

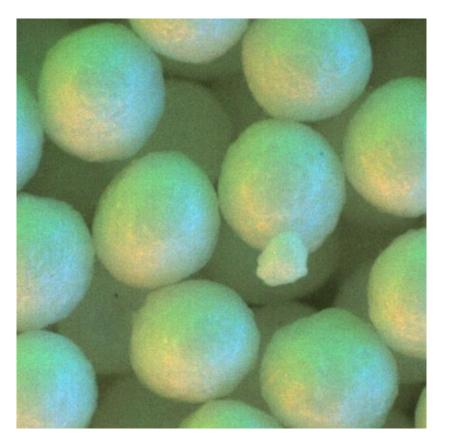
Image Segmentation

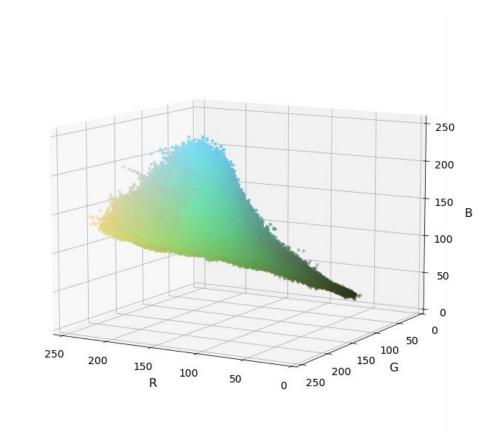




Classical Image Processing - Watershed

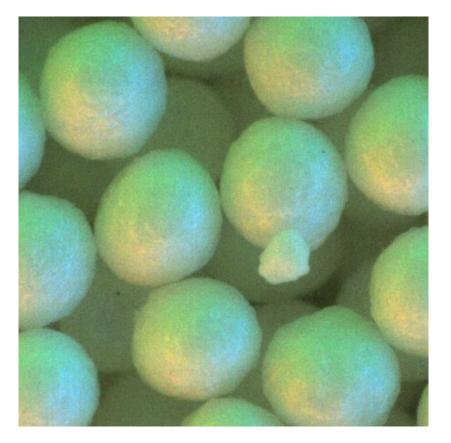
Image Segmentation

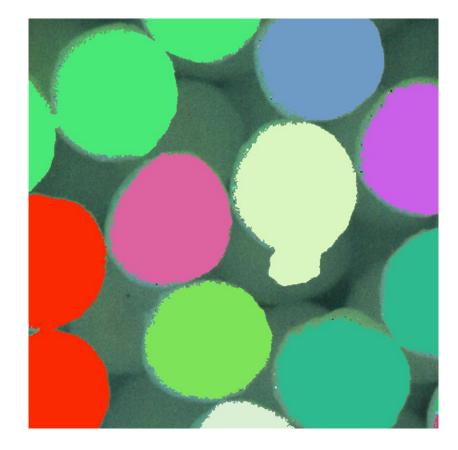




Classical Image Processing - Watershed

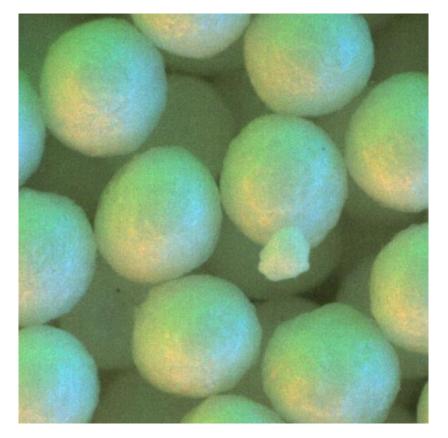
