
The Importance of Refractive Index When using Laser Diffraction

Fraunhofer Approximation

HORIBA

Explore the future © 2011 HORIBA, Ltd. All rights reserved.

© 2011 HORIBA, Ltd. All rights reserved

Mie vs. Fraunhofer

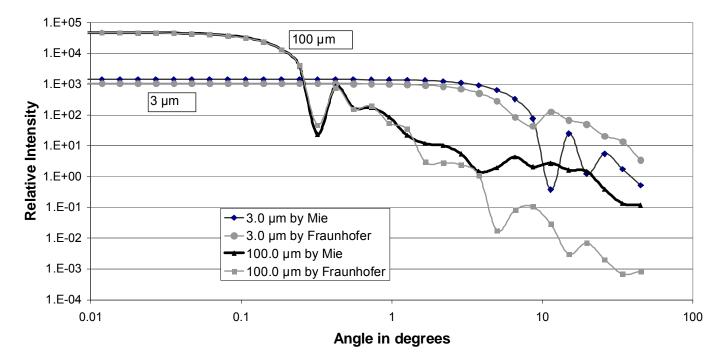
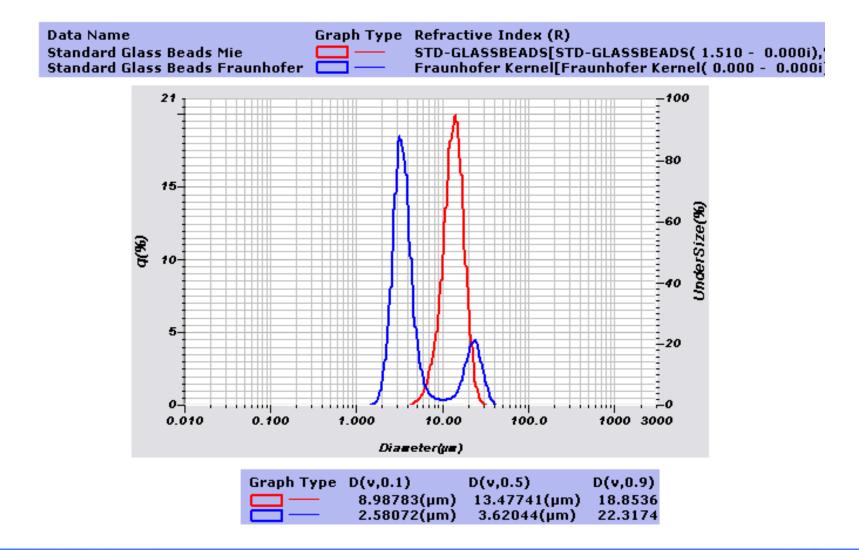
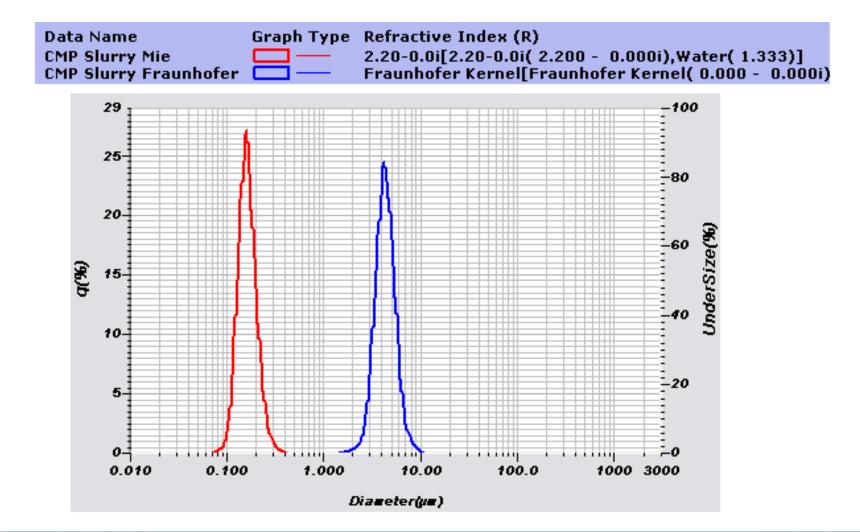
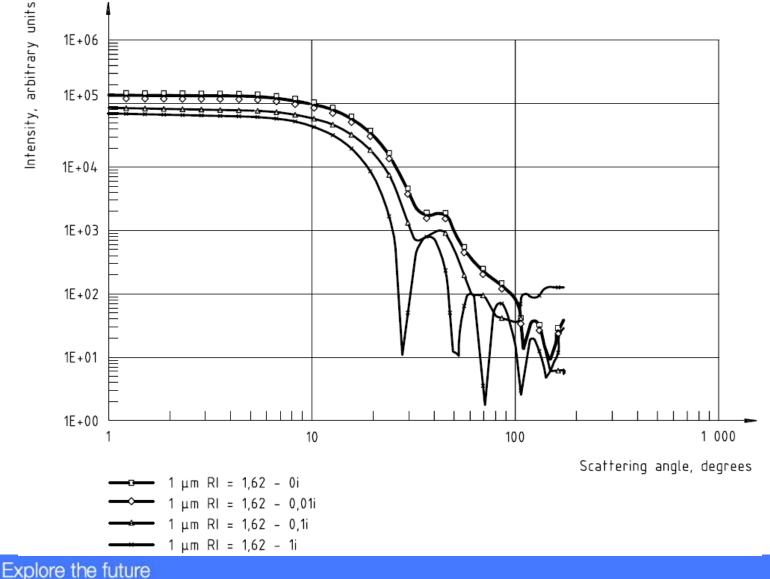




Figure A.3 -- Comparison of scattering patterns of non-absorbing particles according to Fraunhofer and Mie calculations ($N_p = 1,59 - 0,0; n_{water} = 1,33;$ wavelength = 633 nm)

Practical Application of Theory: Mie vs. Fraunhofer for Glass Beads

Practical Application of Theory: Mie vs. Fraunhofer for CMP Slurry


Explore the future © 2011 HORIBA, Ltd. All rights reserved.

Influence of Particle Size on Angular Light Intensity Scattering Patterns

Explore the future

Influence of Imaginary Parts of RI (Absorbancies)

© 2011 HORIBA, Ltd. All rights reserved.

