Setting Attainable and Practical Particle Size Specifications

© 2010 HORIBA, Ltd. All rights reserved.

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

- Product release (quality)
- Communicate grade to buyers
- Internal requirements
- Required in regulated industries (food & drugs)
- Will focus on drugs, but same concepts applicable to other industries

This is not New!

The grading of blackpowder: Earlier we mentioned the different sizes of gunpowder grains, and about how smaller grains will burn more quickly than the larger ones. The term "grade," when applied to gunpowder refers to the grain size, and not to its quality. There are two separate categories of gunpowder grades; "C" and "F" grade. "C" grade is for cannons and large capacity explosive devices. A single "C" being the largest grain size with smaller sizes graded down as, "CC," "CCC," etc. Powder that is meant for small arms purposes uses the letter "F" to denote the grain size with a single "F" (or 1-FG for "1FG" size, "F" grade grain). The more "F's" you see within the powder grade designation, the smaller will be the grain size. "FFFG," for example, is very fine, almost a dust and was commonly used as a priming powder for the pans of flintlocks.

Explore the future

. . . .

Examples (Sieves)

		Mesh	Micron
0.5	Maximum	No. 20	841
2	Maximum	No. 25	707
20	Maximum	No. 30	595
30	Maximum	No. 35	500
		No. 40	420
		No. 45	354
acterize parti	cle size by mesh designation:	No. 50	297
narticles are	a retained by the sieve:	No. 60	250
particles are	a through the sieve:	No. 70	210
particles pas	s infough the sieve,	No. 80	177
I lie within the	e indicated range.	No. 100	149
		No. 120	125
material will	pass through a 4-mesh sieve	No. 140	105
		No. 170	88
		No. 200	74
erial will pass	s through a 40-mesh	No. 230	63
	-	No. 270	53
		No. 325	44
		No. 400	37
	0.5 2 30 acterize parti particles are particles pas l lie within the material will pass	 0.5 Maximum 2 Maximum 30 Maximum acterize particle size by mesh designation: acterize particles are retained by the sieve; particles pass through the sieve; lie within the indicated range. material will pass through a 4-mesh sieve erial will pass through a 40-mesh	0.5MaximumNo. 202MaximumNo. 2530MaximumNo. 3030MaximumNo. 35acterize particle size by mesh designation: e particles are retained by the sieve; particles pass through the sieve; I lie within the indicated range.No. 50No. 60No. 70material will pass through a 4-mesh sieveNo. 100No. 120No. 120no. 170No. 230No. 200No. 230No. 325No. 400

Example (TiO₂)

Item No.	R-1	RM-1
TiO ₂ Content %	98.0	94.0
Whiteness		Better
Brightness	96.5	
pH Value	6.5-8.5	6.5-8.5
Mesh Residue 45 μm max %	0.05	0.05
Tint-Reducing Power min	1700	95
Oil Absorption g/100g max	21	23
Volatile AT 105°C % max	0.5	0.80
Specific Receptivity Ω cm min	90	80
Water dispersibility, % min		90
Rutile Content min %	97.0	98.0
Application	Paints, Plastics, Rubber, Paper, Grocery	Coating, Plastic, Paper, Rubber, Printing inc.

Does this mean 0.06% fails?? They are the same numbers!

TYPICAL PROPERTIES

TiO ₂ content	94%
Inorganic coating	Alumina
Organic treatment	Present
Crystal size	0.25µm
Specific gravity	4.05 g/cm ³
Loss at 105°C ⁽ⁱ⁾	0.6% max
Bulk density (tamped) 🕮	1.3 g/cm ³
Oil absorption (iii)	17 cm³/100g pigment
Water demand 🕅	24 cm³/100g pigment
Durability	Durable
ISO 591 classification	R2
ATSM D476 designation	II, III, IV

Easier to understand, but: How was it measured? Dispersion? Ultrasound?

