Troubleshooting Laser Diffraction Particle Size Results

lan Treviranus ian.treviranus@horiba.com www.horiba.com/us/particle

© 2014HORIBA, Ltd. All rights reserved

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

What we'll talk about

Typical workflow

Calculation optimization

Hardware optimization

LA-950/960 data analysis tools

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Additional resources

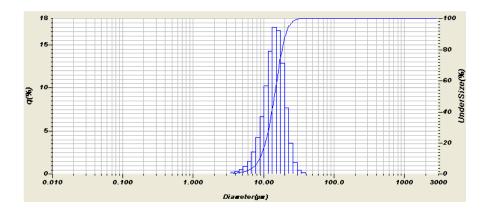
- Number vs. volume (TR001)
- CMP slurry application (AN179)
- Data interpretation (larger topic, TR008)
- Dynamic light scattering (TE012, TR012, TR014)

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Typical workflow

- Run standard material (TR004)
 - PASS \rightarrow Proceed
 - FAIL \rightarrow Check SOP, contact HORIBA
- Compatible technologies?
 - YES \rightarrow Compare Conditions
 - NO \rightarrow How are they different
- Compare Conditions
 - SAME \rightarrow Investigate scattering pattern
 - DIFFERENT → Are differences relevant for this material?
 - YES \rightarrow Re-test with new conditions
 - $-NO \rightarrow$ Investigate scattering pattern

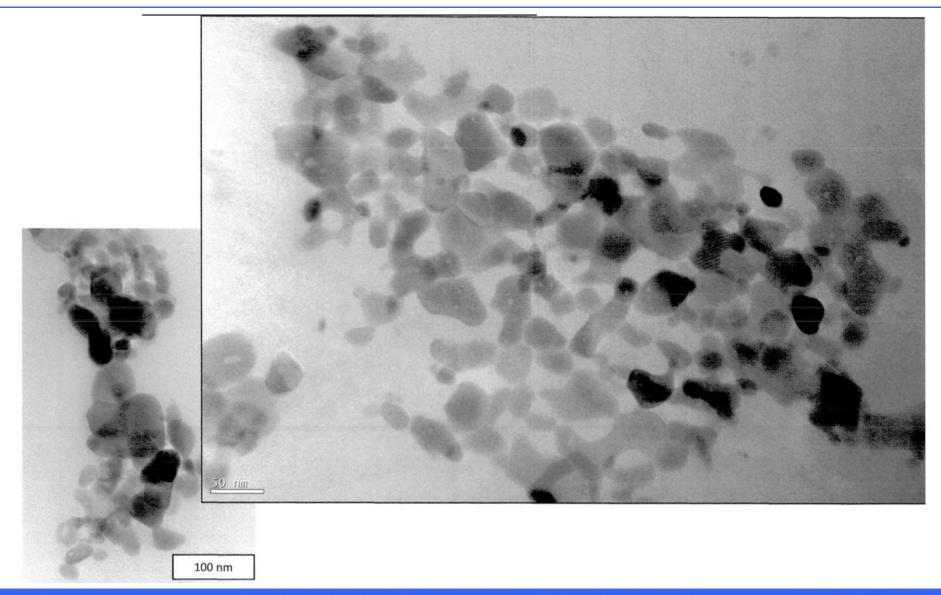

■ When you hit a wall → Ask the experts! labinfo@horiba.com

Run standard material

- NIST-traceable or internal reference
- Polydisperse preferable to monodisperse
- Measure at least 3 repeats
- System verification webinar (TR004)

PS202 (3-30µm)	D10	D50	D90
Standard Value (µm)	9.14	13.43	20.34
Uncertainty (µm)	0.86	0.86	1.44
ISO standard error	5%	3%	5%
Lower limit (µm)	7.866	12.193	17.955
Measured Result (µm)	9.721	13.916	18.959
Upper Limit (µm)	10.500	14.719	22.869

Explore the future

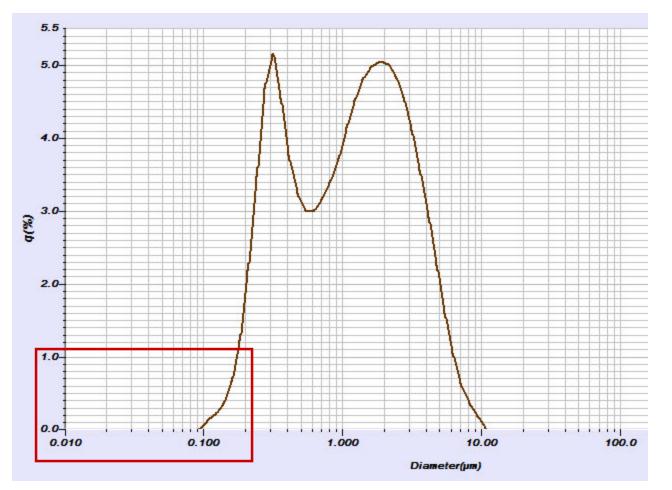

Compatible technologies

Different technologies measure different material properties

- Ideally the comparison is apples to apples
 - Different instruments of same technology are close enough (Gala to Fuji)
- Diffraction to SEM (or similar) is like apple to oranges and must be approached differently
 - Different technologies gives you more information, not necessarily bad