Refractive Index

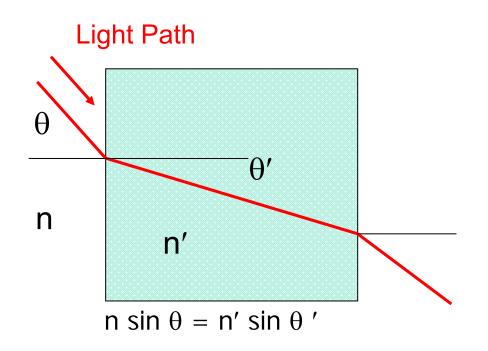
Refractive Index is defined by two components – Real and Imaginary

RI = n + ik

Where:

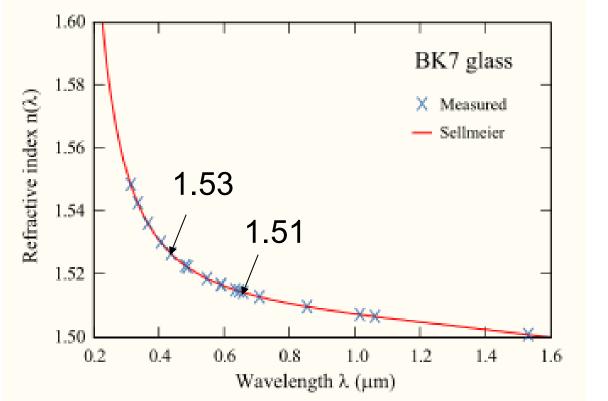
- N = real component, velocity of light in a vacuum/ velocity of light in the particle
 - $= c/v_p$
- c = speed of light in vacuum
- Vp = speed of light in particle (liquid, air)
- k = the extinction coefficient of the material

$$i = \sqrt{-1}$$


RI: Real Component

Real component from published tables or measured using Snell's Law

$$n \sin \theta = n' \sin \theta'$$

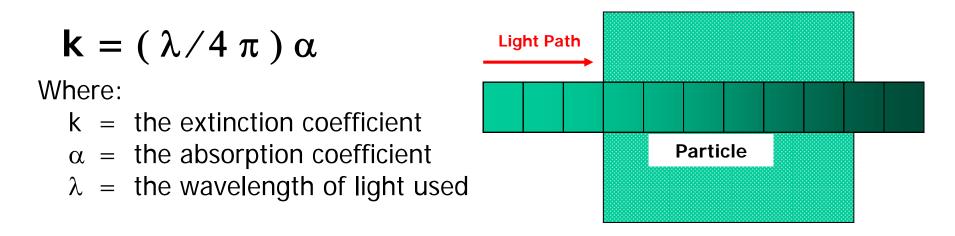

where:

- n = RI of air
- θ = angle of incidence
- n' = RI of particle
- θ '= angle of refraction

n is Frequency Dependent

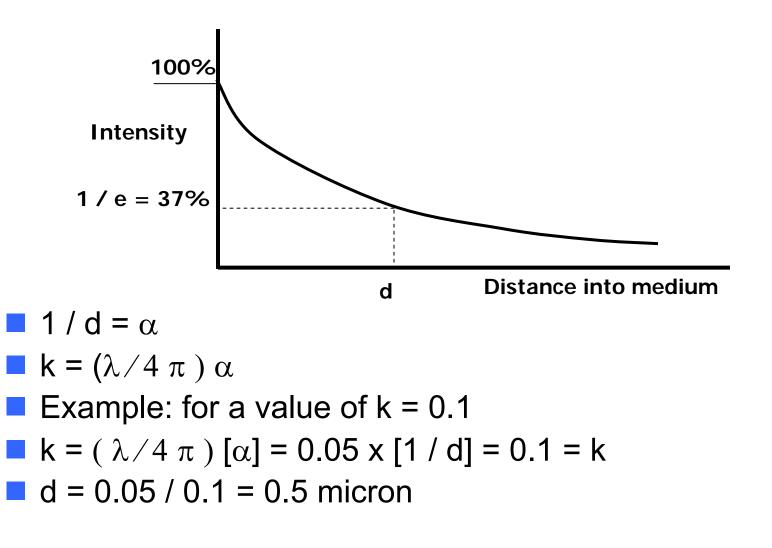
Remember the LA-950 has two light sources Red = 650 nm Blue = 405 nm

In this example 1.53 vs. 1.51 Not very important


Could matter for sub-micron pigments

Selfmeier equation
$$n^2(\lambda) = 1 + \frac{B_1\lambda^2}{\lambda^2 - C_1} + \frac{B_2\lambda^2}{\lambda^2 - C_2} + \frac{B_3\lambda^2}{\lambda^2 - C_3}$$

© 2011 HORIBA, Ltd. All rights reserved.


RI: Imaginary Component

Imaginary component (k) in Mie equation is the <u>extinction coefficient</u> of the particle. Reduction of transmission of optical radiation caused by absorption and scattering of light.

Absorption coefficient (α) = reciprocal distance light penetrates surface & be attenuated to 1/e of original intensity, about 37%. Opaque particles have high coefficient.

RI: Imaginary Component

RI: Imaginary Component

- For transparent particles use 0 for the imaginary component
- For slightly opaque materials use 0.01 or 0.1
- For opaque materials use 1.0 or higher
- Values can exceed 1.0 (see below*)

	Complex Index of Refraction Look-up Utility
	Instructions
	Choose a material from the drop down menu, enter the incident wavelength, and click on "Calculate." The material's index of refraction and extinction coefficient will appear below.
	Index of Refraction Explanation
	The Index of Refraction of a material is the ratio of phase velocity of an electromagentic wave in free space to the phase velocity in the material. The index of refraction of two materials can be used to predict how light will pass from one medium to the other. The Extinction Coefficient is the imaginary part of the index of refraction.
	These optical constants are calculated via linear interpolation on the optical constant values reported in the book <u>Handbook of Optical Constants of Solids</u> by Edward D. Palik The graphs and numerical data can be found on the <u>Tabulated Optical Constants</u> page.
	Material Copper Material I.6623006134 Material Extinction Coefficient 2.0176993865
	Incident Wavelength: 650 (in nanometers) *http://www.ee.byu.edu/photonics/opticalconstants.phtml
c	lore the future HORI
1	HORIBA, Ltd. All rights reserved.

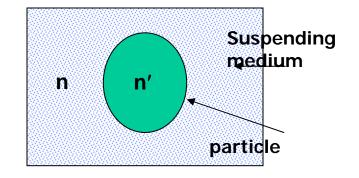
IORIBA

Refractive Index Effect

Most pronounced when:

- Particles are spherical
- Particles are transparent
- RI of particle is close to RI of fluid
- Particle size is close to wavelength of light source

Least pronounced when:


- Particles are not spherical
- Particles are opaque
- RI of particle is larger than RI of the fluid
- Particle size is much larger than wavelength of the light source

Older HORIBA Software: RI Kernels

If n = 1.33 (water) and n' = 1.60 (particle)

Relative refractive index (RRI) : 1.60/1.33 = 1.203

Transparent particles: k = 0Kernel function:120-000rri

Particles somewhat opaque: then k > 0

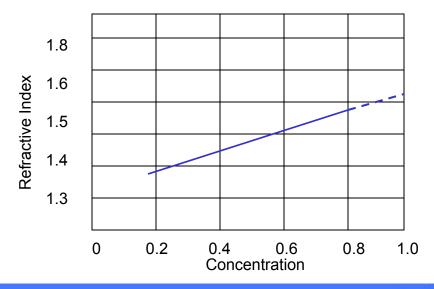
KERNEL function: 120-020rri

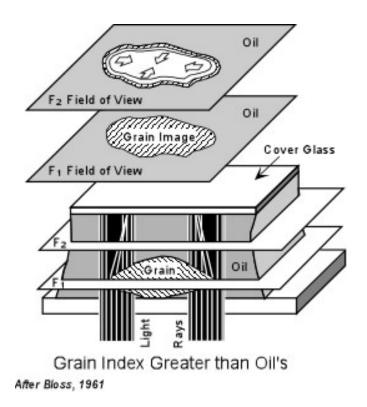
If powder, relative index:

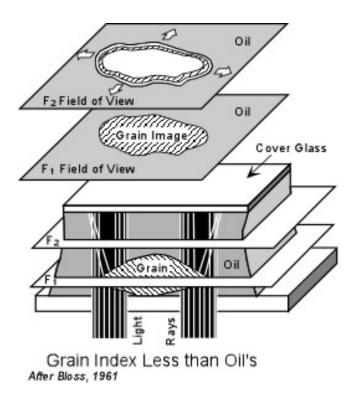
n = 1.0 (air) and n' = 1.60 (particle), RRI: 1.60/1.0 = 1.60

Kernel function: 160-000rri or 160-020rri

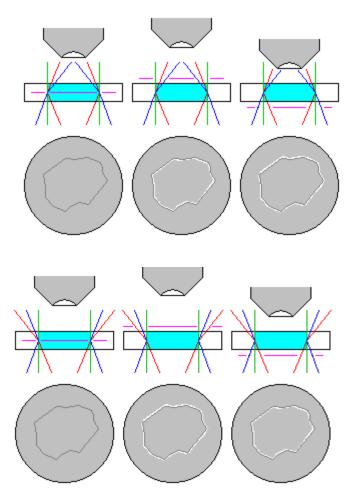
Practical Approach


- Measure sample once
- Change RI
- Does result change significantly?
- No: stop worrying
- Yes: keep working
- For LA-950 users: determine real component, vary imaginary component to minimize residual R value.
- Oops, gave the plot away


Abbe Refractometer


- Dissolve sample at different concentrations
- Plot conc. vs. RI
- Extrapolate to infinite concentration

Becke Lines



Bright line is called the *Becke line* and will always occur closest to the substance with a higher refractive index

Explore the future © 2011 HORIBA, Ltd. All rights reserved.

Becke Line Test

As you move *away* from the thin section (raising the objective or lowering the stage), the Becke Line appears to move *into the material with greater refractive index.*

A particle that has greater refractive index than its surroundings will refract light inward like a crude lens.

A particle that has lower refractive index than its surroundings will refract light outward like a crude diverging lens.

HORIBA

Explore the future © 2011 HORIBA, Ltd. All rights reserved

Becke Line Test

Services

Courses

Techniques

Case Studies

Publications

Contact Us

Open Positions

Cargille Labs

Services to the sciences since 1924

Refractive Index (Matching) Liquids

Also see our Specialized Optical Coupling Liquids

Cargille Refractive Index Liquids have become standard items in many laboratories as their applications have expanded from routine mineralogical identifications and quality control. New and broader uses in many more fields such as chemicals, engineering, medical, forensic, optics, instrumentation are continuously discovered. Many special requirements for specific applications have created a need for more technical data, new formulations, extended ranges, smaller increments and higher degrees of precision.

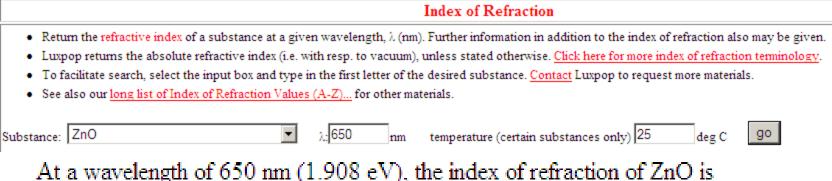
Price Schedule

All Refractive Index Values are standardized at 5893 angstroms and 25°C. For Custom Made Liquids please fill in our **Optical Liquids Worksheet** All of the Refractive Index Liquid Sets are sold in 7.4cc bottles (1/4 fl oz)

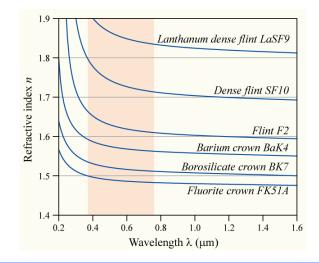
COMBINED SETS: n_D 1.400-1.700

The range of many minerals, most chemicals and virtually all biological materials are covered by the three Certified Series AA, A and B. These three Series are available as complete sets:

Cat. #		Price
18001	RF-1Full Set; Intervals 0.002; 151 liquids	\$1,865.00
18002	RF-1/2Half Set; Intervals 0.004; 76 liquids	1,025.00
18005	RF-1/5Fifth Set; Intervals 0.01; 31 liquids	415.00
	Series, fractions of Series or selected liquids in the y also be purchased separately.	Standard


McCrone Associates' team of scientists use state-of-the-art instrumentation to solve difficult and unique particle identification, materials characterization and analysis problems. Our extensive array of microscopy tools along with the knowledge, experience, technical skills and creative enthusiasm of our staff, provide an unequaled combination of analytical and problem solving capabilities.

© 2011 HORIBA, Ltd. All rights reserved.


Luxpop.com

n = 1.98, k = 0.000.

At a wavelength of 405 nm (3.061 eV), the index of refraction of ZnO is n = 2.23, k = 0.010.

Note RI is dependent on wavelength of light. Can adjust RI for red & blue light, but only need to for small, absorbing particles.

RI of Polymers

http://www.texloc.com/closet/cl_refractiveindex.html

Previous Page

Home Page

Search

TexLoc Refractive Index of Polymers

NOTES:

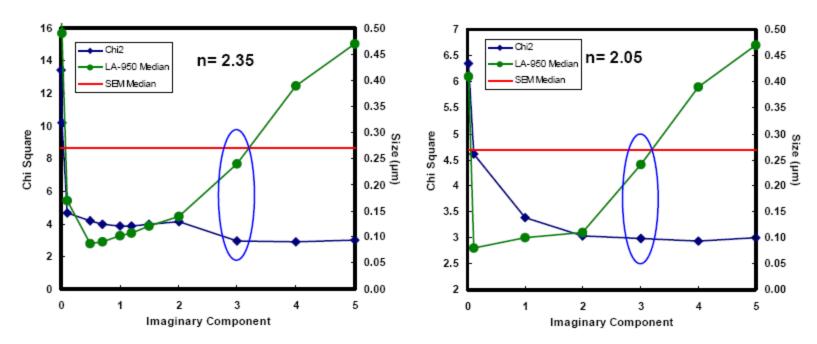
Products supplied by TexLoc are designated in **bold green text.**

Water has a refractive index of 1.33.