Image Segmentation

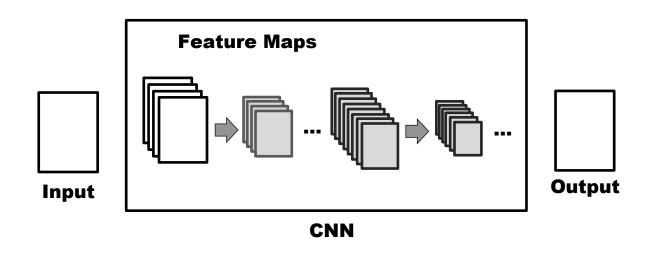




Machine Learning - Clustering

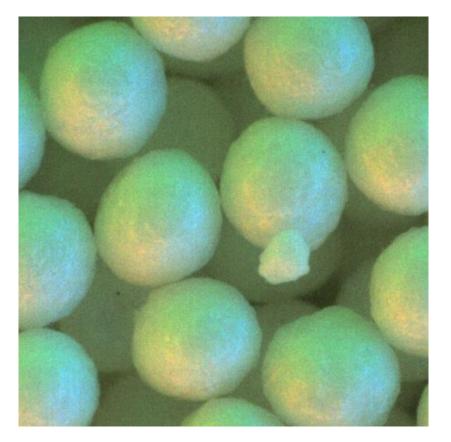
Image Segmentation

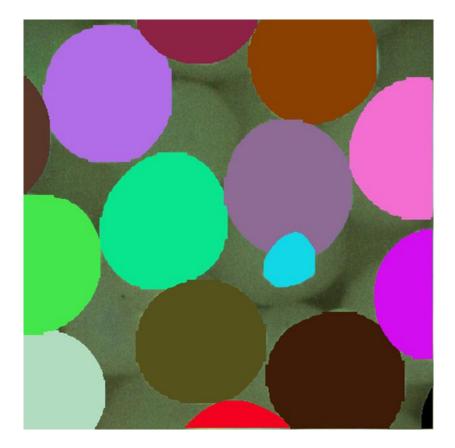




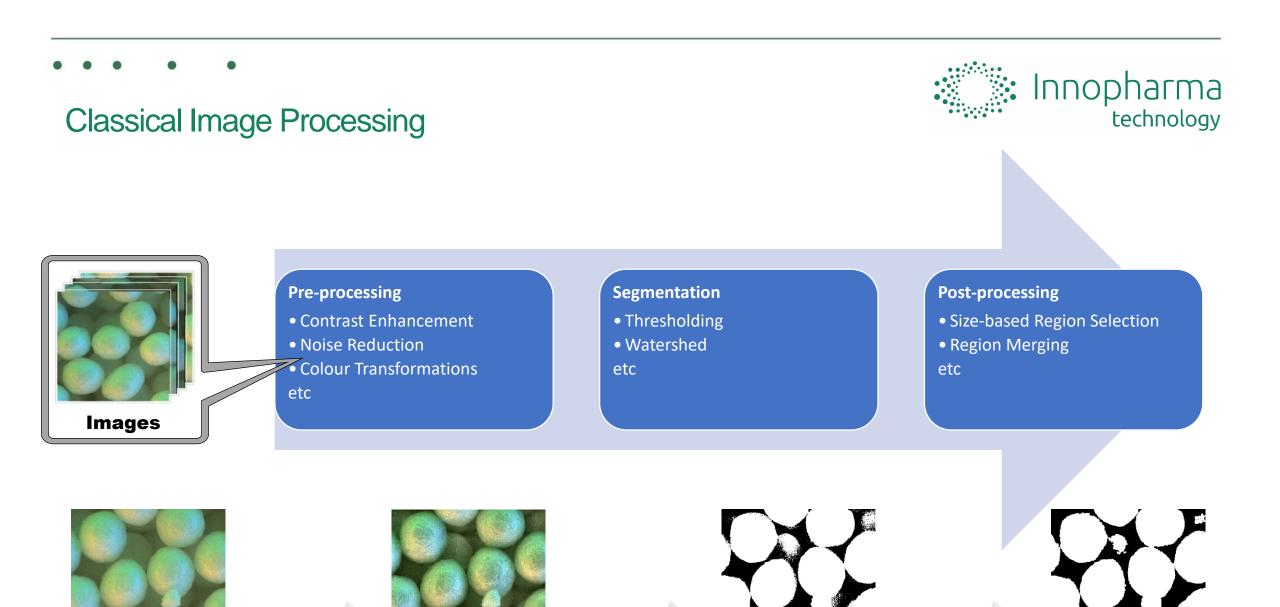
Machine Learning - Clustering

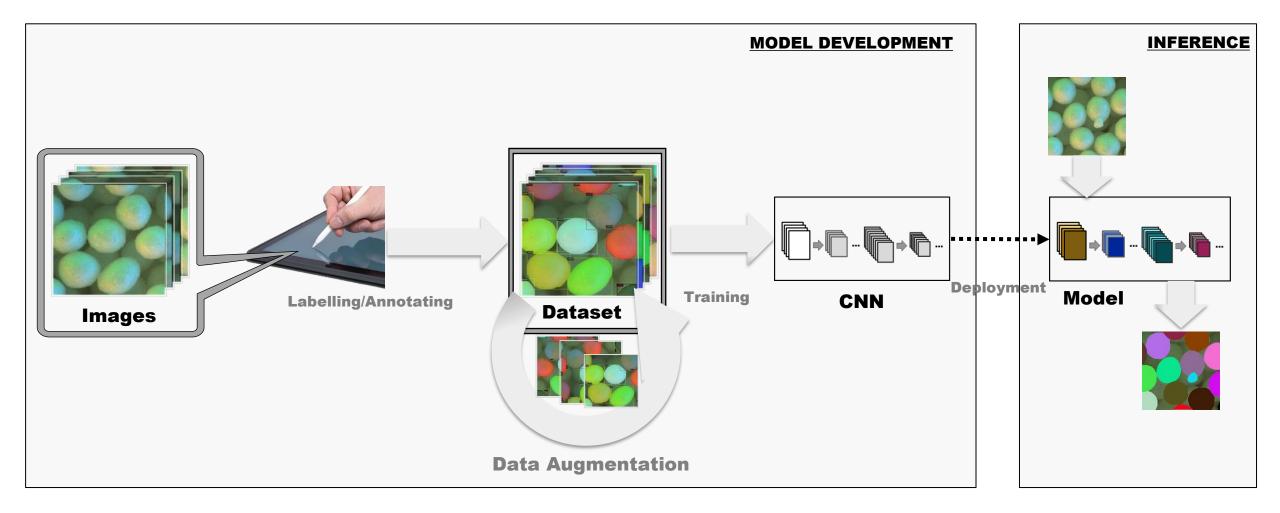
Image Segmentation