Quick example

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

HORIBA

LA-960 result

SEM data alone makes us think this is the size range

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

What we'll talk about

Typical workflow

Calculation optimization

Hardware optimization

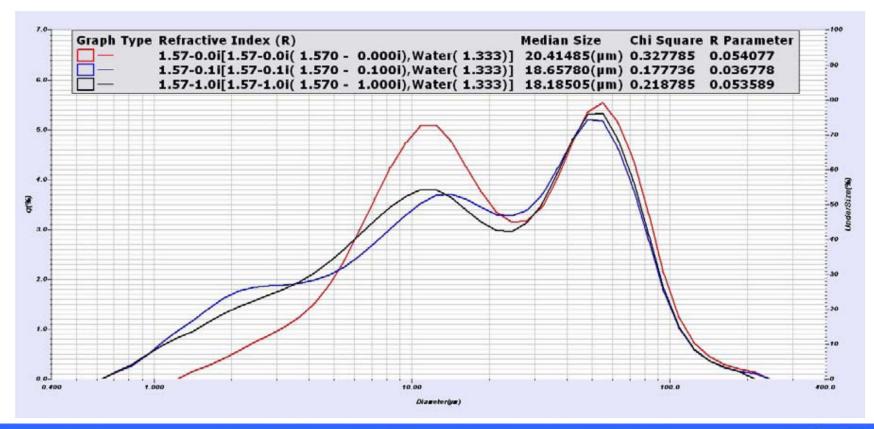
LA-950/960 data analysis tools

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Compare conditions

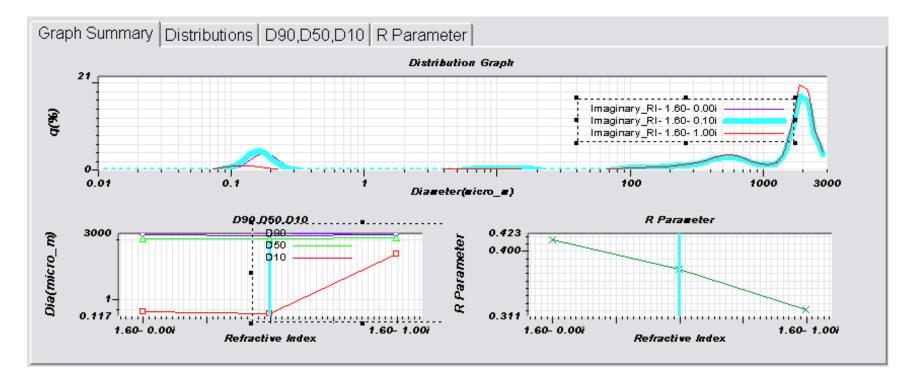

First, check calculation conditions

- Refractive Index: real and imaginary, RRI?
- Distribution Base: volume is best
- Iterations: wide or narrow size range
- Second, check hardware conditions
 - Concentration: transmittance
 - Particle support: pumping
 - Dispersion: US for wet, air pressure for dry
 - Duration: wide distributions

Refractive index

Seemingly minor differences calculate different distributions

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

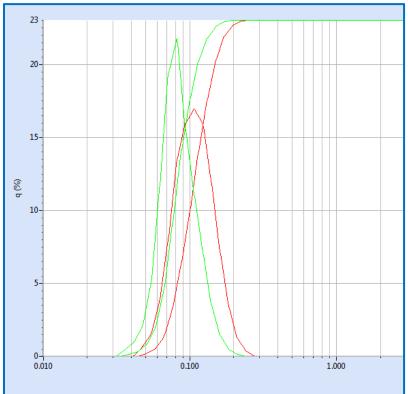
Refractive index

Compare easily with LA-960 Method Expert software

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

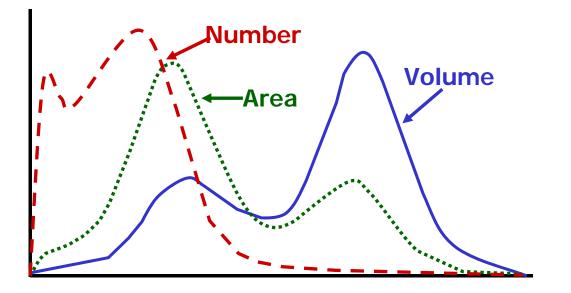


Refractive index

RI or RRI?

Red result is 1.45-0.0i in water (1.33)

Green result is 1.09-0.0i ... which multiplied by 1.33 is 1.45!