PVDF	Poly(vinylidene fluoride)	1.4200
ECTFE	Ethylene Chlorotrifluorotheylene	1.4470
	Poly(trifluoroethyl methacrylate)	1.4370
	Poly(methyl octadecyl siloxane)	1.4430
	Poly(methyl hexyl siloxane)	1.4430
	Poly(methyl octyl siloxane)	1.4450
	Poly(isobutyl methacrylate)	1.4470
	Poly(vinyl isobutyl ether)	1.4507
	Poly(methyl hexadecyl siloxane)	1.4510
PEO	Poly(ethylene oxide)	1.4539
	Poly(vinyl ethyl ether)	1.4540
	Poly(methyl tetradecyl siloxane	1.4550
	Poly(ethylene glycol mono-methyl ether)	1.4555
	Poly(vinyl n-butyl ether)	1.4563
PPOX	Poly(propylene oxide)	1.4570
	Poly(3-butoxypropylene oxide)	1.4580
	Poly(3-hexoxypropylene oxide)	1.4590
	Poly(ethylene glycol)	1.4590
	Poly(vinyl n-pentyl ether)	1.4590

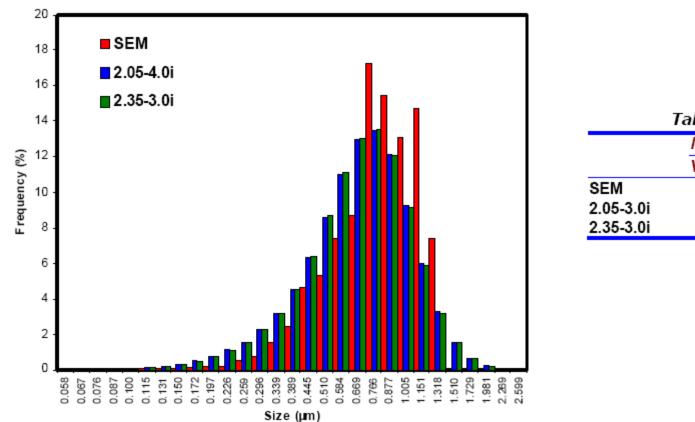
Google Search

🖉 refractive index magnesium stearate - Google Search - Windows Internet Explorer							
🔆 🕞 🔹 🔀 http://www.google.com/search?q=refractive+index+magnesium+stearate&rls=p,com.microsoft:*:IE-SearchBox&ie=UTF-8&sourceid=ie7&rlz=117GFRC_en 💽 😏 🗙 refractive index magnesium stearate 🔎 🔹							
ile Edit View Favorites Tools Help nks 🖉 Customize Links Soogle Index magnesium stearate 🔽 🚰 Search 🔹 🛷 🐡 🏈 🏪 🕸 🗙 Bookmarks 🖉 Check 🔹 🔄 AutoFill 🕫 🍕 🖌 🌽 Check 🔹 😒 AutoFill 🕫 🦓 🔹 🎸 Check The Site Advisor							
😪 🎄 💦 refractive index magnesium stearate - Google Search	🚹 🔹 🗟 🗸 🖶 Page 🕶 🎯 Tools 🔹						
Web Images Maps News Video Gmail more ▼	Sign in						
Google" refractive index magnesium stearate Search Advanced Search Preferences							
Web	Results 1 - 10 of about 7,550 for refractive index magnesium stearate. (0.23 seconds)						
24 results stored on your computer - Hide - About	Sponsored Links Magnesium stearate Get the Answers You're Looking For. Magnesium stearate www.RightHealth.com/Nutrition						
Abbe's number, mold release characteristics and appearance www.freepatentsonline.com/5594088.html - Similar pages by T Nagata - 1997 - Cited by 1 - Related articles - All 4 versions More results from www.freepatentsonline.com .» STOCHEM - Specialty Chemical Distribution Size = 0.3 microns, pH = 7, Oil absorption = 43, refractive index = 1.56, Highly pulverized powder, Magnesium Stearate Modified, GE brightness = 87%, www.stochem.com/searchdb.asp?searchStr2=&supplier=511&page=2 - 17k - Cached - Similar pages							


Mixtures

$$n_{mix} = \sum_{i=1}^{z} n_i V_i$$

Where n_{mix} is the refractive index of the mixture, n_i is the refractive index of the *i*th component, V_i is the volume fraction of that component, and *z* is the total number of components. The real


$$n_{mix} = 1 + \rho_{mix} \sum_{i=1}^{z} m_i k_i$$

The term m_i is the molar fraction of the component in the mixture and k_i is its Gladstone-Dale constant. These

Larsen, E.S., Berman, H., *The Microscopic Determination of the Non-Opaque Minerals, Second Edition*, United States Department of the Interior, Geological Survey Bulletin 848, 1934, US Government Printing Office, Washington, DC.

Mixtures

 Median Size (μm)

 Volume Number

 SEM
 0.75
 0.27

 2.05-3.0i
 0.64
 0.24

 2.35-3.0i
 0.65
 0.24

Explore the future © 2011 HORIBA, Ltd. All rights reserved.

Anisotropy

Also called birefringence

Many crystals have different RI as inspected through different planes.

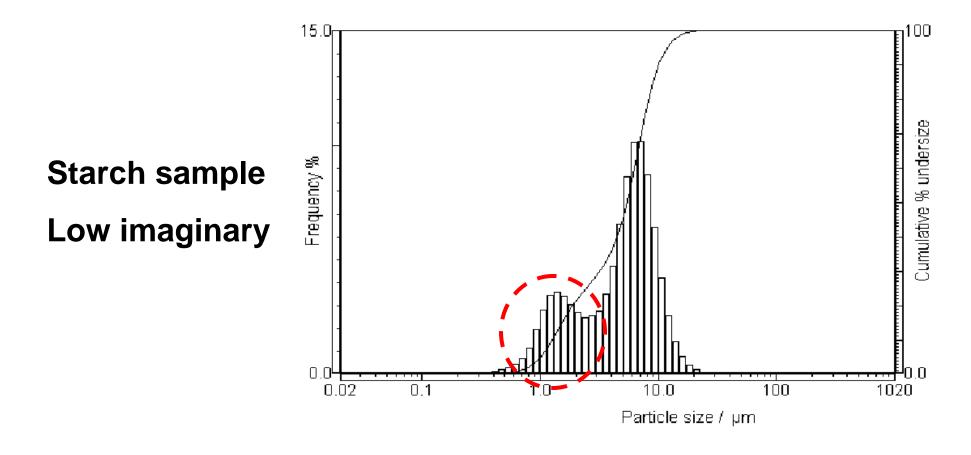
Use average, consider flow alignment

I would rather eat French food

Uniaxial vs. Biaxial Materials

Uniaxial materials, at 590 nm ^[3]							
Material 🖻	n _o ₪	n _e ₪	∆n ⊠				
beryl Be ₃ Al ₂ (SiO ₃) ₆	1.602	1.557	-0.045				
calcite CaCO ₃	1.658	1.486	-0.172				
calomel Hg ₂ Cl ₂	1.973	2.656	+0.683				
ice H ₂ O	1.309	1.313	+0.004				
lithium niobate LiNbO ₃	2.272	2.187	-0.085				
magnesium fluoride MgF ₂	1.380	1.385	+0.006				
quartz SiO ₂	1.544	1.553	+0.009				
ruby Al ₂ O ₃	1.770	1.762	-0.008				
rutile TiO ₂	2.616	2.903	+0.287				
peridot (Mg, Fe) ₂ SiO ₄	1.690	1.654	-0.036				
sapphire Al ₂ O ₃	1.768	1.760	-0.008				
sodium nitrate NaNO ₃	1.587	1.336	-0.251				
tourmaline (complex silicate)	1.669	1.638	-0.031				
zircon, high ZrSiO ₄	1.960	2.015	+0.055				
zircon, Iow ZrSiO ₄	1.920	1.967	+0.047				

