

Advanced Software Features for the LA-950

lan Treviranus ian.treviranus@horiba.com www.horiba.com/us/particle

Explore the future © 2012 HORIBA, Ltd. All rights reserved

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

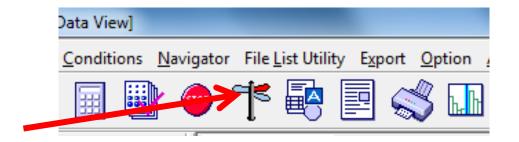
What we'll talk about

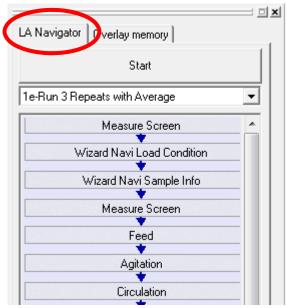
Measurement tools

Data analysis tools

Data verification tools

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific


HORIBA

One-button Measurement

- Use the Navigator or Method Expert to create Sequence (.seq) files
 - Manual: Navigator
 - Auto: Method Expert

HORIBA

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

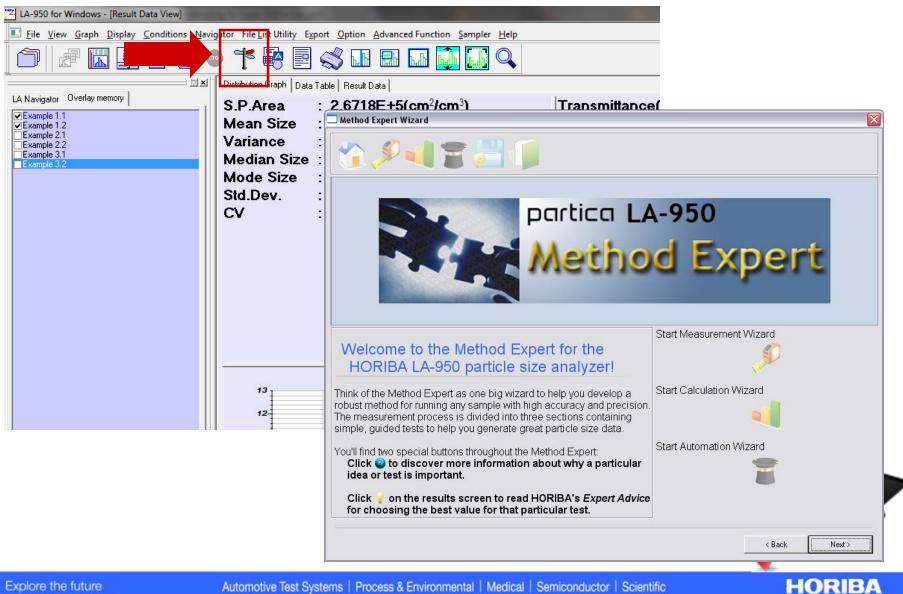
- Unique guided method development
- Optimize parameters
- Choose the best refractive index
- Create "one button" SOPs
- Webinar TE004 for Method Expert

Collecting and Calculating

The LA-950 *hardware* collects scattered light data

The LA-950 *software* calculates the particle size distribution using that scattered light data

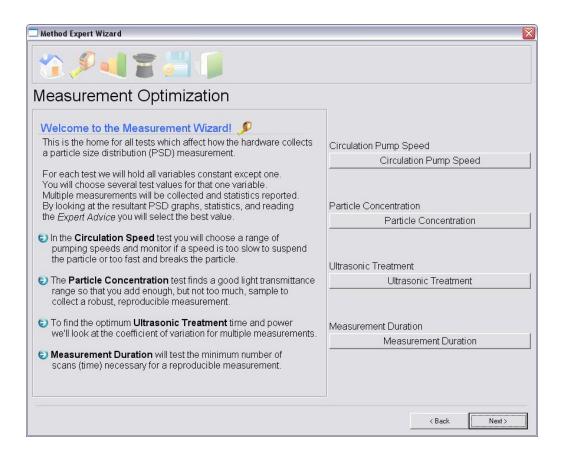
Both must be optimized to maximize data quality



Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

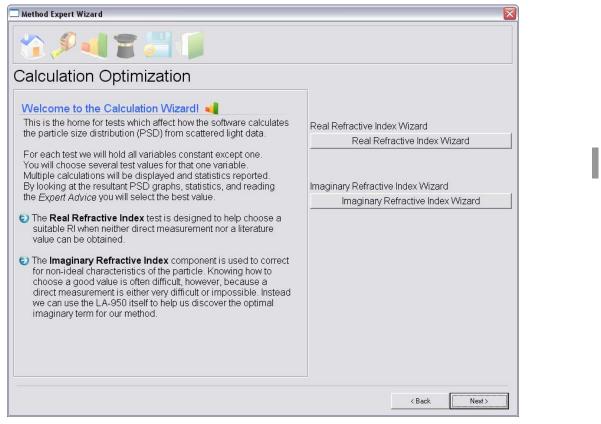
HORIBA


Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Method Expert Hardware

There are four important tests...


Circulation Concentration Dispersion Duration

Explore the future

Method Expert Calculation HORIBA

There are two important tests...

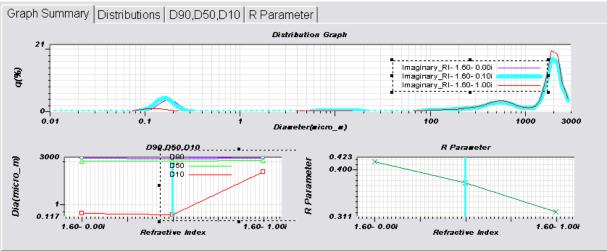
Real RI Imaginary RI

Explore the future

Why is the test important? What does the test do? How will the results be displayed? What is the best value?

User selects up to 5 values for testing

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Method Expert guides user to prepare the LA-950 for each test

Results displayed in multiple formats: PSD, D50, R-parameter

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Method Expert Wizard	
*** 🔎 🛁 🖀 🚝 🃁	
Automation Wizard	
Welcome to the Automation Wizard! The purpose of the Automation Wizard is to teach the LA-950 how to analyze a particular sample so that the user need only push a single button to collect a measurement. A Condition and Sequence file will be created to automate the process and effectively create a standard operating procedure. The entire measurement process can be concreted into four particular.	Preparing for Measurement Preparation Collecting a Measurement
 The entire measurement process can be separated into four sections Preparation, Collection, Calculation, and Output. Preparation is everything that needs to be done before the sample is added to the analyzer. This includes identifying the sample, filling the analyzer with liquid, turning on the circulation pump, aligning the laser, and taking a good background blank. 	
 Collection is adding sample to the analyzer at the correct concentration and then measuring the scattered light data over time. Calculation refers to the refractive index of the sample material and number of iterations for the data to pass through the algorithm. Output consists of various ways to save, export, and print the measurement. The Condition and Sequence files are created here. 	Outputting/Reporting the Measurement Output
	< Back Next >