Distribution base

Volume basis by default

- Excellent for mass balancing
- •Number basis recale \rightarrow significant error

What we'll talk about

Typical workflow

Calculation optimization

Hardware optimization

LA-950/960 data analysis tools

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

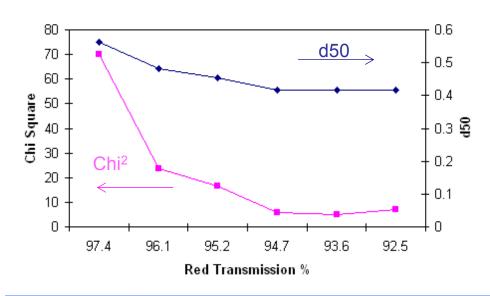
HORIBA

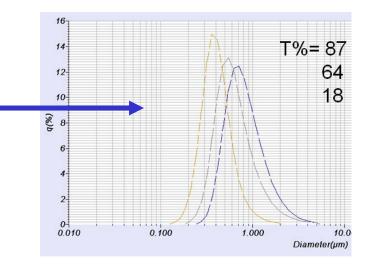
Compare conditions

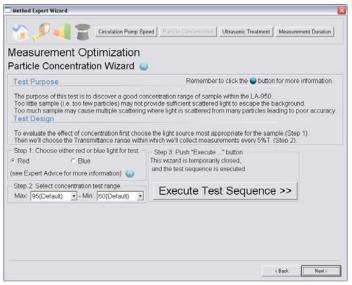
First, check calculation conditions

- Refractive Index: real and imaginary
- Distribution Base: volume is best
- Iterations

Second, check hardware conditions


- Concentration: transmittance
- Particle support: pumping
- Dispersion: US for wet, air pressure for dry
- Duration: wide distributions


Explore the future


HORIBA

Concentration

- High enough for good S/N ratio
- Low enough to avoid multiple scattering
- Typically 95 80 %T
- Measure at different T%, look at Chi Square calculation

© 2014 HORIBA, Ltd. All rights reserved

Pump & stirrer

- Must be high enough to suspend & circulate heavy particles
- Not so high that bubbles are introduced
- Adding energy can disperse loose agglomerates
- Measure at several settings & select optimum
- Can be automated in software (see right)

Exp #	Agitation	Circulation	D _{mean (nm)}	D ₁₀ (nm)	D ₉₀ (nm)
1	1	1	187.03	137.5	245.7
2	1	3	184.23	135.9	242.1
3	3	1	187.28	137.8	245.8
4	3	3	184.61	136.1	242.5
5	1	1	185.32	136.3	243.7
6	1	3	184.04	135.8	241.8
7	3	1	184.13	135.8	241.9
8	3	3	184.98	136.4	242.9
Parameters Selected: Agitation: 2 Circulation: 2					

HORIBA

Ultrasonic dispersion

- Adding energy to break up agglomerates disperse to primary particles, without breaking particles
- Similar to changing air pressure on dry powder feeder
 - Typically set to 100% energy, vary time (sec) on
- Investigate tails of distribution
 - High end to see if agglomerates removed
 - Small end to see if new, smaller particles appear (breakage)
- Test reproducibility, consider robustness
- Note:
 - Can break emulsions (or have no effect)
 - Can cause thermal mixing trouble w/solvents wait
 - Use external probe if t> 2-5 minutes

Measurement duration

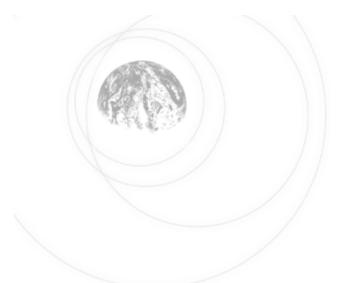
- Long enough for reproducibility
- Typically 5 sec, up to several minutes
- Longer time for large, broad distributions
- Can be automated in software

Method Expert Wizard	
Circulation Pump Speed	Particle Concentration Ultrasonic Treatment Measurement Duration
Measurement Optimization	
Measurement Duration Wizard 🥥	
Test Purpose	Remember to click the 🕥 button for more information.
If the measurement time is too short, the result may not r Test Design	
To evaluate what effect measurement duration has on th Larger numbers indicate longer measurement times. Test Results Test results will be presented using particle size distribu	
Step 1: Check the box of any measurement duration for 1 Test Value 1: □ Test Value 2: □ 10000 Test Value 3: □ 50000 Test Value 4: □ 10000 Test Value 5: □ 50000	testStep 2: Push "Execute" button This wizard is temporarily closed, and the test sequence is executed. Execute Test Sequence >>
(see Expert Advice for more information)	· · · · · · · · · · · · · · · · · · ·
	< Back Next>

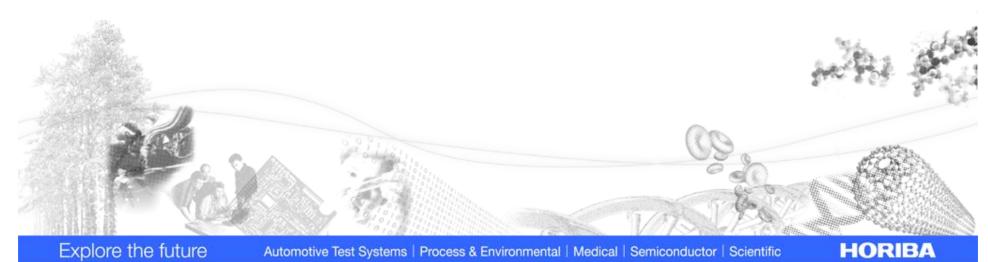
What we'll talk about

Typical workflow

Calculation optimization


Hardware optimization

LA-950/960 data analysis tools


Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Choosing Parameters

Choosing good statistics

Statistics describing the distribution must...