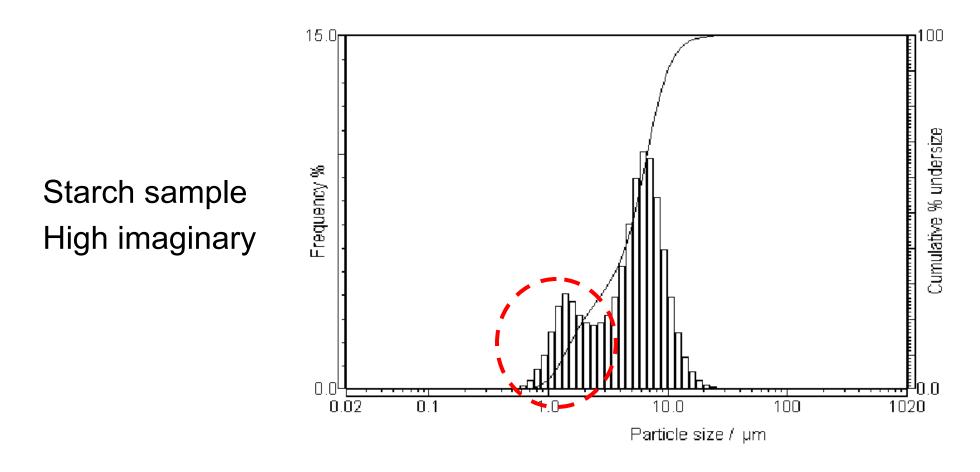
Biaxial materials, at 590 nm ^[3]						
Material 🗵	n _α 🖂	n _β ⊠	n _∨ ₪			
borax	1.447	1.469	1.472			
epsom salt MgSO ₄ ·7(H ₂ O)	1.433	1.455	1.461			
mica, biotite	1.595	1.640	1.640			
mica, muscovite	1.563	1.596	1.601			
olivine (Mg, Fe) ₂ SiO ₄	1.640	1.660	1.680			
perovskite CaTiO ₃	2.300	2.340	2.380			
topaz	1.618	1.620	1.627			
ulexite	1.490	1.510	1.520			


Biaxial birefringence, also known as trirefringence, describes an anisotropic material that has more than one axis of anisotropy

 $\Delta n = n_e - n_o$

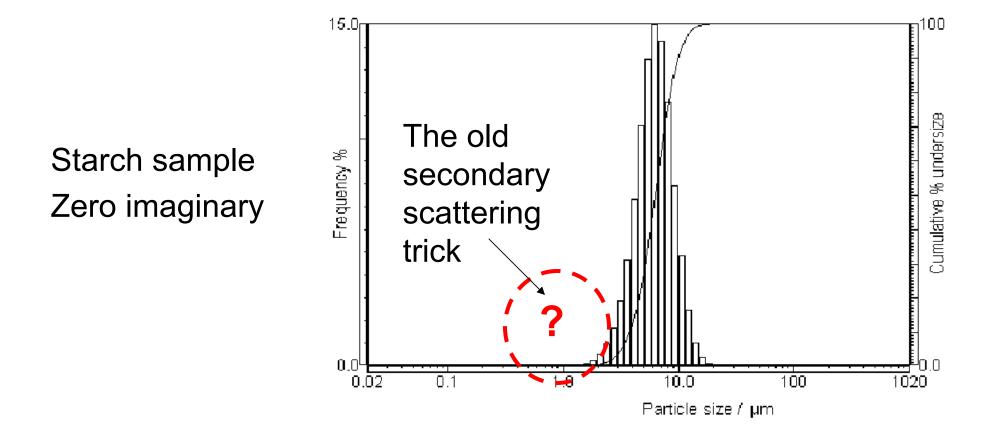
where n_0 and n_e are the refractive indices for polarizations perpendicular (ordinary) and parallel (extraordinary) to the axis of anisotropy respectively.

3 Elert, Glenn. "Refraction". The Physics Hypertextbook. http://hypertextbook.com/physics/waves/refraction/.

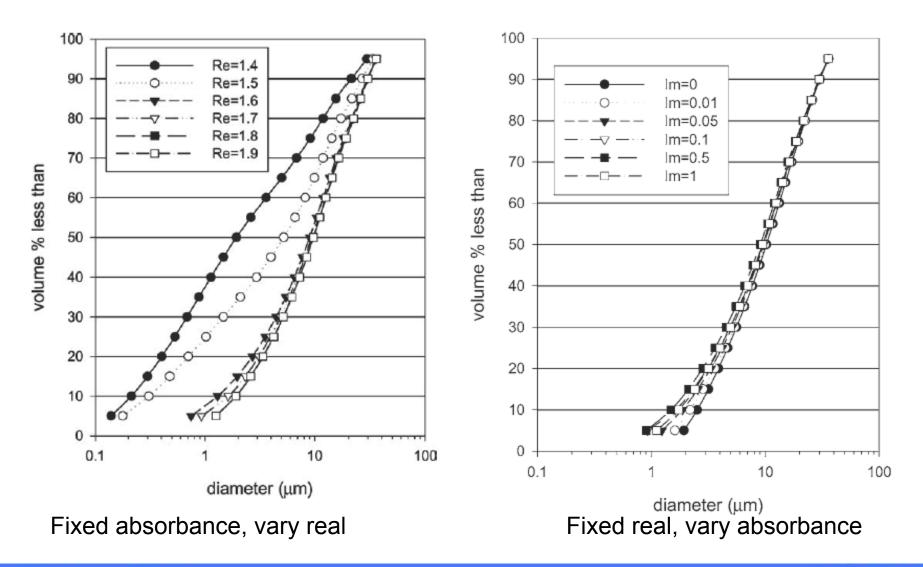

Scary Example: Is the Small Peak Real?

INDEX = 1.22 - 0.1i

© 2011 HORIBA, Ltd. All rights reserved.


Scary Example: Is the Small Peak Real?

INDEX = 1.23 - 4.13i


© 2011 HORIBA, Ltd. All rights reserved.