Explore the future

Image: Section Purpose Remember to click the Image: Discretion Purpose Section Purpose Remember to click the Image: Discretion Purpose The measurement has been collected and calculated and can now be saved, exported, and printed for reporting the LA-950 was designed to meet a variety of customer preferences, so there are many ways to perform these. Once the reporting setup is finished, simply name the Condition and Sequence files used to run this method. Step 4. Give this Expert Method a unique, descriptive name. (This name is used as the output sequence file name) Image: Image	E
Section Purpose Remember to click the Subtron for more The measurement has been collected and calculated and can now be saved, exported, and printed for reporting the LA-950 was designed to meet a variety of customer preferences, so there are many ways to perform these. Once the reporting setup is finished, simply name the Condition and Sequence files used to run this method. Step 4. Give this Expert Method a unique, descriptive name. (This name is used as the output sequence file name) Image: Step 5. Input condition file name. Image: Step 6. Push save button. This wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
Section Purpose Remember to click the ♥ button for more The measurement has been collected and calculated and can now be saved, exported, and printed for reporting the LA-950 was designed to meet a variety of customer preferences, so there are many ways to perform these. Once the reporting setup is finished, simply name the Condition and Sequence files used to run this method. Step 4. Give this Expert Method a unique, descriptive name. (This name is used as the output sequence file name) ♥ Use same name for saving the condition file. Step 5. Input condition file name. (a) Step 6. Push save button. his wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
The measurement has been collected and calculated and can now be saved, exported, and printed for reporting the LA-950 was designed to meet a variety of customer preferences, so there are many ways to perform these. Once the reporting setup is finished, simply name the Condition and Sequence files used to run this method. Step 4. Give this Expert Method a unique, descriptive name. (This name is used as the output sequence file name) Use same name for saving the condition file. Step 5. Input condition file name. Step 6. Push save button. This wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
The LA-950 was designed to meet a variety of customer preferences, so there are many ways to perform these. Once the reporting setup is finished, simply name the Condition and Sequence files used to run this method. Step 4. Give this Expert Method a unique, descriptive name. (This name is used as the output sequence file name) Use same name for saving the condition file. Step 5. Input condition file name. Step 6. Push save button. his wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	information
Step 4. Give this Expert Method a unique, descriptive name. (This name is used as the output sequence file name) Use same name for saving the condition file. Step 5. Input condition file name. Step 6. Push save button. his wizard is temporarily closed, and the sequence file and condition file are saved. Steve Sequence and Condition	
(This name is used as the output sequence file name) ✓ Use same name for saving the condition file. Step 5. Input condition file name. ✓ ✓ Step 6. Push save button. his wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
(This name is used as the output sequence file name) ✓ Use same name for saving the condition file. Step 5, Input condition file name. ✓ ✓ ✓ ✓ Step 6. Push save button. his wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
(This name is used as the output sequence file name) ✓ Use same name for saving the condition file. Step 5, Input condition file name. ✓ ✓ Step 6. Push save button. his wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
Step 5, Input condition file name.	
Step 5, Input condition file name.	
Step 6. Push save button. his wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
his wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
his wizard is temporarily closed, and the sequence file and condition file are saved. Save Sequence and Condition	
and the sequence file and condition file are saved. Save Sequence and Condition	
< Back	
< Back	
	Next >

Explore the future

Dry Measurement

Method Expert currently wet only

Use "Auto Measurement" for dry

Webinar TE016: Optimizing Dry Powder Measurements

HORIBA

Navigator

 LA Navigator function creates Sequence programs to operate the LA-950
 Maximum flexibility

)ata View]	-	_		
<u>C</u> onditions	<u>Navigator</u>	File <u>L</u> ist Utility	E <u>x</u> port	<u>O</u> ption
	Edit	navigator list		🖉 R 🖬
	Edit :	sequence 🛛 🚽		<u>a</u> 🖬
	Disl	tribution Graph D	ata Table	Result
	Me	ean Size 🛛 :	27.882	2 <mark>43(μ</mark> m

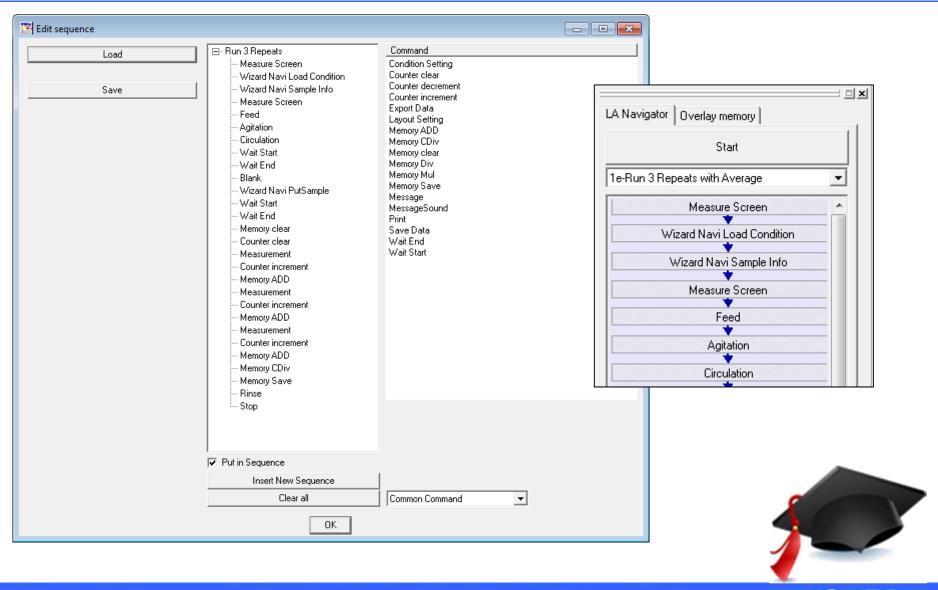
Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Navigator

🔀 Edit sequence				
Save		Command Condition Setting Counter clear Counter decrement Export Data Layout Setting Memory ADD Memory CDiv Memory Clear Memory Div Memory Mul Memory Save Message MessageSound Print Save Data Wait End Wait Start		
\rightarrow	✓ Put in Sequence Add New Sequence Clear all OK	Common Command	←	


Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Navigator

Explore the future

HORIBA

Automatic Dilution

Concentration control Adds dispersant, drains, repeat Is not possible without fill pump

Feed	Drain	Auto Dilution
Alignment		Partial Feed
	Partial Drain	
Blank		Rinse
Measurement	De-bubble	Dilute

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Automatic Dilution

Advanced Sample Information Information Transmittance(R) Upper: Transmittance(B) Upper:	Calculation 90 % Lower: 90 % Lower:	180 ~	System Transmittance(R) Upp Transmittance(B) Upp		% Lower: % Lower:	80	× ×	Transmittance 90.28(%) 77.26(%)
Feed Liquid level: Number of Times to Rinse: Automatic dilution Light Data acquisition times(Sam LD 5000 LED 5000 Data acquisition times(Blar LD 5000 LED 5000 Automatic before measurement			Automatic dilution Lig	,	Red () Blue			
	ΟΚ		Cancel			5		