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

-(0):11:74

"a list of tests, references to analytical procedures, and appropriate acceptance criteria, which are numerical limits, ranges, or other criteria for the tests described"

"chosen to confirm the quality of the drug substance and drug product rather than to establish full characterization, and should focus on those characteristics found to be useful in ensuring the safety and efficacy of the drug substance and drug product"

*ICH HARMONISED TRIPARTITE GUIDELINE, SPECIFICATIONS: TEST PROCEDURES AND ACCEPTANCE CRITERIA FOR NEW DRUG SUBSTANCES AND NEW DRUG PRODUCTS: CHEMICAL SUBSTANCES, Q6A, Current *Step 4* version, 6 October 1999

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

© 2010 HORIBA, Ltd. All rights reserved

ICH HARMONISED TRIPARTITE GUIDELINE

SPECIFICATIONS: TEST PROCEDURES AND ACCEPTANCE CRITERIA FOR NEW DRUG SUBSTANCES AND NEW DRUG PRODUCTS: CHEMICAL SUBSTANCES

Q6A

3. GUIDELINES

3.1 Specifications: Definition and Justification

3.1.1 Definition of Specifications

A specification is defined as a list of tests, references to analytical procedures, and appropriate acceptance criteria which are numerical limits, ranges, or other criteria for the tests described. It establishes the set of criteria to which a new drug substance or new drug product should conform to be considered acceptable for its intended use.

Explore the future

© 2010 HORIBA, Ltd. All rights reserved

FDA Guidance

3.3 Specific Tests / Criteria

3.3.1 New Drug Substances

b) Particle size: For some new drug substances intended for use in solid or suspension drug products, particle size can have a significant effect on dissolution rates, bioavailability, and / or stability. In such instances, testing for particle size distribution should be carried out using an appropriate procedure, and acceptance criteria should be provided.

Decision tree #3 provides additional guidance on when particle size testing should be considered.

Is the drug a solid oral dosage form or suspension?

Ves Is particle size critical to: Dissolution, solubility, bioavailablility? Processability? Stability? Content uniformity? Maintaining appearance?

Set Acceptance Criterion

HORIBA

Explore the future

© 2010 HORIBA, Ltd. All rights reserved.

FDA: Nanoparticles

© 2010 HORIBA, Ltd. All rights reserved.

Particle Size and Processability

- Milling/size Particle Size Distributions reduction NARROWSPAN_TM Atomization 0.012 0.01 Mixing/blending 0.008 Standard Whee 0.006 ----- 10000 RPM 8000 RPM Separation 0.004 6000 RPM 4000 RPM Filtration 10.00 1.00 100.00 1000.00 Particle size Granulation
- Homogenization
 Crystallization
 Marrow particle size distributions
 Minimize segregation problems
 during mixing more homogeneous
 distribution of components in final product

Particle Size and Dissolution

XS is the mass of solid drug (mg), t is time (minutes), D is the drug diffusivity (cm2/min), X0 is the initial drug mass (mg), r is the drug density (mg/mL), h is the diffusion layer thickness (cm), **r**₀ is the initial particle radius (cm), CS is the drug solubility (mg/mL), Xd is the mass of dissolved drug (mg), V is the volume of dissolution media (mL).

FIGURE 4

Ondansetron Dissolution as a Function of Particle Size Fractions at pH 6.8. Data are From Model Predictions (Solid Lines) and Data Collected in Dissolution Experiments (Data Points).

David R. Friend, PhD; Gregory E. Parry, PhD; T. Francis, PhD; Gary Kupperblatt, PhD; Suggy S. Chrai, PhD; and Gerald Slack, Mathematical Modeling of a Novel Controlled-Release Dosage Form Drug Delivery Technology,

Content Uniformity

Idealized concept:

- Powder particles compacted into tablet
- All particles are active ingredients
- Small particles = specified dose
- Large particle = over dose

HORIBA

Content Uniformity*

Fig. 1. Particle size distributions of Bantam-milled drug (\bigcirc) and Jet-milled drug (\bullet). Simulated lines were drawn using geometric mean particle sizes of 18.5 and 6.1 μ m and geometric standard deviation of 1.7 and 1.6 for the Bantam and Jet-milled drug, respectively.

$$mass_{ni} = \frac{mass_i}{\sum_{i=1}^{100} mass_i} \times dose$$

The volume v_i and mass m_i of a single particle of radius was calculated as follows:

$v_i = \frac{4}{3}\pi r_i^3$	(7)
$m_i = v_i \rho$	(8)

where ρ is the drug density.