Tell us about our process

Be relevant

Be controlled well

Be reproducible!

Poor precision is the result of either a poor method or poor statistical choices

We can help! labinfo@horiba.com

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

HORIBA

The basis for reliable data

Reproducibility!

Prepare, measure, empty, repeat

What would be good reproducibility?

Look at the accepted standards

ISO 13320 COV < 3% at Median (D50) COV < 5% at D10 and D90

USP <429> COV < 10% at Median (D50) COV < 15% at D10 and D90 COV = 100 * (StDev / Mean)

Note: All limits double when D50 < 10 μm Note: Must acquire at least 3 measurements from unique samplings

Explore the future

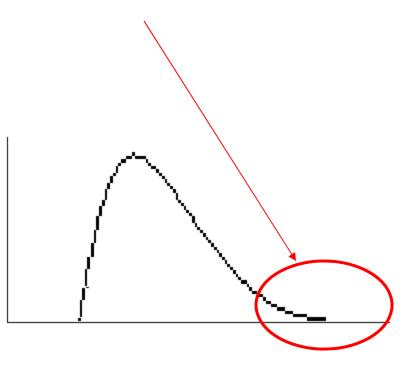
Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Calculation automation

tem List			Summary Items	
Test or Assay, Number Remarks 1 Remarks 2 Remarks 3 Remarks 4 Remarks 6 Remarks 6 Remarks 7 Remarks 9 Remarks 9 Remarks 10		Add>>>	Sample Name Material Source Lot Number D(v.0.1) D(v.0.5) D(v.0.9)	
			Clear Up	Down
Font: MS Sans Seil			Font	Open
Drientation: 🗭 Portrait 🔽 Show Summary Ave		Show Summary S	td. Dev.	Save As
Show Coefficient of	variation(Relativ	e Std. Dev.)		Cancel
Validation Specification : USP (29			Carter
16 0.00				DK
	1.1)Harge (± 3.1	-	1 11 019/10/Hands (13)	
D(v.0.0] == (0,0) 15		10	15	
0(v.0.5) c.10µm 30		20	30	

Export Summary	Print Summary	Edit Lavour	Best Fit Columns	Hide Selected	Exit		
		1					
Sample N	lame	Material	Source	Lot	D(v.0.1)	D(v.0.5)	D(v.0.9)
Sample 4	Pi	nnoThin TG Po	wde Herbalife		0.052	0.052	0.052
Sample 4	Pi	nnoThin TG Po	wde Herbalife		0.052	0.052	0.052
Sample 4	Pi	nnoThin TG Po	wde Herbalife		0.052	0.052	0.052
Sample 4	P	nnoThin TG Po	wde Herbalife		0.045	0.045	0.045
Sample 4	P1	nnoThin TG Pa	wde Herbalife		0.045	0.045	0.045
Sample 4	Pi	nnoThin TG Pa	wde Herbalife		0.045	0.045	0.045
Sample 4	P	nnoThin TG Po	wde Herbalife		0.040	0.040	0.040
Sample 4	Pi	nnoThin TG Po	wde Herbalife		0.039	0.039	0.039
Somple 4	P	nnoThin TG Po	wde Herbalife		0.040	0.040	0.040
Sample 4	P)	nnoThin TG Po	wde Herbalife		0.048	0.048	0.048
Sample 4	Pi	nnoThin TG Po	wde Herbalife		0.048	0.048	0.048
Sample 4	Pi	nnoThin TG Po	wde Herbalife		0.048	0.048	0.048
Sample 4	Pi	nnoThin TG Po	wde Herbalife	-	0.045	0.045	0.045
Average					0.046	0.046	0.046
Std. Dev.					0.805	0.005	0.005
CV (%)					9.805	9.805	9.805
USP 429 (30.0,	20.0.30.0)				PASSED	PASSED	PASSED

Unique, automatic feature in LA-950 software See Technical Note 169 in Download Center for instructions to use these features