Machine Learning - Convolutional Neural Networks (CNNs)


Image Segmentation



Machine Learning - Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

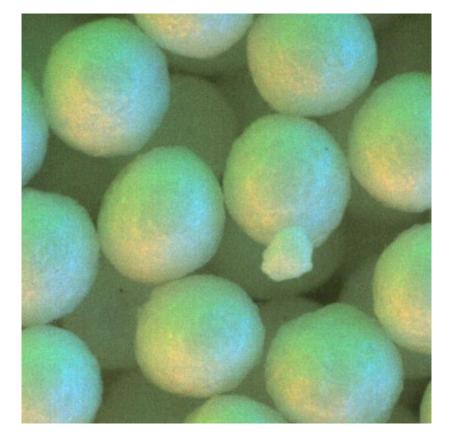
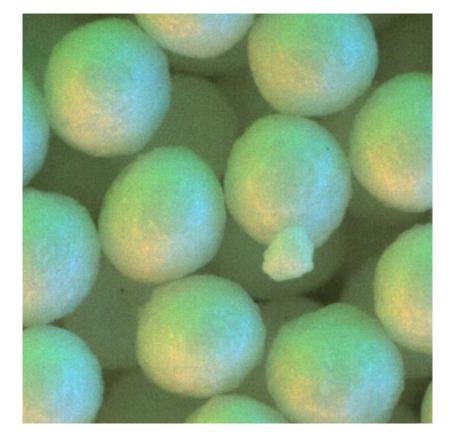

Model Development Process - K-fold cross validation

Image Segmentation

In EyePASS v2...



