Laser Diffraction Theory

Jeffrey Bodycomb, Ph.D. HORIBA Scientific www.horiba.com/us/particle

© 2012 HORIBA, Ltd. All rights reserved

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

When a Light beam Strikes a Particle

Small particles require knowledge of optical properties:

- Real Refractive Index (bending of light)
- Imaginary Refractive Index (absorption of light within particle)
- Refractive index values less significant for large particles
- Light must be collected over large range of angles

Diffraction Pattern

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

HORIBA

Diffraction Patterns

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Using Models to Interpret Scattering

Scattering data typically cannot be inverted to find particle shape.

We use optical models to interpret data and understand our experiments.

The Calculations

- There is no need to know all of the details.
- The LA-950 software handles all of the calculations with minimal intervention.

This talk is to improve your understanding of the results.

Laser Diffraction Models

- Large particles -> Fraunhofer
 - More straightforward math
 - •Large, opaque particles
 - Use this to develop intuition
- All particle sizes -> Mie
 - Messy calculations
 - All particle sizes

Expressed in just in y-direction

$$E = E_0 \sin(ky - \omega t)$$

$$H = H_0 \sin(ky - \omega t)$$

Oscillating electric field Oscillating magnetic field (orthogonal to electric field)

Cheat by using vector notation (for 3 dimensions) and real part of complex numbers (because it makes the trig easier).

$$\mathbf{E} = \mathbf{E}_0 \exp(i\mathbf{k} \bullet \mathbf{x} - i\omega t)$$
$$\mathbf{H} = \mathbf{H}_0 \exp(i\mathbf{k} \bullet \mathbf{x} - i\omega t)$$

Complements of Lookang @ weelookang.blogspot.com

HORIBA

Light: Interference

Look at just the electric field.

 $E = E_0 \sin(kx - \omega t)$ Oscillating electric field

 $E = E_0 \sin(kx - \omega t + \phi)$

Second electric field with phase shift

We will use interference to develop an intuitive understanding later.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Microscopic View of Scattering

Today we discuss the scattered photons that do not change wavelength. Also, we treat everything as a continuum.

About 1 scattered photon in a million has a wavelength shift that depends on the molecule. These extra photons are the basis for Raman spectroscopy. Horiba makes Raman instruments too!

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

A good approximation to develop intuition

Explore the future Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Electric field at target from each position s: $\exp(ik(r_0 + s\sin(\theta)) - \omega t)$

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

We want to treat a hole because it is easy. We need a trick.

Babinet's principle: Scattering from an aperture is the same as scattering from its complement

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Need to figure area of each strip of aperture to integrate. For a slit it is easy (and we usually ignore length):

HORIBA

HORIBA

Fraunhofer Diffraction

Now integrate over s from –R to R

$$\int_{-R}^{R} 2\sqrt{R^2 - s^2} \exp(iks\sin\theta) ds$$

dimensionless size parameter α = πD / λ

$$E = \frac{2E_0}{r} R^2 \frac{J_1(\alpha \sin \theta)}{\alpha \sin \theta}$$

Explore the future

Fraunhofer Approximation

$$(S_1)^2 = (S_2)^2 = \alpha^4 \left[\frac{J_1(\alpha \sin \Theta)}{\alpha \sin \Theta} \right]^2$$
$$I(\Theta) = \frac{I_0}{k^2 a^2} \alpha^4 \left[\frac{J_1(\alpha \sin \Theta)}{\alpha \sin \Theta} \right]^2$$

dimensionless size parameter $\alpha = \pi D/\lambda$;

 J_1 is the Bessel function of the first kind of order unity.

Assumptions:

a) all particles are much larger than the light wavelength (only scattering at the contour of the particle is considered; this also means that the same scattering pattern is obtained as for thin two-dimensional circular disks)

b) only scattering in the near-forward direction is considered (Q is small).

Limitation: (diameter at least about 40 times the wavelength of the light, or $\alpha >>1$)* If λ =650nm (.65 µm), then 40 x .65 = 26 µm If the particle size is larger than about **26** µm, then the Fraunhofer approximation gives good results. Rephrased, results are insensitive to refractive index choice.

Fraunhofer: Effect of Particle Size

Explore the future

Diffraction Pattern: Large vs. Small Particles

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

- How many of you work with particles with sizes over 1 mm?
- How many of you work with particles with sizes over 25 microns and less than 1 mm?
- How many of you work with particles with sizes over 1 micron and less than 25 microns?
- How many of you work with particles with sizes less than 1 micron?

Mie Scattering

Explore the future Automotive Test Systems © 2012 HORIBA, Ltd. All rights reserved.

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Maxwell's Equations

 Solve these and the universe's secrets are yours.
Notation from Bohren and Huffman <u>Absorption and Scattering of Light</u> <u>by Small Particles</u>

$$\nabla \bullet \mathbf{E} = \mathbf{0}$$

 $\nabla \bullet \mathbf{H} = \mathbf{0}$

Net charge is zero

No magnetic monopoles

$$\nabla \times \mathbf{E} = i \,\omega \mu \cdot \mathbf{H}$$

$$\nabla \times \mathbf{H} = -i\omega\varepsilon \cdot \mathbf{E}$$

Time varying magnetic field gives electric field and vice versa. No current flows through system.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Boundary Conditions

- Properties of particle different from surrounding medium
- Tangential components of E and H are continuous at boundary

Overview of Solution

- Sum of incoming plane wave and scattered waves.
- We also get information on extinction and so on.