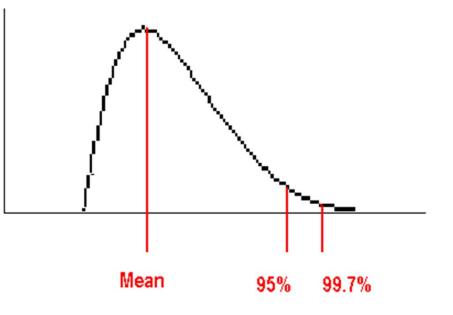

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Distribution extremes

At a distance of a few standard deviations, non-instrumental errors can dominate

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific



95% of the distribution is within 2 standard deviations from the Mean

- 99.7% of the distribution is within 3 standard
 - deviations

from the mean

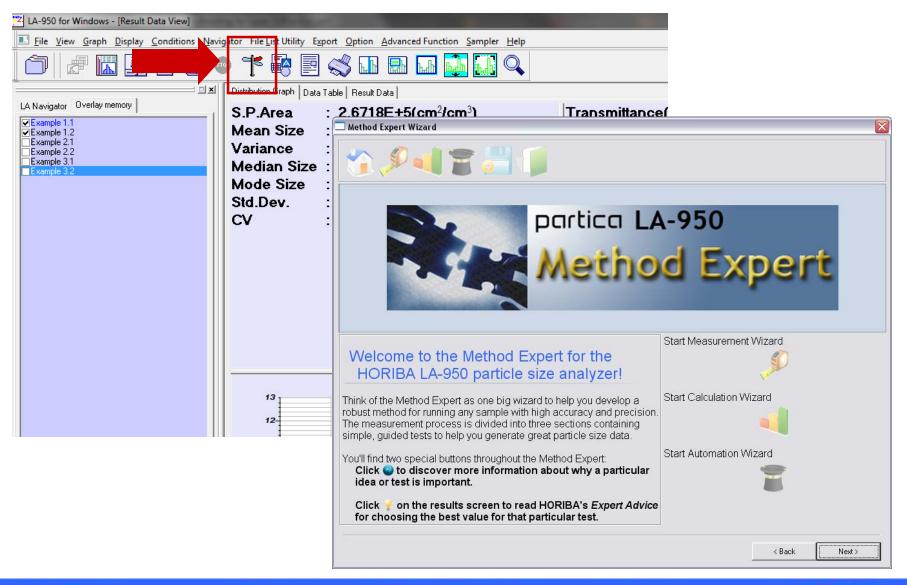
Explore the future

If we want the same level of reproducibility at the D99 value as the D50, we need to analyze similar amounts of material in the D99 histogram band

A better method to monitor extremes

Instead of specifying the D95, D99, D99.99, D100, DMax

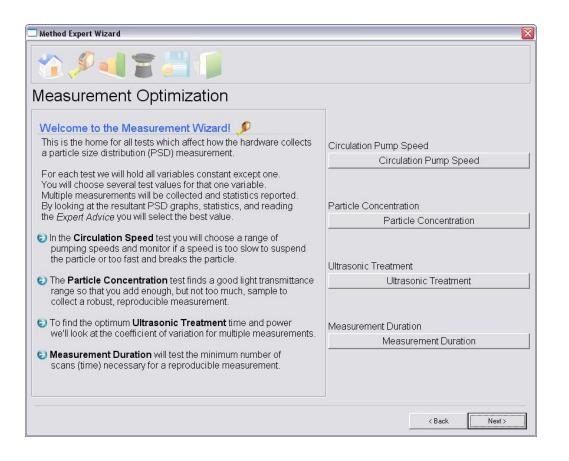
Specify the % of material greater than a certain size


Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

LA-960 Method Expert



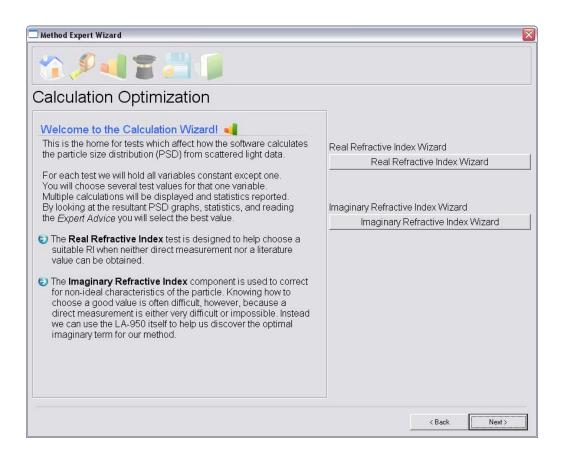
Explore the future

Method Expert Hardware

There are four important tests...

Circulation Concentration Dispersion Duration

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Method Expert Calculation

There are two important tests...

Real RI Imaginary RI

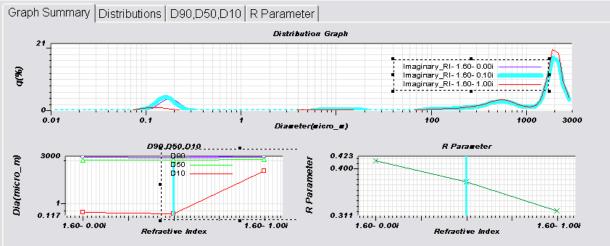
Explore the future

LA-960 Method Expert

Why is the test important? What does the test do? How will the results be displayed? What is the best value?