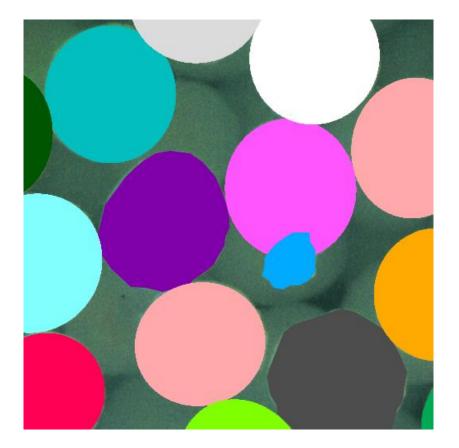


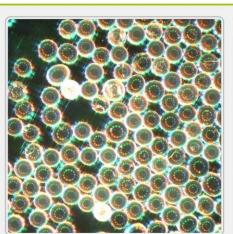
Image Segmentation

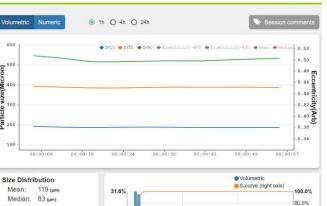
...compared to EyePASS v3

User Experience

EyePASS V2.0

isurement Mode	Measurement Method	
In Line 🔹	V2	•
Imag	e Storage Interval (seconds)	
ad Defaults for Process	Statistical Analysis	>
Fluidised Bed Granulation -	Integration Time (seconds)	60
Fluidised Bed Granulation	Minimum Reported Diameter (µm)	25
Fluidised Bed Coating	Maximum Reported Diameter (µm)	1000
Spheronisation		
Twin Screw Granulation		
Milling	Image Analysis	>
	Maximum Detection Diameter (μm)	1000
	Minimum Detection Diameter (î¼m)	70
	Average Image Intensity	0
	False Agglomeration Filter	0.4
	Edge Contrast Threshold	80
	Analysis Block Size (pixels)	301
	No. Levels	18


EyePASS V3.0


Configuration: New Config											
Configuration	Analysis	Camera Alarm Report									
Measurement Mode		Measurement Method									
In Line •]	V3	•								
	Image Storage	e Interval (seconds)									
Load Defaults for Process		Statistical Analysis	\$								
ML Model 001 - General ML Model 001 - General ML Model 002 - Glass Beads ML Model 003 - Milling		Integration Time (seconds) Minimum Reported Diameter (µm) Maximum Reported Diameter (µm)	60 25 1000								
		Image Analysis	د								
		Mask Threshold Max Object Size px Min Object Intensity Max Num Objects	0 0 0 0								
Exit		Save & Exit	Next >								

Administrator | Live Measurement

=

EyePASS - Before and After Machine Learning

HW OK

Sto

60.0%

40.0%

20.0%

6000%

4000

r: : V2_1000Sieve_Glass_a 2022-01-27 15:53:15 riod: 60s

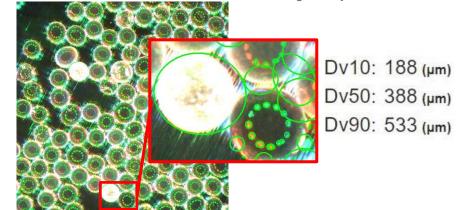
 Size Distribution
 31.6%

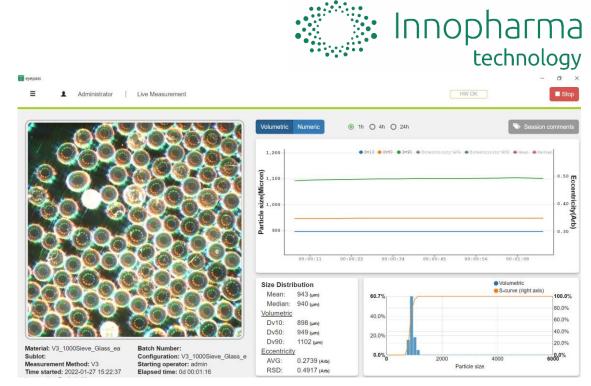
 Median:
 119 (µm)