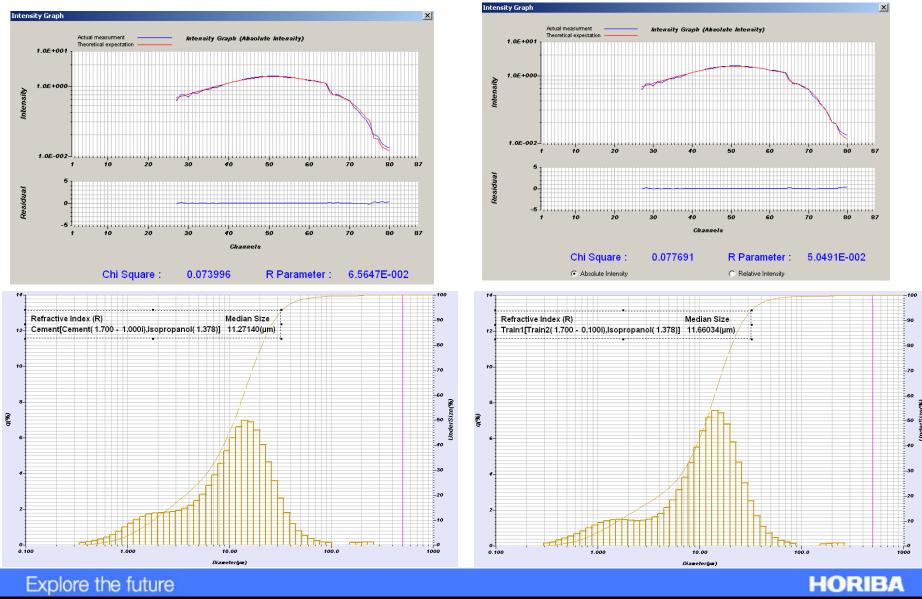
Scary Example: Is the Small Peak Real?

INDEX = 1.22 - 0.0i

Effect of RI: Cement

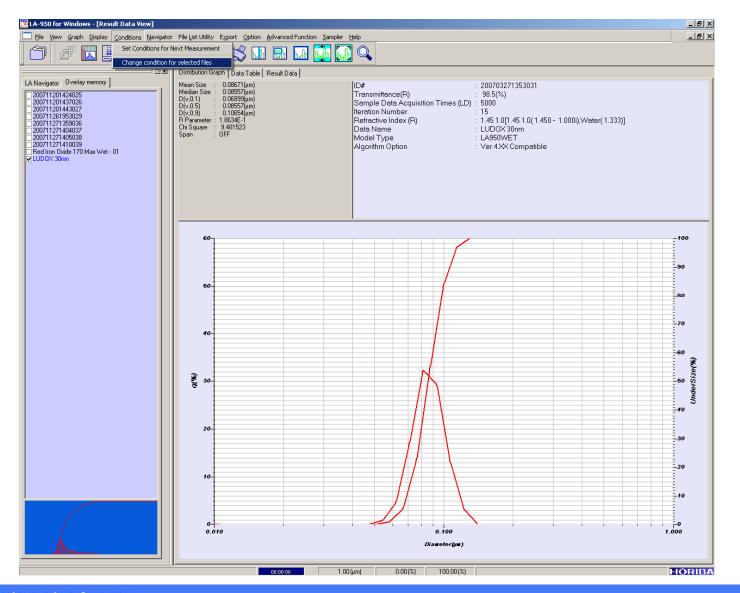
© 2011 HORIBA, Ltd. All rights reserved.

Chi Square and R Parameter


$$\chi^{2} = \sum \left\{ \frac{1}{\sigma_{i}^{2}} [y_{i} - y(x_{i})]^{2} \right\}$$
$$R = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{1}{y_{(x_{i})}} |y_{i} - y(x_{i})| \right\}$$

yi The measured scattered light at each channel (i) of the detector.

y (xi) The calculated scattered light at each channel (i) of the detector based on the chosen refractive index kernel and reported particle size distribution.


 σ i The standard deviation of the scattered light intensity at each channel (i) of the detector. A larger σ i indicates lower reliability of the signal on a given detector. N The number of detectors used for the calculation

Using R Value for i

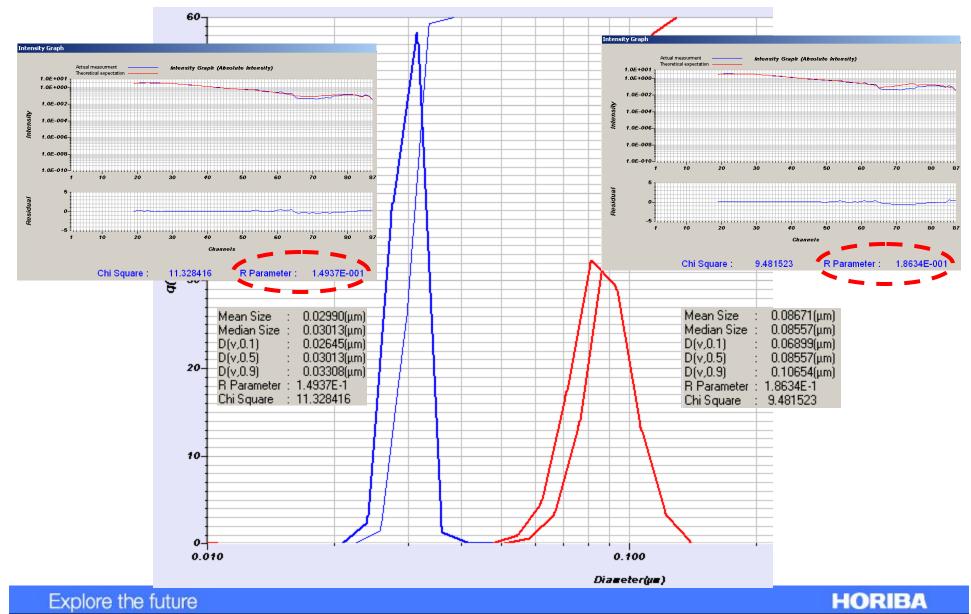
© 2011 HORIBA, Ltd. All rights reserved

Changing RI

Explore the future © 2011 HORIBA, Ltd. All rights reserved.