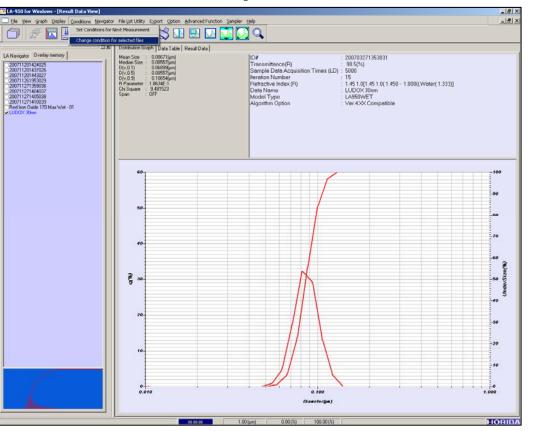
What we'll talk about

Measurement tools

Data analysis tools

Data verification tools

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Refractive Index

Many, many resources on website Webinar TR009: Optimization of RI

HORIBA

Explore the future

© 2012 HORIBA, Ltd. All rights reserved

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

of an of the second second of the second second

Manually Changing RI

Load	Sample information					
	┘ Sample Name					
	LUDOX					
	Material					
	Colloidal silica					
	Source					
	LUDOX					
	Lot Number					
	01-01183					
	Test or Assay. Number					
	F0706U09-IT					
alation Data Setting	Refractive Index					
- iveData						
ect Data in Memory						
	Comment: Create					
ata	Form of Distribution					
11201424025 11201437026						
11201443027	C Manual Auto					
11261953029 11271359036						
11271404037	Condition Iteration Number 15					
11271405038	Distribution base					
11271410039 ron Oxide 170 Max Wet - 01	Volume O Area					
	C Length C Numbers					
	Advanced					

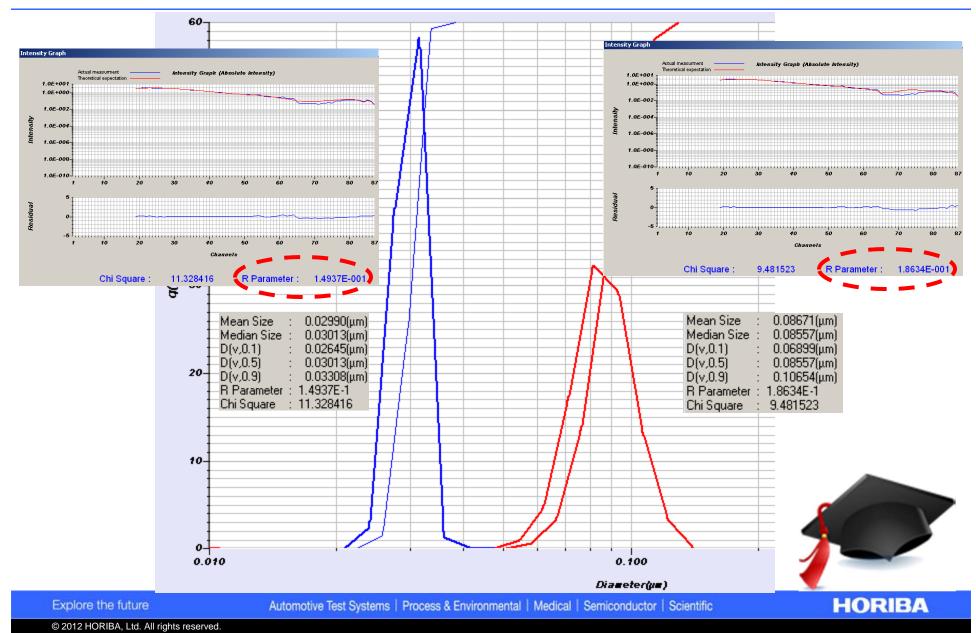
older: C:\Program Files\	HORIBA\LA-950E\LAAI	CQUISITION\Kernel				Sele	st Folder				
ile Name	File Comment	Sample Name	Sample Comment	Sam	Sam	Sam	Sam	Dispersion Name	Dispersio	Disp	Dis
.33 1.0 in 1.385		1.33 1.0 in 1.385		1.3300	1.0000	1.3300	1.0000	Heptane	Heptane	1.3850	1.3
.45 1.0 in 1.33		1.451.0		1.4500	1.0000	1.4500	1.0000	Water	Water	1.3330	1.3
.451.0		1.451.0		1.4500	1.0000	1.4500	1.0000	Water	Water	1.3330	1.3
.51 1.0 in 1.33		1.51 1.0		1.5100	1.0000	1.5100	1.0000	Water	Water	1.3330	-1.3
55 1.0 in 1.33		1.55 1.0 in 1.33		1.5500	1.0000	1.5500	1.0000	Water	Water	1.3330	1.3
57 0		1.57 0		1.5700	0.0000	1.5700	0.0000	Water	Water	1.3330	1.
59 0.1 in 1.378		1.59 0.1 in 1.378		1.5900	0.1000	1.5900	0.1000	Isopropanol	Isopropanol	1.3780	1.3
6 0.1 in 1.33		1.6 0.1 in 1.33		1.6000	0.1000	1.6000	0.1000	Water	Water	1.3330	1.
60-0i in water		RI=1.60		1.6000	0.0000	1.6000	0.0000	Water	Water	1.3330	1.
70-0.1i IPA		1.70-0.1i		1.7000	0.1000	1.7000	0.1000	Isopropanol	Isopropanol	1.3780	1.
lumina	water	Alumina	Alumina	1.6600	0.0000	1.6600	0.0000	Water	Water	1.3330	1.
uminum	water	Aluminum	Aluminum	1.6000	5.4000	1.6000	5.4000	Water	Water	1.3330	1.
mber	water	Amber	Amber	1.5400	0.0000	1.5400	0.0000	Water	Water	1.3330	1.
ntimony	water	Antimony	Antimony	3.2000	5.0000	3.2000	5.0000	Water	Water	1.3330	1.
sphalt	water	Asphalt	Asphalt	1.6300	0.0000	1.6300	0.0000	Water	Water	1.3330	1.
arium carbonate	water	Barium carbonate	Barium carbonate	1.6000	0.0000	1.6000	0.0000	Water	Water	1.3330	1.
arium fluochloride	water	Barium fluochloride	Barium fluochloride	1.6400	0.0000	1.6400	0.0000	Water	Water	1.3330	1.
arium fluoride	water	Barium fluoride	Barium fluoride	1.4700	0.0000	1.4700	0.0000	Water	Water	1.3330	1.
arium phosphate	water	Barium phosphate	Barium phosphate	1.6200	0.0000	1.6200	0.0000	Water	Water	1.3330	1.
arium sulfate	water	Barium sulfate	Barium sulfate	1.6200	0.0000	1.6200	0.0000	Water	Water	1.3330	1.
arium sulfide	water	Barium sulfide	Barium sulfide	2.1600	0.0000	2.1600	0.0000	Water	Water	1.3330	1.
arium vellow	water	Barium vellow	Barium vellow	1.6300	0.0000	1.6300	0.0000	Water	Water	1.3330	1.
admium sulfide	water	Cadmium sulfide	Cadmium sulfide	2.4200	0.0000	2.4200	0.0000	Water	Water	1.3330	1
alcium alminate	water	Calcium alminate	Calcium alminate	1.7100	0.0000	1.7100	0.0000	Water	Water	1.3330	1.
alcium borate	water	Calcium borate	Calcium borate	1.6000	0.0000	1.6000	0.0000	Water	Water	1.3330	1.
alcium carbonate	water	Calcium carbonate	Calcium carbonate	1.5800	0.0000	1.5800	0.0000	Water	Water	1.3330	1.
anadian balsam	water	Canadian balsam	Canadian balsam	1.5200	0.0000	1.5200	0.0000	Water	Water	1.3330	- î.
arbon	water	Carbon	Carbon	1.9200	0.0000	1.9200	0.0000	Water	Water	1.3330	1
eluriene	water	Celuriene	Celuriene	1.8400	0.0000	1.8400	0.0000	Water	Water	1.3330	1.
nome green	water	Chrome areen	Chrome areen	2.4000	0.0000	2.4000	0.0000	Water	Water	1.3330	1
nomium oxide	water	Chromium oxide	Chromium oxide	2.5000	0.0000	2.5000	0.0000	Water	Water	1.3330	1
obalt blue	water	Cobalt blue	Cobalt blue	1.7400	0.0000	1.7400	0.0000	Water	Water	1.3330	1.
obalt green	water	Cobalt green	Cobalt green	1.9700	0.0000	1.9700	0.0000	Water	Water	1.3330	1.
(. .											1