Mie Scattering

$$I_{s}(m, x, \theta) = \frac{I_{0}}{2k^{2}r^{2}} \left(\left| S_{2} \right|^{2} + \left| S_{1} \right|^{2} \right)$$

Use an existing computer program for the calculations!

$$S_{1}(m, x, \theta) = \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)} \{a_{n}\pi_{n} + b_{n}\tau_{n}\}$$
$$S_{2}(m, x, \theta) = \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)} \{a_{n}\tau_{n} + b_{n}\pi_{n}\}$$

$$\tau_n = \frac{d}{d\theta} \Big(P_n^1(\cos\theta) \Big)$$

 $\pi_n = \frac{P_n^1(\cos\theta)}{\sin\theta}$

$$a_n = \frac{m\psi_n(mx)\psi_n'(x) - \psi_n(x)\psi_n'(mx)}{m\psi_n(mx)\xi_n'(x) - \xi_n(x)\psi_n'(mx)}$$

$$b_n = \frac{\psi_n(mx)\psi_n'(x) - m\psi_n(x)\psi_n'(mx)}{\psi_n(mx)\xi_n'(x) - m\xi_n(x)\psi_n'(mx)}$$

 ξ, ψ : Ricatti-Bessel functions $P_n^1:1^{st}$ order Legendre Functions

The equations are messy, but require just three inputs which are shown below. The nature of the inputs is important.

$$x = \pi D / \lambda$$

Decreasing wavelength is the same as increasing size. So, if you want to measure small particles, decrease wavelength so they "appear" bigger. That is, <u>get a blue light</u> <u>source for small particles</u>.

We need to know relative refractive index. As this goes to 1 there is no scattering.

Scattering Angle

Effect of Size

As diameter increases, intensity (per particle) increases and location of first peak shifts to smaller angle.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Effect of RI: imaginary term

As imaginary term (absorption) increases location of first peak shifts to smaller angle.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Effect of RI: Real Term

It depends....

Mixing Particles? Just Add

The result is the weighted sum of the scattering from each particle. Note how the first peak from the 2 micron particle is suppressed since it matches the valley in the 1 micron particle.

HORIBA

Explore the future

Effect of Distribution Width

As distribution becomes wider, the peaks become less distinct.

Iterations

HORIBA

HORIBA

Pop Quiz

As particle size increases:

- Peaks shift to smaller angles
- Peaks shift to larger angles
- •Nobody said there would be a quiz!

Pop Quiz

As particle size increases:

- Peaks shift to smaller angles
- Peaks shift to larger angles
- •Nobody said there would be a quiz!

1/2 credit

Explore the future

Comparison of Models

Light energy scattering patterns for an arbitrary detector configuration against particle size (μ m) and scattering angle (°) for equal volumes of particles (Fraunhofer theory)

Light energy scattering patterns for an arbitrary detector configuration against particle size (µm) and scattering angle (°) for equal volumes of particles (Mie theory, latex particles RI 1,60 - 0,0i, in water RI 1,33)

Fraunhofer (left) vs. Mie (right)

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Comparison, Large Particles

For large particles, match is good out to through several peaks.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Comparison, Small Particles

For small particles, match is poor.

Practical Application: Glass Beads

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Practical Application: CMP Slurry

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

What about background (blank)?

Even pure liquids scatter. Also, there is often some constant background signal due to stray light. And, the detectors will always show a background signal. These effects are small, but they should be corrected.

The background is subtracted before applying any of analysis mentioned before.

As the background becomes smaller, the analysis becomes easier.

HORIBA

LA-950 Optics

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Short Wavelengths for Smallest Particles

By using blue light source, we double the scattering effect of the particle. This leads to more sensitivity. This plot also tells you that you need to have the background stable to within 1% of the scattered signal to measure small particles accurately.

HORIBA

© 2012 HORIBA, Ltd. All rights reserved

Explore the future

Why 2 Wavelengths?

Data from very small particles.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Viewing Raw Data

Explore the future

During Data Collection

Choose "Both Graphs"

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Conclusions

- It helps to know some of the theory to best use a laser diffraction particle size analyzer
 - Small particles wide angles
 - Large particles low angles
- Look at Intensity curves
- Big peaks in your background (blank) mean particles or bubbles
- Use Mie theory at all times (default whenever choosing an RI kernel other than Fraunhofer)

Q&A

Ask a question at labinfo@horiba.com

Keep reading the monthly <u>HORIBA Particle</u> e-mail newsletter!

Visit the <u>Download Center</u> to find the video and slides from this webinar.

Jeff Bodycomb, Ph.D.

- P: 866-562-4698
- E: jeff.bodycomb@horiba.com