 Median:
 83 (µm)

 Volumetric
 20.0%

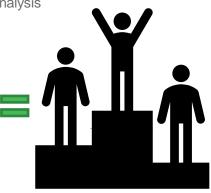
 Dv10:
 188 (µm)


 Dv90:
 533 (µm)

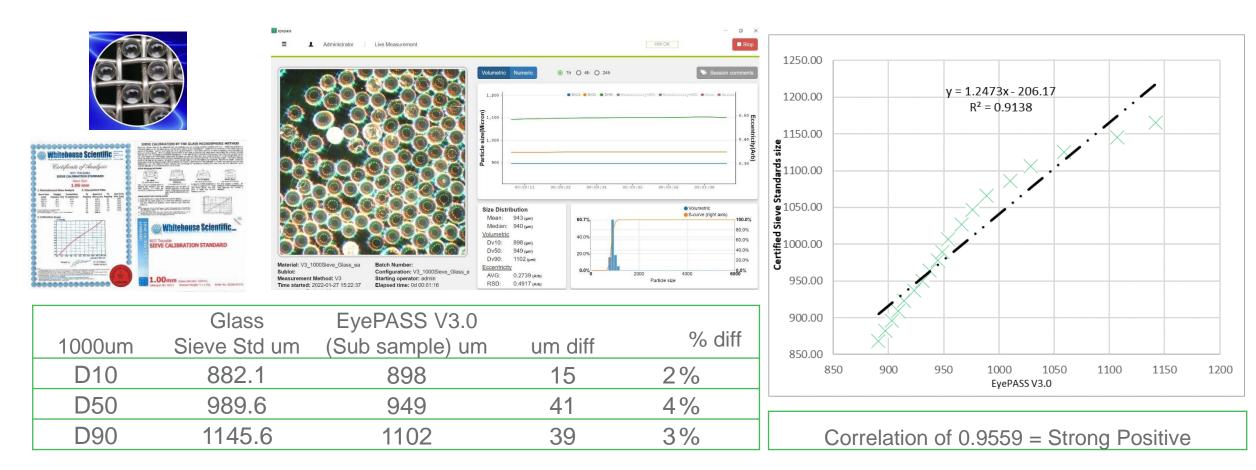

 Eccentricity
 0.4335 (Are)

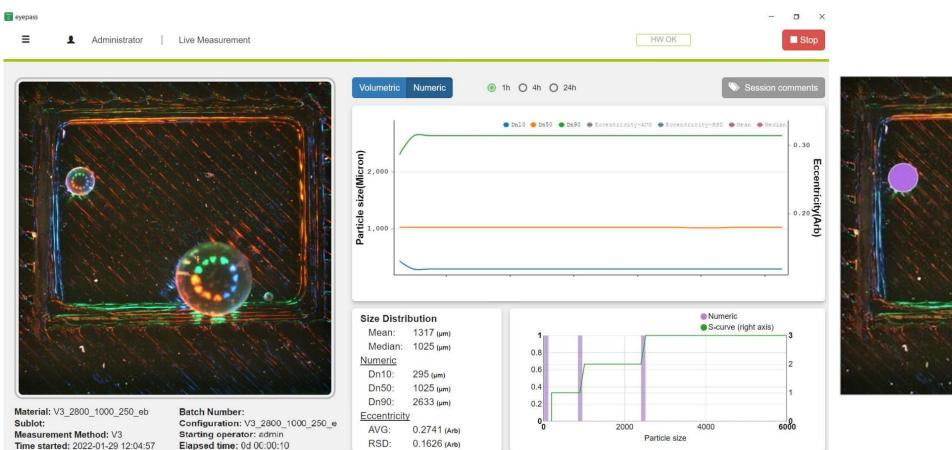
 RSD:
 0.4199 (µm)