*Zhang, Y, Johnson, K, Effect of drug particle size on content uniformity of low-dose solid dosage forms, International Journal of Pharmaceutics 154 (1997) 179-183

Percent of intent	Number of unit doses within the given percent of intent range					
	Experimental		Simulated			
	Bantam	Jet	Bantam	Jet		
70-74						
74-78						
78-82						
82-86						
86-90	1					
9094	5					
94-98	13	5	483 249			
98-102	20	59	313 436	1000 000		
102-106	16		145 337			
106-110	7		45 537			
110-114	1		9744			
114-118			2191			
118-122	1		447			
122-126			58			
126-130	1		1			

© 2010 HORIBA, Ltd. All rights reserved.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Tablets

- Size of active ingredient effects content uniformity
- Size influences tablet hardness
- Size and shape effects packing
- Size and shape effect powder flow

Suspensions

- Dissolution and absorption
- Content uniformity
- Ability to stay in suspension
- Feel in mouth

© 2010 HORIBA, Ltd. All rights reserved

Particle size and physical characteristics critical in selection and performance

HPC Grade		SSL	SL	L	
Lactose (g)		700	700	700	
Material	Corn starch (g)		300	300	300
	8% HPC aqueous	solution (g)	375	375	375
		1400µ on	0.2	0.2	-
		500µ	0.2	0.2	0.4
		355µ	0.4	0.6	1.7
Pa Property of dis granule	Darticla ciza	250µ	1.3	2.1	8.4
	distribution (%)	180µ	4.0	6.0	14.4
		150µ	8.0	9.6	15.6
		106µ	22.1	22.1	24.7
		75µ	30.3	26.9	19.6
		75µ under	33.6	32.3	15.0
	Bulky density	Loose	90	95	130
	(kg/cm3)	packed	0.5	0.47	0.46
Droporty of	Hardness (kg)		14	14	12
tablet	Friction loss (%)		0.2	0.2	0.2
lablet	Disintegration time	e (min)	6	8	9

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Techniques and Specifications

© 2010 HORIBA, Ltd. All rights reserved.

Particle is randomly diffusing from Brownian motion

- Larger particles will diffuse more slowly
- Smaller particles will diffuse more quickly
- Scatter light off this diffusing particle
- Measure the frequency shift of the signal

Two Approaches: Correlator or Power Spectrum

© 2010 HORIBA, Ltd. All rights reserved

- Correlation method or frequency analysis
- Measure at least 3 times
- Record average particle size X_{DLS} & PI
- Repeatability better than 5%
- Check for sedimentation
- Dilution study, use most dilute if changes

Verification: within 2% of 100nm standard, repeatability < 2%, PI< 0.2 –All specs too tight for reality –Within 5% OK

- Only z average & PI defined in ISO
- Can convert intensity to volume distribution
 - Requires RI of sample
- Can dramatically alter reported values
- Typically used for industrial products where D10, D50 & D90 familiar

Laser Diffraction

Particle size 0.01 - 3000 µm

Converts scattered light to particle size distribution
Quick, repeatable
Most common technique

HORIBA

© 2010 HORIBA, Ltd. All rights reserved.

Distribution Parameters

Size

Other Data Points: D10, D50, D90

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Other Data Points: D10, D50, D90

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Distribution Parameters

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Volume Mean Diameter

$$\mathbf{D}[4,3] = \frac{\sum \mathbf{D}_{i}^{4} \mathbf{n}_{i}}{\sum \mathbf{D}_{i}^{3} \mathbf{n}_{i}}$$

Setting a D [4,3] specification will emphasize the presence of large particles

Mean Size

The frequency distribution is found using the arithmetical mean diameter, as shown in the formula below.

Mean Diameter = $\Sigma{q(J) \times X(J)} / \Sigma{q(J)}$

- J : Particle Diameter Division Number
- q(J) : Frequency Distribution Value (%)
- X(J): Jth Particle Diameter Range's Representative Diameter (µm).

Evolore the tuture	

D 4,3 Volume Mean

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Bimodal Distribution

Which numbers to use for specifications? D50 still an option, but some prefer finer details

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Bimodal Distribution Result Details

Explore the future

- Standards good source for guidance to methods & specifications
 - ISO13320
 - Pharmaceutical: EP 2.9.31 & USP<429>
- All based on ISO standard
- Test Reproducibility
 - Don't believe anything unless it's reproducible
- Verify your system
 - On a regular basis using polydisperse standards

Prepare & measure sample 3 times Record D10, D50, D90 Calculate average D10, D50, D90 and COV \bullet ISO: COV < 3% at median x ₅₀ COV < 5% at $x_{10} \& x_{90}$ • EP/USP: COV < 10% at median x $_{50}$ COV < 15% at $x_{10} \& x_{90}$ Can double COV values when D50 <10 µm Part of specification? Perhaps internal