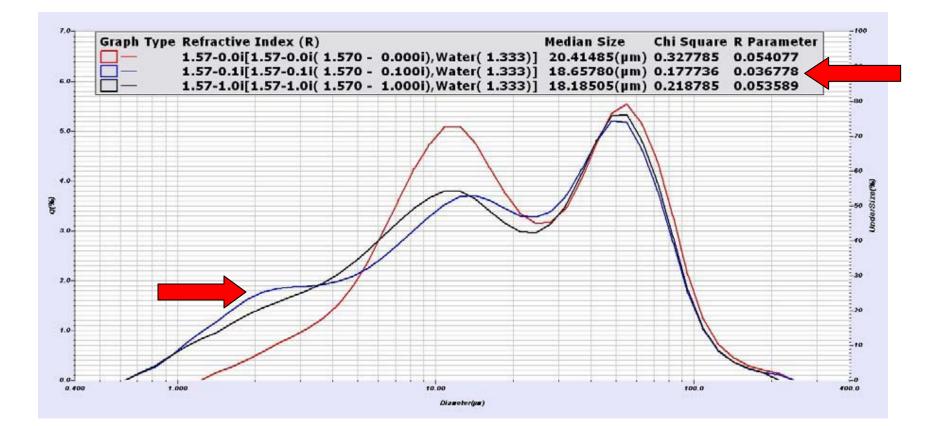
Changing RI

Sample information Sample Mame LUDOX Material Colloidal silica Source LUDOX Lot Number [01-01183] Test or Assay, Number [F0706U0941] Refractive Index File Name: [1451.0 Comment: Create Form of Distribution Condition Iteration Number 15 Distribution base © Volume © Area © Length © Numbers Advanced	
	Sample Name LUDOX Material Colloidal silica Source LUDOX Lubox Image: Source Lubox Lubox Image: Source Image: Sou


File Name	File Comment	Sample Name	Sample Comment	Sam	Sam	Sam	Sam	Dispersion Name	Dispersio	Disp	Disp
.33 1.0 in 1.385	1.10 001111011	1.33 1.0 in 1.385	Comple Comment	1.3300	1.0000	1.3300	1.0000	Heptane	Heptane	1.3850	1.38
.45 1.0 in 1.33		1.45 1.0		1.4500	1.0000	1.4500	1.0000	Water	Water	1.3330	1.33
.45 1.0		1.451.0		1.4500	1.0000	1.4500	1.0000	Water	Water	1.3330	1.33
.51 1.0 in 1.33		1.51 1.0		1.5100	1.0000	1.5100	1.0000	Water	Water	1.3330	1.33
.55 1.0 in 1.33		1.55 1.0 in 1.33		1.5500	1.0000	1.5500	1.0000	Water	Water	1.3330	1.33
.57 0		1.57 0		1.5700	0.0000	1.5700	0.0000	Water	Water	1.3330	1.33
.59 0.1 in 1.378		1.59 0.1 in 1.378		1.5900	0.1000	1.5900	0.1000	Isopropanol	Isopropanol	1.3780	1.37
.6 0.1 in 1.33		1.6 0.1 in 1.33		1.6000	0.1000	1.6000	0.1000	Water	Water	1.3330	1.33
60-0i in water		BI=1.60		1.6000	0.0000	1.6000	0.0000	Water	Water	1.3330	1.33
70-0.1i IPA		1.70-0.1i		1.7000	0.1000	1,7000	0.1000	Isopropanol	Isopropanol	1.3780	1.37
Jumina	water	Alumina	Alumina	1.6600	0.0000	1.6600	0.0000	Water	Water	1.3330	1.33
luminum	water	Aluminum	Aluminum	1.6000	5,4000	1.6000	5,4000	Water	Water	1.3330	1.33
mber	water	Amber	Amber	1.5400	0.0000	1.5400	0.0000	Water	Water	1.3330	1.33
ntimony	water	Antimony	Antimony	3.2000	5.0000	3.2000	5.0000	Water	Water	1.3330	1.33
sphalt	water	Asphalt	Asphalt	1.6300	0.0000	1.6300	0.0000	Water	Water	1.3330	1.33
arium carbonate	water	Barium carbonate	Barium carbonate	1.6000	0.0000	1.6000	0.0000	Water	Water	1.3330	1.33
arium fluochloride	water	Barium fluochloride	Barium fluochloride	1.6400	0.0000	1.6400	0.0000	Water	Water	1.3330	1.33
arium fluoride	water	Barium fluoride	Barium fluoride	1.4700	0.0000	1.4700	0.0000	Water	Water	1.3330	1.33
arium phosphate	water	Barium phosphate	Barium phosphate	1.6200	0.0000	1.6200	0.0000	Water	Water	1.3330	1.33
arium sulfate	water	Barium sulfate	Barium sulfate	1.6200	0.0000	1.6200	0.0000	Water	Water	1.3330	1.33
arium sulfide	water	Barium sulfide	Barium sulfide	2.1600	0.0000	2.1600	0.0000	Water	Water	1.3330	1.33
arium vellow	water	Barium vellow	Barium yellow	1.6300	0.0000	1.6300	0.0000	Water	Water	1.3330	1.33
admium sulfide	water	Cadmium sulfide	Cadmium sulfide	2,4200	0.0000	2.4200	0.0000	Water	Water	1.3330	1.33
alcium alminate	water	Calcium alminate	Calcium alminate	1.7100	0.0000	1.7100	0.0000	Water	Water	1.3330	1.33
alcium borate	water	Calcium borate	Calcium borate	1.6000	0.0000	1.6000	0.0000	Water	Water	1.3330	1.33
alcium carbonate	water	Calcium carbonate	Calcium carbonate	1.5800	0.0000	1.5800	0.0000	Water	Water	1.3330	1.33
anadian balsam	water	Canadian balsam	Canadian balsam	1.5200	0.0000	1.5200	0.0000	Water	Water	1.3330	1.33
ariaulari Daisaili arbon	water	Carbon	Carbon	1.9200	0.0000	1.9200	0.0000	Water	Water	1.3330	1.33
eluriene	water	Celuriene	Celuriene	1.8400	0.0000	1.8400	0.0000	Water	Water	1.3330	1.33
Chrome areen	water	Chrome green	Chrome green	2.4000	0.0000	2.4000	0.0000	Water	Water	1.3330	1.33
hromium oxide	water	Chromium oxide	Chromium oxide	2.4000	0.0000	2.5000	0.0000	Water	Water	1.3330	1.33
obalt blue	water	Cobalt blue	Cobalt blue	1.7400	0.0000	1.7400	0.0000	Water	Water	1.3330	1.33
obalt green	water	Cobalt green		1.9700	0.0000	1.9700	0.0000	Water	Water	1.3330	1.33
	water	cobait green	Cobalt green	1.3700	0.0000	1.3700	0.0000	water	water	1.3330	1.00

Changing RI

1easurement Dialog		2
Load	Sample information	
2000	Sample Name	
	LUDOX	
	Material	
	Colloidal silica	
	Source	
	LUDOX	
	Lot Number	
	01-01183	
	Test or Assay. Number	
	F0706U09-IT	
 Calculation Data Setting 	Refractive Index	
C ActiveData	File Name: 1.451.0 Select	
Select Data in Memory		
Select Data	Comment: Create	
200711201424025	Form of Distribution	
200711201437026		
200711201443027 200711261953029	🔿 Manual 💿 Auto	
200711261953029		
200711271404037	Condition Iteration Number 15	
200711271405038 200711271410039	Distribution base	
Red Iron Oxide 170 Max Wet - 01	⊙ Volume ⊖ Area	
	C Length C Numbers	
	Advanced	
B	eCalc Cancel	
110	Canot	


Using R Value for i

© 2011 HORIBA, Ltd. All rights reserved.