User selects up to 5 values for testing

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Method Expert guides user to prepare the LA-950 for each test

Results displayed in multiple formats: PSD, D50, R-parameter

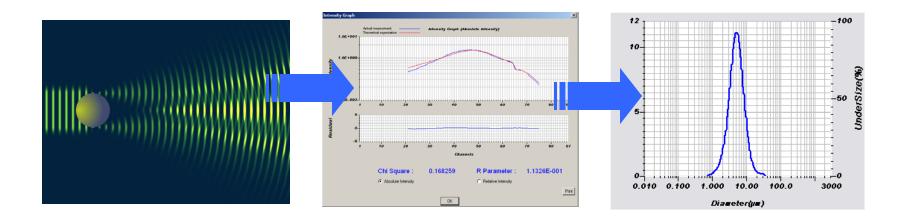
Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

LA-960 Method Expert

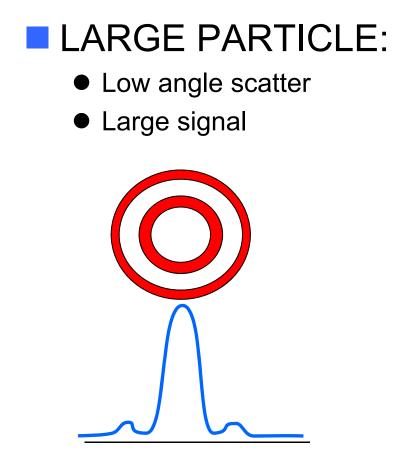
🗖 Method Expert Wizard	×
🏠 🔎 🛁 🖀 🚝 🧊	
 Automation Wizard Welcome to the Automation Wizard! The purpose of the Automation Wizard is to teach the LA-950 how to analyze a particular sample so that the user need only push a single button to collect a measurement. A Condition and Sequence file will be created to automate the process and effectively create a standard operating procedure. The entire measurement process can be separated into four sections: Preparation, Collection, Calculation, and Output. Preparation is everything that needs to be done before the sample is added to the analyzer. This includes identifying the sample, filling the analyzer with liquid, turning on the circulation pump, aligning the laser, and taking a good background blank. Collection is adding sample to the analyzer at the correct 	Preparing for Measurement Preparation Collecting a Measurement Collection Calculating the Measurement Calculation
 concentration and then measuring the scattered light data over time. Calculation refers to the refractive index of the sample material and number of iterations for the data to pass through the algorithm. Output consists of various ways to save, export, and print the measurement. The Condition and Sequence files are created here. 	Outputting/Reporting the Measurement Output
	< Back Next >

Explore the future

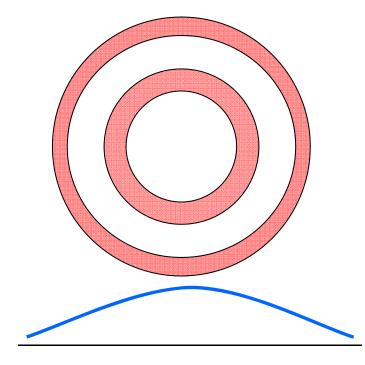

LA-960 Method Expert

Method Expert \	Wizard		×
1	Preparation Collection	Calculation	
Automati	ion Wizard		
Outputting	g/Reporting the Measurer	nent 📦	
Section Pur	pose	Remember to click the 💿 button for more i	nformation
		d and can now be saved, exported, and printed for reportir mer preferences, so there are many ways to perform thes	
THE LA-900 M	vas designed to meet a variety of custo	mer preierences, so mere are many ways to perform mes	e lasks.
Once the repo	orting setup is finished, simply name the	e Condition and Sequence files used to run this method.	
01			
Step 4. Give t	his Expert Method a unique, descriptive (This name is used as the output s		
	, ▼ Use same name for saving the o	condition file.	
– Step 5. Input o	condition file name.		
2			
Step 6. Push	save button.		
	emporarily closed,		
and the sequer	nce file and condition file are saved.	1	
Sav	ve Sequence and Cor	ndition	
Ş			
		< Back	Next >

Diffraction analyzer measures light scattering pattern, algorithm transforms this into a particle size distribution



Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific


HORIBA

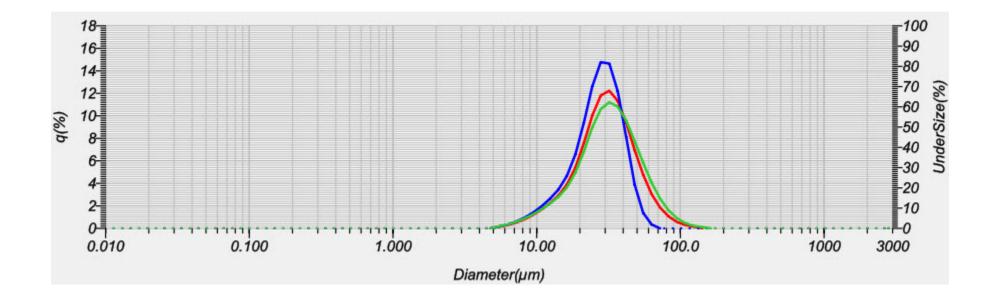
Size affects intensity

Narrow Pattern - High intensity

Wide Pattern - Low intensity

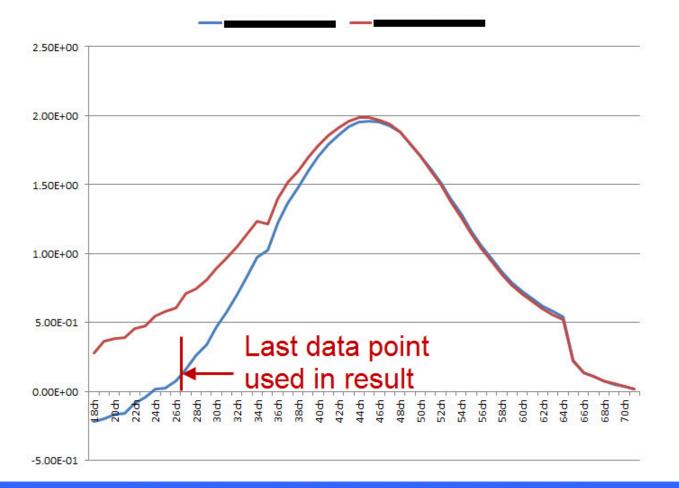
SMALL PARTICLE:

- High Angle Scatter
- Small Signal


Explore the future

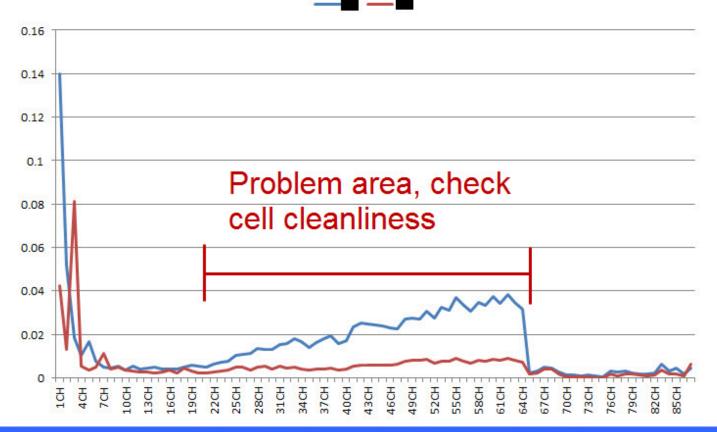
Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA



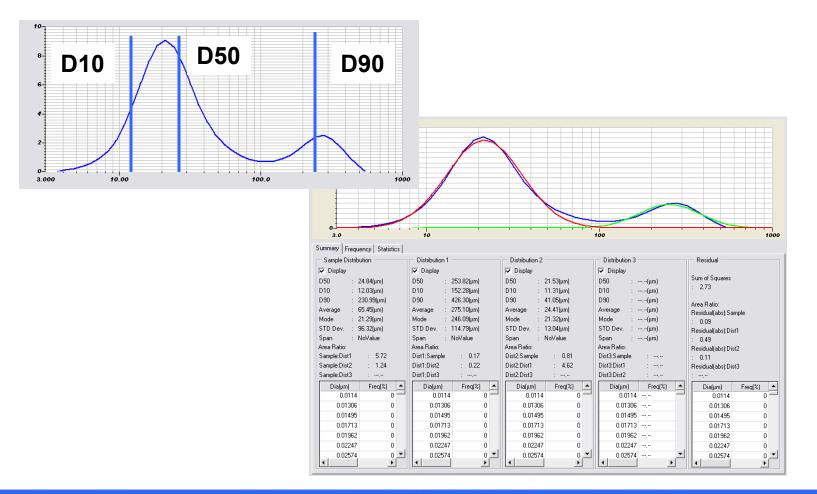
One way to use the Intensity Graph Two results, one good and one bad