Explore the future

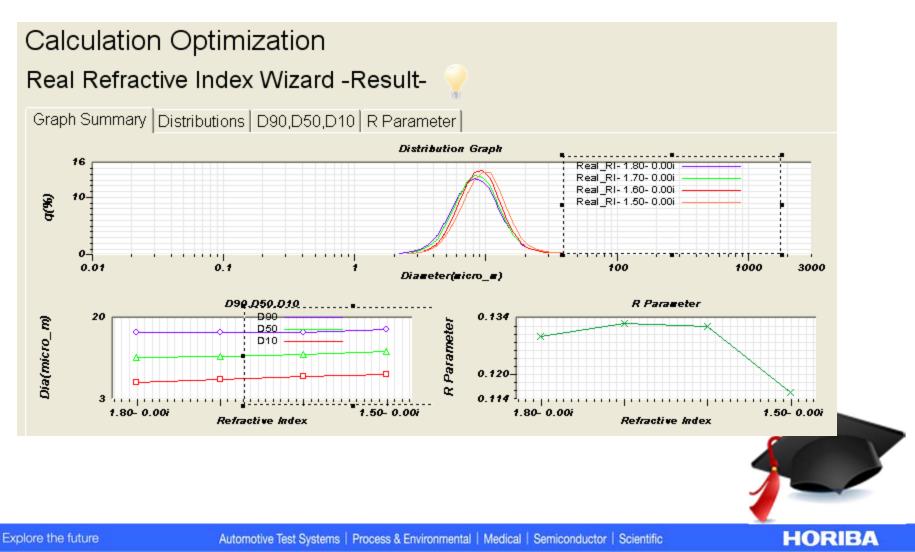
Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

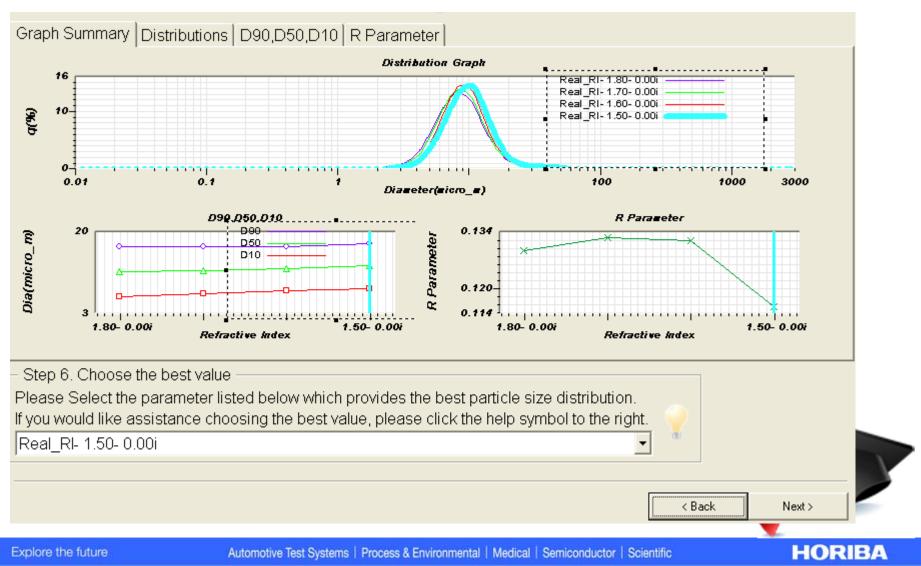
HORIBA

Manually Changing RI


Load Sample information
Sample Name LUDOX Material Colloidal slica Source LUDOX Lot Number 01-01183 Test or Assay. Number F0706U091T Calculation Data Setting ActiveData Select Data Distribution Select Data Double Select Comment Create Form of Distribution Create Form of Distribution Create Condition Leteration Number 15 Distribution base C Volume Area Length C Numbers Advanced

Explore the future

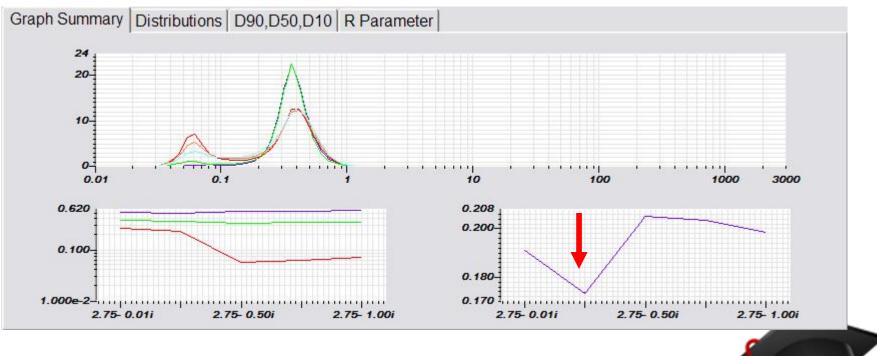

Manual Optimization



Real part study

- Need to fix imaginary part
- Set up to 5 real parts
- Software will compute all RI and display R parameter variation with RI selection

Step 2: Choose RI for lic				maginary component for test				
.333		Open List	0					
Step 4: Input RI real con	nponent for test		□- Step 5: Push "E	xecute" button.				
Test Value 1: 1.5 Test Value 4: 1.8		This wizard is temporarily closed,						
Test Value 2: 1.6	Test Value 5:	1.9	and the test sequ	and the test sequence is executed.				
Test Value 3: 1.7	_			Execute Test Sequence >>				