HORIBA

Calculation Automation

From LA-950 Software

Summary Rep	ort						
Export Summary P	hint Summary	Edit Layout	Best Fit Columns	Hide Selected	Exit		
Sample Nar	ne	Material	Source	Lot	D(v.0.1)	D(v.0.5)	D(v,0.9)
Sample 4	Pinr	oThin TG Po	wde Herbalife		0.052	0.052	0.052
Sample 4	Pinr	oThin TG Po	wde Herbalife		0.052	0.052	0.052
Sample 4	Pinr	oThin TG Po	wde Herbalife		0.052	0.052	0.052
Sample 4	Pinr	oThin TG Po	wde Herbalife		0.845	0.045	0.045
Sample 4	Pinn	oThin TG Po	wde Herbalife		0.045	0.045	0.045
Sample 4	Pinn	oThin TG Po	wde Herbalife		0.045	0.045	0.045
Sample 4	Pinr	oThin TG Po	wde Herbalife		0.040	0.040	0.040
Sample 4	Pint	oThin TG Po	wde Herbalife		0.039	0.039	0.039
Semple 4	Pinn	oThin TG Po	wde Herbalife		0.040	0.040	0.040
Sample 4	Pinr	oThin TG Po	wde Herbalife		0.048	0.048	0.048
Sample 4	Pinr	oThin TG Po	wde Herbalife		0.048	0.048	0.048
Sample 4	Pinr	oThin TG Po	wde Herbalife		0.048	0.048	0.048
Semple 4	Pinr	10Thin TG Po	wde Herbalife		0.045	0.045	0.045
Average					0.046	0.046	0.046
Std. Dev.					0.005	0.005	0.005
CV (%)					9.805	9.805	9.805
USP 429 (30.0, 20	0, 30.0)				PASSED	PASSED	PASSED

- Use polydisperse standard
 - Whitehouse, NIST
- 3 independent measurements, calculate mean
- Accuracy:
 - X50 <3% certified range of values</p>
 - X10 & X90 < 5% certified range of values</p>
- Repeatability
 - COV X50 < 3%
 - COV X10 & X90 < 5%</p>

Calculation Automation

From LA-950 Software

Verification Set	ting	X
Parameter	D(v.0.5)	•
Specification	USP-429	•
Standard Value	0.01	pm.
Tolerance	± 0	μm
Certified range of va	kæs	100
D(v,0.5) >= 10µm	± 3	<i>z</i>
D(v,0.5) < 10µm	1 6	z
Color Selection Pass: Fail		•
10	Cano	ei

Distribution Graph Data Table	Result Data			
Mean Size Variance Median Size Std.Dev. Chi Square R Parameter Diameter on Cumulativ Cumulative % on Diam	: 0.1840 : 1.89886 : 0.1773 : 0.164 : 0.043 : 4.1625 : 3.73791 ve % : (2)10.00 : (9)90.00 : (9)90.00 : (9)90.00 : (2)600.1 : (2)600.1 : (2)600.1 : (3)425.1 : (4)300.1 : (5)212.2 : (6)150.1 : (7)106.1 : (8)75.0 : (9)53.0	D8(μm) E-3(μm ²) 30(μm) 9(μm) 66(μm) 19 E-1 0 (%)- 0.1345(μm) 0 (%)- 0.2450(μm) 0 (%)- 0.2450(μm) 0 (μm)- 100.000(%) 0 (μm)- 100.000(%) 0 (μm)- 100.000(%) 0 (μm)- 100.000(%) 0 (μm)- 100.000(%) 0 (μm)- 100.000(%) 0 (μm)- 100.000(%)		
Verification	: 1.0K 4 : 2.0K 3 : 3.0K 6	1.3% [D(v,0.5) 0.170 (1.5% [D(v,0.1) 0.130 (1.5% [D(v,0.9) 0.230 ((μm)(± 6.000%)] (μm)(± 10.00%)] (μm)(± 10.00%)]	
Data Name	Graph Type	Transmittance(R)	Median Size	R Paramete
andy1'		88(3(%)	0.17730(µm)	0.373795
200801181026014		81.1(%)	9.35329(µm)	0.069234
andy1		88.3(%)	0.17730(µm)	0.373795

What Information Should be Included?

Analytical procedures (sampling, dispersion, system suitability, etc.)

- Method Validation (precision, ruggedness, dispersion stability, robustness, etc.)
- Acceptance Criteria (upper and lower limits)
- Representative plots of particle size distribution measurements should be included well as the method validation report.