Pull up the tool and compare


Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

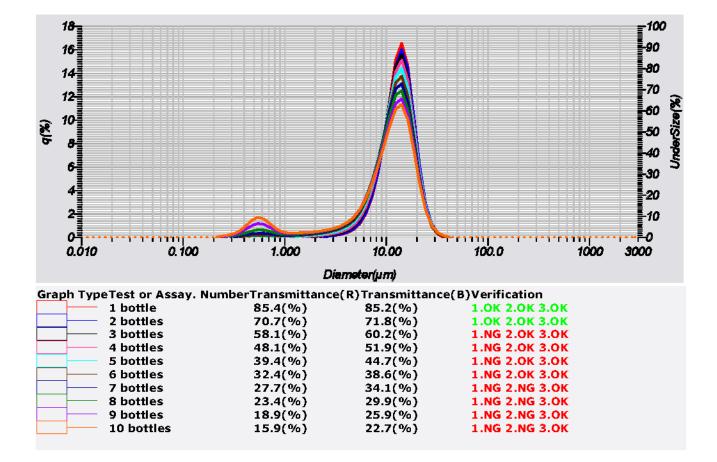
HORIBA


Need to explain difference in scatteringTry other tools, i.e. Blank Check

Multi-modal distributions

Multiple peaks can be better described individually

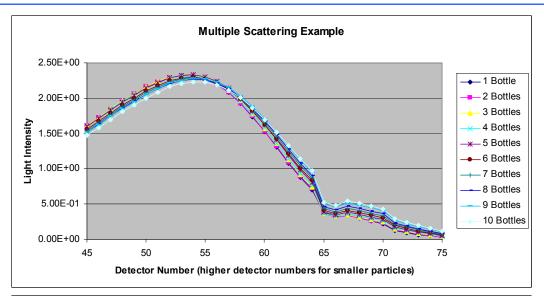
Explore the future

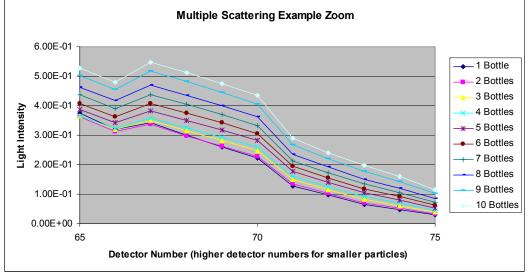

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Multiple scattering

Watch for finer "particles" appearing with increasing concentration


Explore the future

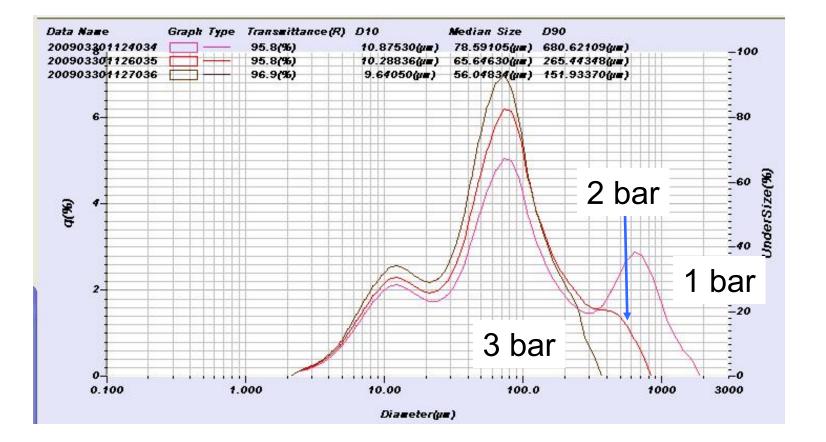

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

HORIBA

Multiple scattering

Explore the future

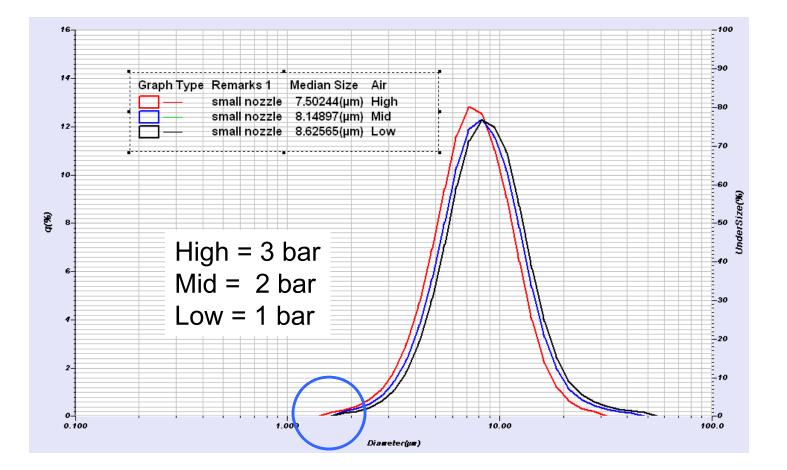

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Dispersing agglomerates

Watch for no change in coarsest particles with changing energy

Explore the future


Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

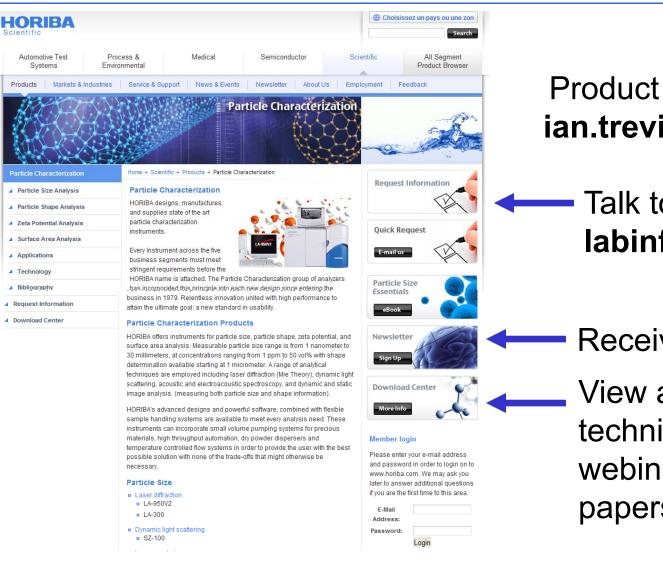
HORIBA

Breaking particles

Watch for finer particles being created with increasing energy

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific


HORIBA

HORIBA

www.horiba.com/particle

Ian Treviranus Product Line Manager ian.treviranus@horib a.com Talk to us, ask questions Iabinfo@horiba.com

- Receive news of updates
- View application & technical notes (170+), webinars (70+), white papers.