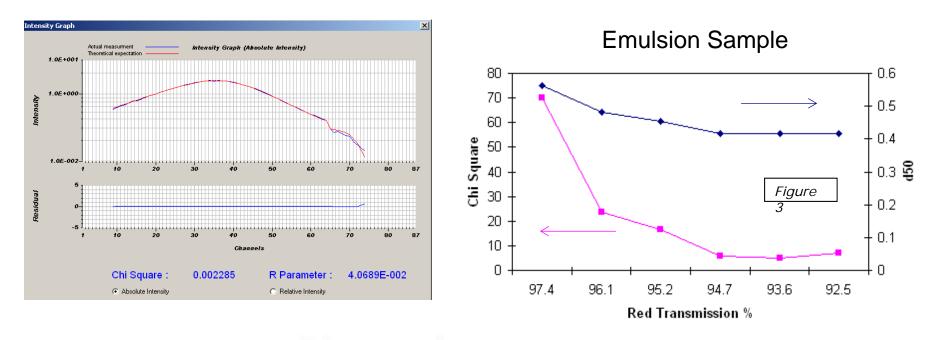

Imaginary part study

- Need to fix real part
- Set up to 5 imaginary parts
- Software will compute all RI and display R parameter variation with RI selection

 Step 1: Select measurement data for Select Active Memory Data 	test Select DataFile	Select File	
Step 2: Choose RI for liquid dispersa	nt <u>Step 3</u> Open List 2.75	Input RI real component for test	
Step 4: Input RI imaginary component Test Value 1: 0.01 Test Value 2: 0.1 Test Value 3: 0.5	Test Value 4: 0.7 Test Value 5: 1	Step 5: Push "Execute" butto This wizard is temporarily closed and the test sequence is execut Execute Test	d,
ore the future Automotive Test S	ystems Process & Environmental Me	dical Semiconductor Scientific	HORIBA

Exc

Imaginary study

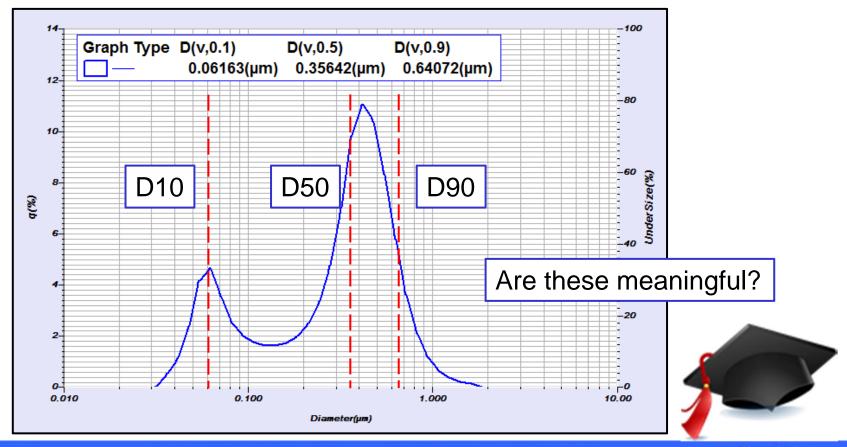

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Error Calculations

$$\chi^{2} = \sum \left\{ \frac{1}{\sigma_{i}^{2}} [y_{i} - y(x_{i})]^{2} \right\} \qquad R = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{1}{y_{(x_{i})}} |y_{i} - y(x_{i})| \right\}$$


yi The measured scattered light at each channel (i) of the detector.

- y (xi) The calculated scattered light at each channel (i) of the detector based on the chosen refractive index kernel and reported particle size distribution.
- σi The standard deviation of the scattered light intensity at each channel (i) of the detector. A larger σi indicates lower reliability of the signal on a given detector.
- N The number of detectors used for the calculation

Multimodal Report

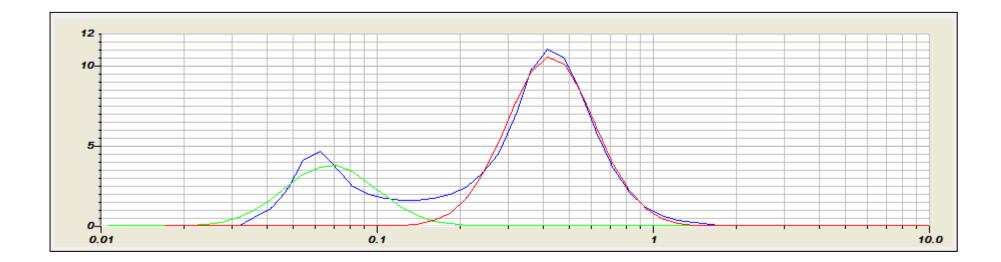
Hard to use full-distribution metrics to describe multimodal results

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

HORIBA


Multimodal Report

t <u>O</u> ption <u>/</u>	Advanced Function Sampler	<u>H</u> elp	tion Result						March 1		
🔝	Phi scale table										
	Sieve scale table										
le Result	Multi-Modal Report										
558(μm)	Intensity Graph										
642(μm) 177(μm)	Equipment Check	•						X			
341(μm) 163(um)					\rightarrow						
103141111		0.0	,		0.1			1			10
			Frequency Statistics								
		Samp	ile Distribution ————— nlau	Distribution 1		 Distribution 2 Display 		 Distribution 3 Display 		Residual ——	
		D50	: 0.36(µm)	D50 : 0.4	4(μm)		0.06(µm)		0.23(µm)	Sum of Squares	
		D10	: 0.06(µm)		0(μm)		0.05(µm)	D10 :		: 0.78	
		D90 Average	: 0.64(μm) e : 0.36(μm)	D90 : 0.65 Average : 0.44	5(μm) 6(μm)		0.08(μm) 0.06(μm)	D90 : Average :	0.75(μm) 0.35(μm)	Area Ratio:	
		Mode	: 0.42(µm)	-	2(μm)	-	0.06(μm)		0.24(µm)	Residual(abs):Sam : 0.05	ple
		STD De			4(μm)	STD Dev. :		STD Dev. :		Residual(abs):Dist	1
		Span Area Ra	: NoValue atio:	Span : NoV Area Ratio:	/alue	Span : 1 Area Ratio:	NoValue	Span : Area Ratio:	NoValue	: 0.09 Residual(abs):Dist	,
		Sample			: 0.53	Dist2:Sample	: 0.15	Dist3:Sample	: 0.33	: 0.31	
		Sample: Sample:			: 3.47 : 1.60	Dist2:Dist1 Dist2:Dist3	: 0.29 : 0.46	Dist3:Dist1 Dist3:Dist2	: 0.63 : 2.17	Residual(abs):Dist : 0.14	3
		· · ·	a(µm) Freq(%) 🔺		Freq(%)	Dia(µm)	. 0.40 Freq(%)	Dia(0.Dia(µm)	Freq(%)	Dia(μm)	Freq(%)
			0.0114 0	0.0114	0	0.0114	0	0.0114		0.0114	-0.00786
			0.01306 0	0.01306	0	0.01306	0	0.01306		0.01306	-0.01257
			D.01495 0 D.01713 0	0.01495	0	0.01495	0	0.01495		0.01495	-0.01983 -0.03061
			0.01962 0	0.01962	0	0.01962	0	0.01962		0.01713	-0.04624
		(0.02247 0	0.02247	0	0.02247	1e-005	0.02247		0.02247	-0.06838
			0.02574 0	0.02574	0 v	0.02574	0.00026	0.02574	0.09893	0.02574	-0.09919
		Save to	Text File Advanced Calc	Setting							P
							эк				