- Justification should be presented for each procedure and each acceptance criterion included
- Should refer to relevant development data, pharmacopoeial standards, test data for drug substances and drug products used in toxicology and clinical studies, and results from accelerated and long term stability studies, as appropriate.
- Additionally, a reasonable range of expected analytical and manufacturing variability should be considered.

HORIBA

Example Specifications

Dv50 NMT 25 µm

Dv10 NMT 8 μm

Dv90 NMT 75 μm

Looks cleaner Sufficient?

Both better than: Average = 25

Example Specification from FDA Website

Tests	Acceptance criteria	Analytical procedure	Test results for Lot#15531
Appearance	A white, crystalline powder.	Visual	Complies
Identification			
A: IR	A. IR: Corresponds to RS	USP<197M>	Complies
B: UV	B. UV: Absorptivities at xxx nm, do not differ by more	USP<197U>	Complies
	than 3.0% from the reference standard.		
Heavy metals	NMT 20 ppm	USP<231>	LT 20 pm
Assay	98.0-102.0%	USP method	99.5%
Residual solvents	Methanol:	USP <467>	
	NMT 3000 ppm		300 ppm
	Methylene Chloride:		
	NMT 600 ppm		150 ppm
	Toluene		
	NMT 890 ppm		80 ppm
Related Substances	Specified Impurities*	method #41	
	RC 1: NMT 0.15%		LT 0.05%
	RC 2: NMT 0.25%		LT 0.05%
	RC 3: NMT 0.25 %		0.10%
	Any unspecified impurity: NMT 0.10% (each)		LT 0.05%
	Total impurities: NMT 0.75%		0.30 %
Polymorphic Form	Ratio of peak at 2θ = xx to peak at 2θ =yy: LT 5%	method #47	LT 1%
(XRD)			
Particle size	D90: NMT 30 µm	method #48	20 µm
(Laser Diffraction)	D50: NMT 15 μm		10 μm
	D10: NMT 5 μm		2.5 μm

Pharmaceutical Reference*

*John, E, How to Set Specifications for the Particle Size Distribution of a Drug Substance?, American Pharmaceutical Review, April 2009, 72-77

	x10	x50	x90
mean, n = 6	0.8µm	1.8µm	3.9µm
STDrel, n = 6	13%	9%	13%
min	0.7µm	1.7µm	3.5µm
max	0.9µm	1.9µm	4.8µm
DEVrel (min, max)	29%	12%	37%

Table 1. Characteristic values of the particle size distributions (PSD) of six batches of Drug Substance A in terms of mean values, relative standard deviations, min. max. values and relative deviations between them.

Includes manufacturing and analytical variability over 3 years

Explore the future

HORIBA

FDA Reference*

Regulatory Issues on Particle Size Specifications

Zhigang Sun, Ph.D.

Office of Generic Drugs Center for Drug Evaluation and Research Food and Drug Administration

Zhigang.Sun@FDA.HHS.GOV

Opinions expressed in this presentation are those of the speaker and do not necessarily reflect the views or policies of the FDA

45th Annual Pharmaceutical Technologies Arden Conference February 4, 2010

*http://www.aapspharmaceutica.com/meetings/workshops/Arden/presentations/ Regulatory_Issues_on_Particle_Size-_Sun.pdf

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

© 2010 HORIBA, Ltd. All rights reserved.

HORIBA

1

FDA Reference*

Acceptance Criteria for Laser Diffraction

Upper and lower limits of D10, D50, and D90 are established based upon prior knowledge or design of experiment (DOE) studies.

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Inadequate LD Criteria

Specification on X or Y Axis

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Specification with Error

Must tighten internal spec by lab error % Then product always within performance specification

http://www.spcpress.com/pdf/Manufacturing_Specification.pdf, By David Wheeler

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

- Must tighten internal spec by lab error
- Therefore minimize lab error makes life easier
- How to minimize error?
 - Get sampling right
 - Structured method development
 - Eye on the goal: reproducibility

Conclusions

- Specifications based on product performance
- Tighten internal specification to include measurement error
- Report results in format created by instrument
 - Zave & PI intensity from DLS
 - Volume results from laser diffraction
- Standards provide help to set specifications
- Avoid Dv100 with laser diffraction
- Use D 4,3 if performance sensitive to small amount of large particles

http://www.horiba.com/scientific/products/particle-characterization/

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

To Learn More

http://www.horiba.com/scientific/products/particle-characterization/