 Particle size
 2000

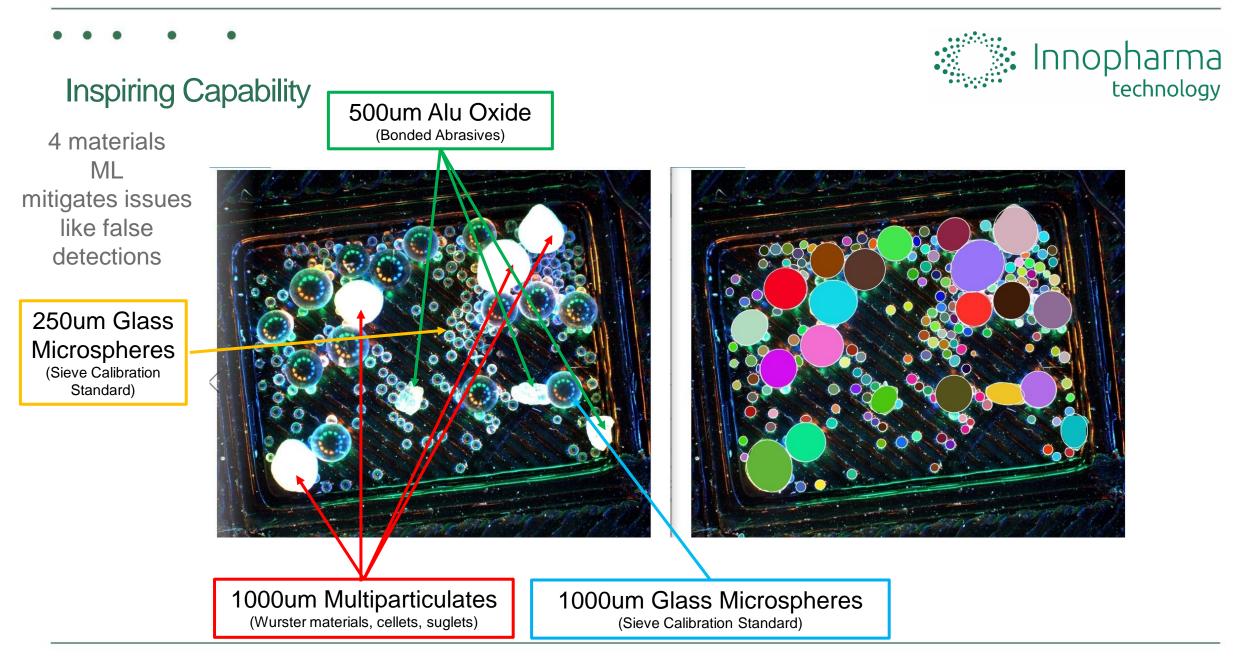

Traditional Image analysis

Machine Learning Image analysis

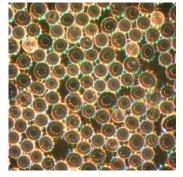

Dv10: 898 (µm) Dv50: 949 (µm) Dv90: 1102 (µm)

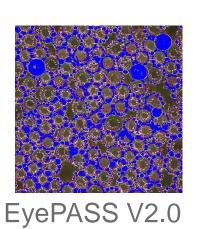

©2022 Innopharma Technology Ltd.

EyePASS V3.0 - Results

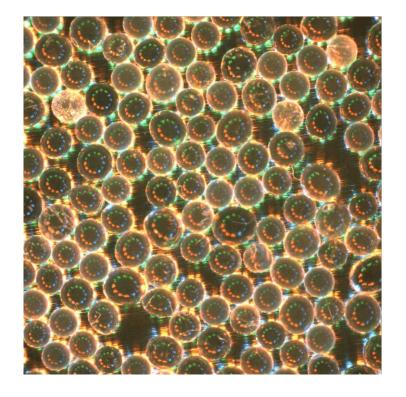


Untapped Potential





The Power of Machine Learning



Eyecon₂ Image

Darren McHugh

Senior Product Manager Innopharma Technology Ltd mchughd@innopharmalabs.com Girish Mallya Senior Software Developer Innopharma Technology Ltd Mallyag@innopharmalabs.com

Thank you!