Multimodal Report

Deconvolute distribution into components

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

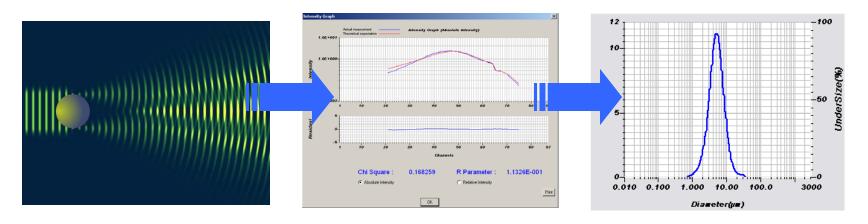
HORIBA

Multimodal Report

Statistics for each distribution mode

Summary Frequency Statistics				
- Sample Distribution	Distribution 1	Distribution 2	Distribution 3	Residual
🔽 Display	🔽 Display	🔽 Display	🔽 Display	Curr of Courses
D50 : 0.36(μm) D10 : 0.06(μm)	D50 : 0.07(μm) D10 : 0.04(μm)	D50 : 0.43(μm) D10 : 0.27(μm)	D50 :(μm) D10 :(μm)	Sum of Squares : 9.49
D90 : 0.64(µm) Average : 0.36(µm)	D90 : 0.11(μm) Average : 0.07(μm)	D90 : 0.69(µm) Average : 0.46(µm)	D90 :(μm) Average :(μm)	Area Ratio:
Mode : 0.42(µm)	Mode : 0.07(μm)	Mode : 0.42(µm)	Mode :(μm)	Residual(abs):Sample : 0.14
STD Dev. : 0.23(μm) Span : NoValue	STD Dev. : 0.03(µm) Span : NoValue	STD Dev. : 0.17(μm) Span : NoValue	STD Dev. :(μm) Span :(μm)	Residual(abs):Dist1 : 0.52
Area Ratio:	Area Ratio:	Area Ratio:	Area Ratio:	Residual(abs):Dist2
Sample:Dist1 : 3.72 Sample:Dist2 : 1.39	Dist1:Sample : 0.27 Dist1:Dist2 : 0.37	Dist2:Sample : 0.72 Dist2:Dist1 : 2.67	Dist3:Sample :, Dist3:Dist1 :,	: 0.19 Residual(abs):Dist3
Sample:Dist3 :,	Dist1:Dist3 :	Dist2:Dist3 :,	Dist3:Dist2 :	:

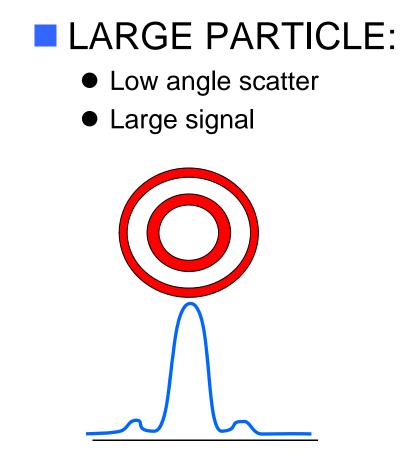
Better understanding of entire distribution



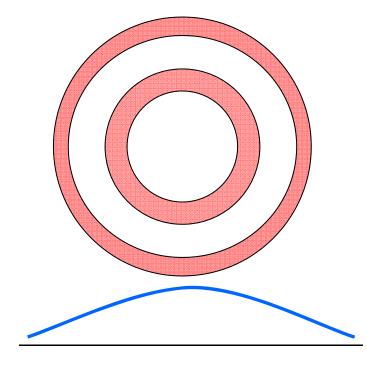
Explore the future

Intensity Graph

Diffraction analyzer measures light scattering pattern, algorithm transforms this into a particle size distribution



Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

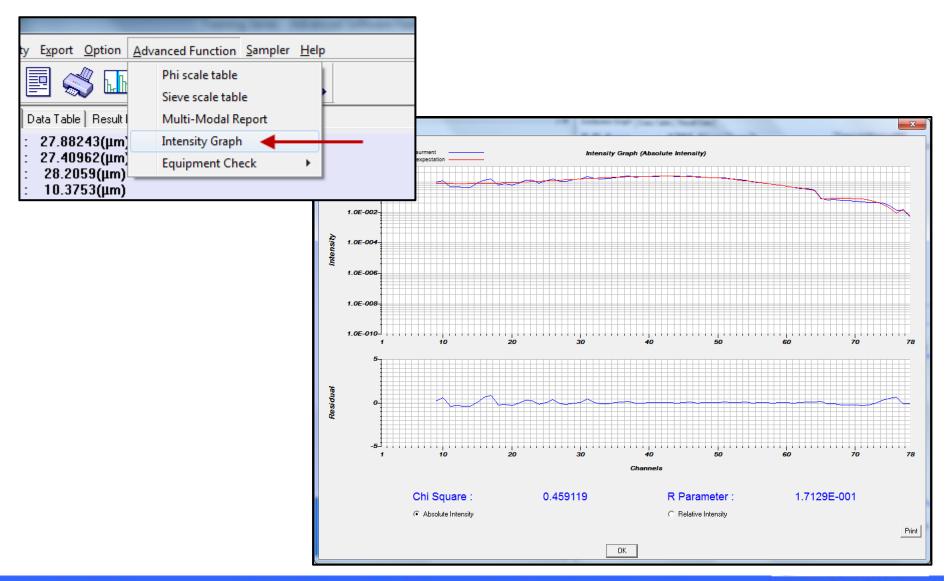
Size affects intensity

Narrow Pattern - High intensity

Wide Pattern - Low intensity

SMALL PARTICLE:

- High Angle Scatter
- Small Signal

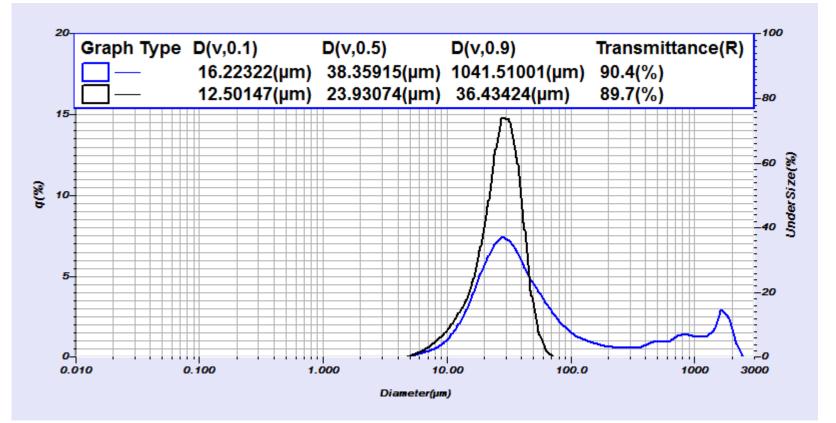

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Intensity Graph

Explore the future

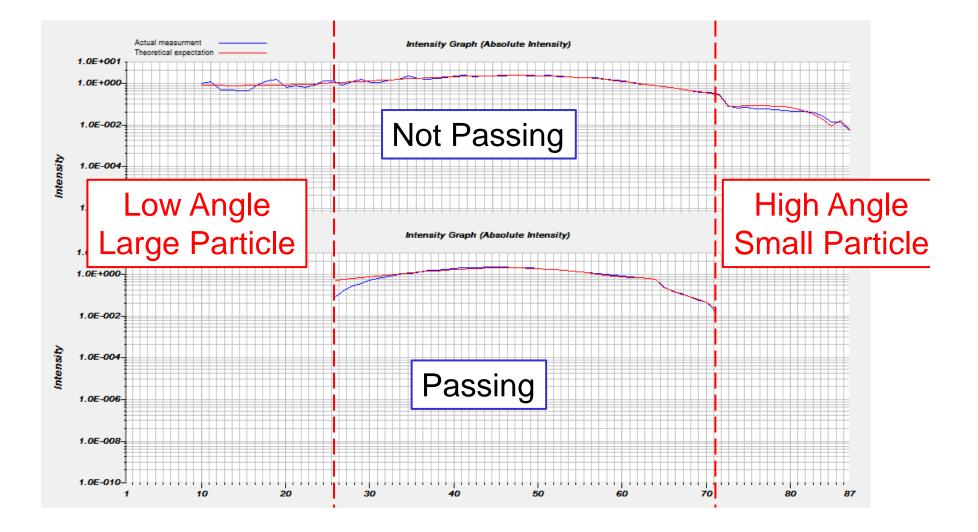

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Intensity Graph

One way to use the Intensity Graph Two results, one good and one bad

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved

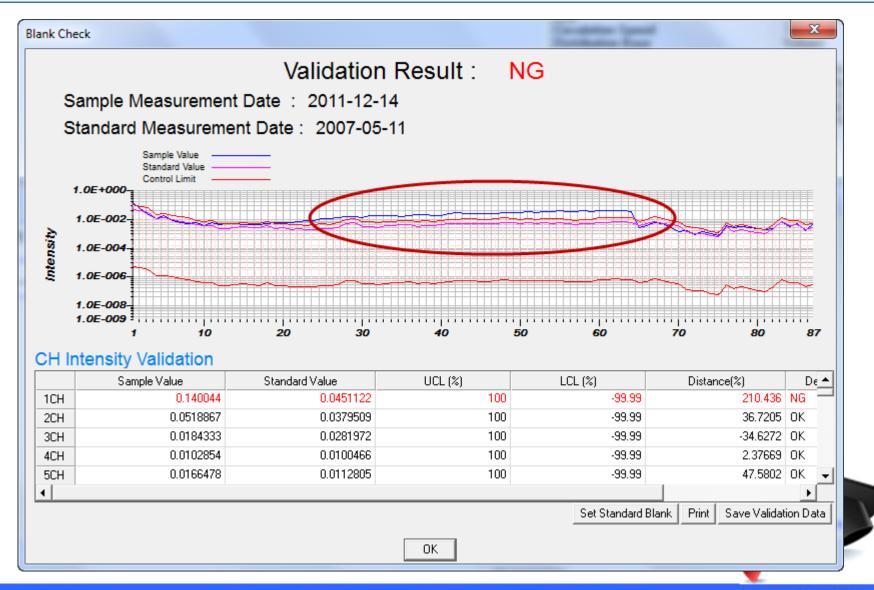
Intensity Graph

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Blank Check

Need to explain difference in scatteringTry other tools, i.e. Blank Check


Export Option Adv	anced Function Sampler	<u>H</u> elp	þ	
2 🗳 🖬	Phi scale table Sieve scale table		>	
iata Table Result I	Multi-Modal Report			
27.88243(µm)	Intensity Graph			
27.40962(μm) 28.2059(μm)	Equipment Check	•	Detector Check	
10.3753(μm)			Blank Check	
12.50147(µm)				_
23.93074(μm)				
36.43424(µm)				

Explore the future

Blank Check

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Custom Calculations

Refactive Index Sarple Sarple Name Sistion oil Name Water Comment Sistion oil Index LED 141 141 151 Index LED 141 162 174 175 174 175 174 174 175 174 175 174 175 175 174 175 174 174 174 174	Sample Information	Calculation		
Sample Dispersion Medium Name [Silicon oil Control Medium] Name [Silicon oil Comment Water Index LD 1,41 → 0 i i Index LD 1,333 Index LED 1,43 → 0 i i Index LD 1,333 Fixed Value Comment Water Index LD 1,41 → 0 i i Index LD 1,333 Fixed Value Comment Water (1) © 50 µm (6) ♥ 150 µm (1) © 5 x (6) © 6 (2) © 500 µm (7) ♥ 106 µm (2) ₱ 10 x (7) © 7 (3) © 425 µm (6) ♥ 75 µm (3) © 2 x (8) © 6 (5) © 212 µm (10) ♥ 38 µm (4) © 30 x (9) ♥ 6 Denixly Distribution Graph Standad Coutom Setting X (undersize) Custom Setting Setting (3) © Setting Varifaction No Define No Define				
No Define	Sample Name Silicon oil Comment Silicon oil Index LD 1.41 Index LED 1.41 Index LED 1.41 Cumulative % on Particle Size : (1) 850 µm (6) (2) 600 µm (7) (3) 425 µm (8) (4) 300 ym (9) (5) 212 µm (10) Standard Custom Setting % (undersize) Custom Setting Setting 1) Setting (3) Setting (4) Setting (3) Setting (4) Setting (2) Setting (4) Setting	Name Water Comment Water Index LD 1.333 Index LED 1.333 Particle Size on Cumulative % :- (1) 5 % (6) (2) 10 % (7) (3) 20 % (8) (4) 30 % (9)	Variables' Setting Variables' Setting x: Median Size y: D10 z: D90 Formula (z-y)/x Formula (z-y)/x Variables' Setting Variables' Setting Variables' Setting Variables' Setting Variables' Setting x: Median Size y: Chi Square R Parameter z: Skewness Kurtosis Diameter on Cumulative %(1) Title Span	
i onnoid (E y) o	No Define	F	Formula (z-y)/x	
Title Span	DK		Title Span	

What we'll talk about

Measurement tools

Data analysis tools

Data verification tools

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved

Automate COV Calculation

Coefficient of Variation indicates precision of multiple measurements ISO 13320 and USP <429> make recommendations using COV