Using R Value for i

Real component = 1.57 via Becke line Vary imaginary component, minimize Chi square & R parameter

Automation by Method Expert

Analytical conditions

Circulation Pump Speed

Circulation Pump Speed

Particle Concentration

Particle Concentration

Ultrasonic Treatment

Ultrasonic Treatment

Measurement Duration

Measurement Duration

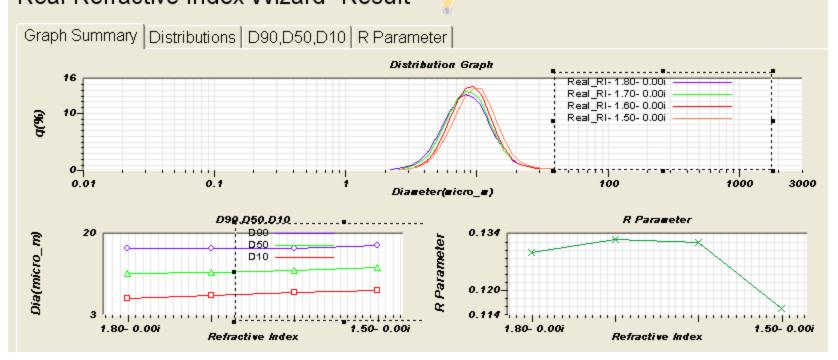
Calculation conditions

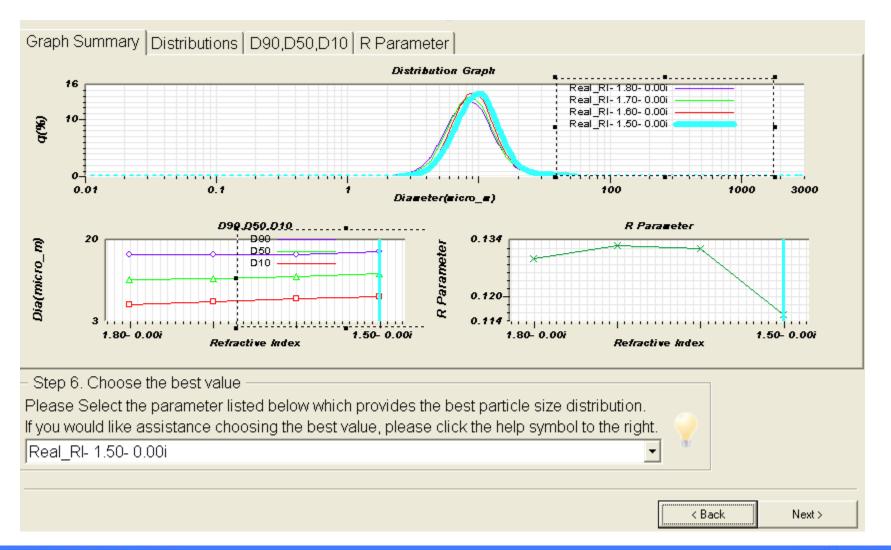
Real Refractive Index Wizard

Real Refractive Index Wizard

Imaginary Refractive Index Wizard Imaginary Refractive Index Wizard

View Method Expert webinar TE004 in <u>Download Center</u>

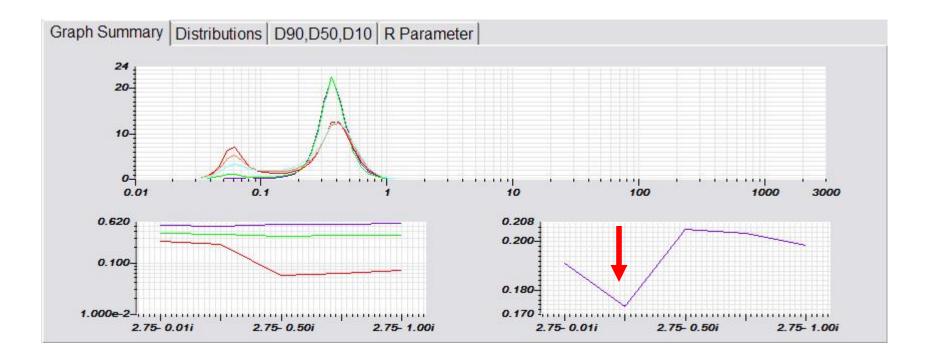



Real part study

- Need to fix imaginary part
- Set up to 5 real parts
- Software will compute all RI and display R parameter variation with RI selection

Step 1: Select measure • Select Active M		DataFile	Select File
Step 2: Choose RI for lie	quid dispersant	<u>Step 3</u> : Input RI	imaginary component for test
1.333	Open L	ist 0	
Step 4: Input RI real con	nponent for test	Step 5: Push "	Execute" button.
Test Value 1: 1.5	Test Value 4: 1.8		mporarily closed,
Test Value 2: 1.6	Test Value 5: 1.9	and the test sec	quence is executed.
Test Value 3: 1.7	_		Execute Test Sequence >>

Calculation Optimization Real Refractive Index Wizard -Result-

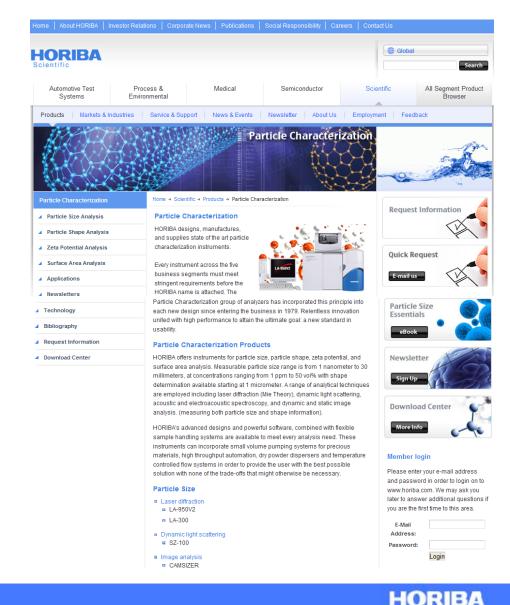

Explore the future © 2011 HORIBA, Ltd. All rights reserved.

Imaginary part study

- Need to fix real part
- Set up to 5 imaginary parts
- Software will compute all RI and display R parameter variation with RI selection

 Step 1: Select measure Select Active 	urement data for tes e Memory Data	st	taFile		elect File
Step 2: Choose RI fo	r liquid dispersant	Open List	Step 3: 1	nput RI real compor	nent for test
– <u>Step 4</u> : Input RI imag Test Value 1:		r test Test Value 4:	0.7	This wizard is ter	
Test Value 2: Test Value 3:	0.1	Test Value 5:	1	and the test seq	uence is executed. Execute Test Sequence >>

Imaginary study


Summary

- Measure sample, recalculate w/different RI see how important it is
- Use one of the described approaches to determine the real component
- Recalculate using different imaginary component
- Choose result that minimizes R parameter, but also check if result makes sense
- You wish you had Method Expert by your side

It's All on the Website

- Register to visit Download Center
- Application Notes
- Technical Notes
- Past webinars
- Bibliography
- And soon... today's webinar
- mark.bumiller@horiba.com
- ian.treviranus@horiba.com