📑 Summary Re	port					
Export Summary	Print Summary	Edit Layout Best Fit C		umns Hide Selected		Exit
File N	lame	Sample N	lame	D(v,0.1)	D(v,0.5)	D(v,0.9)
2008110611380	068.NGB	Zircoa Slurry		0.065	0.107	0.185
200811061140069.NGB		Zircoa Slurry		0.071	0.145	11.896
2008110611440)70.NGB	Zircoa Slurry		0.069	0.129	3.838
Average				0.068	0.127	5.306
Std. Dev.				0.003	0.019	5.992
CV (%)				4.471	15.023	112.921
ISO 13320-1 (20	0.0, 15.0, 20.0)			PASSED	FAILED	FAILED

Explore the future

Automate COV Calculation

File List Viev	v	1								
Select Files	Open	Load Memory								
Save	Expand	Print								
Export	Edit	Average							_	
 Summary	SPC Cha	💽 Summary Rep	port							
All Data Files		Export Summary	Print Summar	Edit Layout	Be	st Fit Columns	Hide Selected	Exit		
File Name	Sampl									
201205110730					1	Select Summary I	tems		1.000	
201205110731						Item List		9	Summary Items	
201205110733 201205110736		2012051107300	File Name 100.NGB	9	_	Cumulative % on Cumulative % on Cumulative % on	Diameter[03]		Source Instrument ID Test or Assay, Number	~
201205110739	0(214333	2012051107310				Cumulative % on Cumulative % on	Diameter[05]		Median Size Diameter on Cumulative %[021
201205110743	0(214333	2012051107330	02.NGB			Cumulative % on Cumulative % on	Diameter[07]		Diameter on Cumulative % Mean Size	09]
		2012051107360)03.NGB			Cumulative % on Cumulative % on	Diameter[09] —		Mode Size D(v.0.1)	
		2012051107390	04.NGB			D10 Value D90 Value	• • • • • • • • • • • • • • • • • • •		D(v,0.5) D(v,0.9)	-
		2012051107430				10001000			Clear Up	Down
		2012051107520								
		2012051107580	J07.NGB			Font: MS Sans S			Font	Open
							Portrait 🔿 Landscap			Save As
						Show Summ	hary Averages cient of variation(Rela	Show Summary Std. I	Dev.	
						Validation	cient of variation(ricid	anve sta. Dev.j		Cancel
			-			Specification :	ISO 13320-1	~		- 01/
					-		D(v,0.1) Range (±	%) D(v,0.5) Range (± %	() D(v,0.9) Range (± %)	<u> </u>
						D(v, 0.5) >= 10µ		5	10	
						D(v, 0.5) < 10µm		15	20	
					<u> </u>					

Automate COV Calculation

💳 Summary Re	eport						
Export Summary Print Summary		Edit Layout	Best Fit Col	umns Hide	e Selected	Exit	
					1		
File N	Jame	Sample N	lame	D(v,0.1)	D(v,0.5)	D(v,0.9)	
200811061138068.NGB		Zircoa Slurry		0.065	0.107	0.185	
200811061140069.NGB		Zircoa Slurry		0.071	0.145	11.896	
200811061144070.NGB		Zircoa Slurry		0.069	0.129	3.838	
Average				0.068	0.127	5.306	
Std. Dev.	Std. Dev.			0.003	0.019	5.992	
CV (%)				4.471	15.023	112.921	
ISO 13320-1 (2	0.0, 15.0, 20.0)			PASSED	FAILED	FAILED	

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Result Verification

Verification Settin	g	×
Parameter	Median Size	·
Specification	ISO 13320-1	·
Standard Value	50	(μm)
Tolerance ±	5 (um)
Certified range of value	\$	
D(v,0.5) >= 10μm	± 0	%
D(v,0.5) < 10μm	± 0	%
Result Display Setting Pass: Color:		
Text:	ОК	
Fail:		
Color:		-
Text:	NG	
OK	Cancel	

Distribution Graph Data Table	Result Data			
Mean Size Variance Median Size Mode Size Std.Dev. Chi Square R Parameter Diameter on Cumulati	: 1.8988 : 0.177 : 0.164 : 0.043 : 4.1625 : 3.7379			
Cumulative % on Dian	: (9)90.0 neter : (1)850. : (2)600. : (3)425. : (4)300. : (5)212. : (6)150. : (7)106.	0 (%)- 0.2450(µm) 0 (µm)- 100.000(%) 0 (µm)- 100.000(%)		
Verification	: (9)53.0 : (10)38. : 1.0K 4 : 2.0K 3	10 (μm)- 100.000(%) .00 (μm)- 100.000(%) 1.3% [D(v,0.5) 0.170 (3.5% [D(v,0.5) 0.230 (5.5% [D(v,0.9) 0.230 (µm)(± 10.00%)]	
	Creak Trees	Transmittance/P)	Median Size	R Paramet
Data Name	Graph Type	mansmittance(K)		
andy1'		88(3(%)	0.17730(µm)	
				0.373795

Explore the future

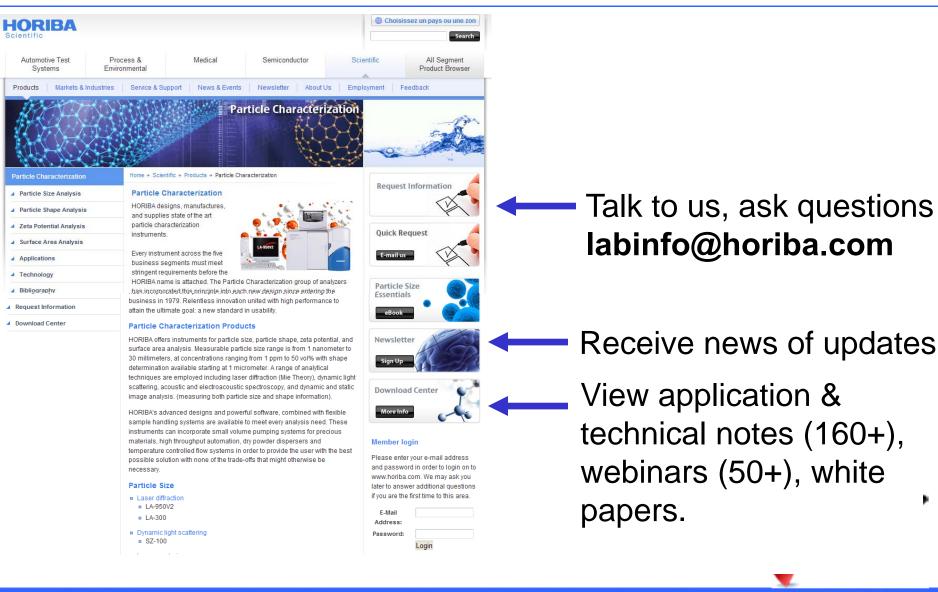
What we'll talk about

Measurement tools

Data analysis tools

Data verification tools

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved

To Learn More: www.horiba.com/particle

