Optimizing Dry Powder Measurements

Featuring the LA-950 PowderJet

lan Treviranus ian.treviranus@horiba.com www.horiba.com/us/particle

© 2012 HORIBA, Ltd. All rights reserved

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

What we'll talk about

Why measure dry?

Sampling & dispersion tips

Unique PowderJet features

Method development studies

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Why Measure Dry?

- Difficult to measure wet
 - Solubility
 - Density
 - Expensive
 - Swelling
- Final use is dry

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

The Workflow

What we'll talk about

Why measure dry?

Sampling & dispersion tips

Unique PowderJet features

Method development studies

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Measurement Error Sources

SMALL PARTICLES

- POTENTIALLY SMALL EXTRACTION ERRORS (A)
- POTENTIALLY <u>LARGE</u> SAMPLE PREP ERRORS (C)

LARGE PARTICLES

 POTENTIALLY LARGE EXTRACTION ERRORS (B)

 POTENTIALLY SMALL SAMPLE PREP ERRORS (D)

PARTICLE SIZE

INSTRUMENT ERROR IS SMALL AND RELATIVELY CONSTANT

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Technique: Grab Sampling

PLACE SPATULA INTO POWDER EXTRACT SMALL AMOUNT FOR ANALYSIS ACCEPTABLE FOR NARROW DISTRIBUTIONS

SEGREGATE LARGE AND SMALL WHEN POLYDISPERSE

- LARGE PARTICLES PERCOLATE UPWARD
- <u>SMALL PARTICLES GRAVITATE DOWNWARD</u>

EASY METHOD MOST USED METHOD

Explore the future

HORIBA

Grab Sampling from Bottle

When a powder is stored in a container, it can be mixed by rolling and tumbling the container. The container should <u>not be more than half to two-thirds full</u>. It is important to perform this action before "grabbing" a sample with a spatula.

Then pull sample with a spatula.....

© 2012 HORIBA, Ltd. All rights reserved

Technique: Chute Riffling

Chute splitting allows sample to vibrate down a chute to vanes which separate the mass into two portions. Each portion moves further where they each are divided into two parts, now giving four parts. This may be continued until usually 8 or 16 portions are obtained.

Technique: Rotary Riffling

The <u>best method</u> of representative splitting of powders is the ROTARY RIFFLER. The complete sample to be split is directed down a chute into open containers. Each container will receive a sample which is representative of the original bulk material because the distribution of material is averaged over time. The complete amount of the original bulk sample must be consumed.

These splitters are commercially available from companies that market various types of sample splitters.

See: www.retsch.com

www.quantachrome.com

www.microscal.com

Explore the future

Sampling Technique Error Levels

Standard Deviation (σ) in % Sugar-Sand Mixture

SCOOP SAMPLING	6.31
TABLE SAMPLING	2.11
CHUTE RIFFLER	1.10
SPINNING RIFFLER	0.27

Density of sand and sugar respectively 2.65 and 1.64 g/ml

Reference: Allen, T. and Khan, A.A. (1934), Chem Eng, 238, CE 108-112

Method	Relative Standard Deviation (%)
Cone & Quartering	6.81
Scoop Sampling	5.14
Table Sampling	2.09
Chute Riffling	1.01
Spin Riffling	0.125

Explore the future

HORIBA

Dispersion Definitions

AGGLOMERATED

AGGREGATED

WELL DISPERSED particles can be easily detected under an optical microscope. They are separated from one another and show no tendency to cling together.

AGGLOMERATED particles appear in clumps that can be separated easily by the application of moderate amounts of energy, such as ultrasonics.

AGGREGATED particles are tightly bound and must be treated with higher levels of energy. Usually an ultrasonic probe applied directly to the sample slurry will disperse the particles. If they are very tightly bound, they may fracture before they can be separated.

Explore the future

Particle Interactions

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Energy of Interaction

- Stability of a system depends on forces between particles. Random motion brings them into close proximity. Whether two particles will combine depends on potential barrier between them. Potential energy consists of two forces, the ATTRACTIVE one due to Van der Waals, and the REPULSIVE one due to electrical double layers around particles.
- If height of the barrier, V_T, is lower than average thermal energy, K_T, then probability is high that two adjacent particles will eventually collide. They will probably remain attached to each other due to strong Van der Waals forces at very close distances.

Dispersion vs. Breakage

Explore the future

Dispersion vs. Breakage

Dispersion and milling can be parallel rather than sequential processes

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Dispersing Agglomerates

Watch for no change in coarsest particles with changing energy

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Breaking Particles

Watch for finer particles being created with increasing energy

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

What we'll talk about

Why measure dry?

Sampling & dispersion tips

Unique PowderJet features

Method development studies

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

LA-950 PowderJet

Explore the future

© 2012 HORIBA, Ltd. All rights reserved.

Rocket Science

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Dispersion vs. Breakage

Dispersion and milling can be parallel rather than sequential processes

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Auto Measurement Setup

Fastest way to get great data
Need to make three choices

• What starts the measurement?

• What scans are good?

• What stops the measurement?

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Advanced			
Sample Information Calc	ulation Measurement	System System	m : Preparation
Transmittance(R) Upper: 98 Data acquisition times(Sample) LD 1000	~ % Lower: 95 %		
Data acquisition times(Blank) LD5000			
	ſ		
Transmittance(R) Upper: 98 % Lo	ower: 95 %	← Just a visual g	uide
Data acquisition times(Sample)	← Measurem	ent Scans, possib	le Stop condition
Data acquisition times(Blank) LD 5000	← Blank Sca	ns, not important	
	OK	Cancel	

	Advanced				X	ſ
	Sample Information	- Calculation	Measurement	System	System : Preparation	
	Configuration to Stop after Me	asurement				
	Vacuum	🔽 Air		🔽 Feeder		
	 Auto Measurement Button — Configuration of Blank Measure 	ment				
		Vacu	um	🔽 Air		$\ \setminus \ \setminus$
 Configuration to 1 	Stop after Measurement					
🔽 Vacuum		🔽 Air		🔽 Fee	eder	
		No				
	What gets	turned OF	F after me	easureme	nt finished.	
	donorally	oavo all th	ree check		,	
	generally					
	Setting T% 99	© Stop immediately	C Stop afte	r waiting		
	Feeder speed		_			
	C automatic	Initial coefficient: 1.2	Fixed			
	Response time : Medium	<u></u>	Target T%: 8	36		
	Air Presser: 0.03	MPa				
		- 178.84				
		OK		Cancel		

Explore the future

Advanced	And and a second se		X	
Sample Information	Calculation Meas	urement	System : Preparation	
Configuration to St	op after Measurement			
Vacuum	, I⊄ Air	⊽ Feeder		
Auto Measurement	Button			
Configuration of Blan	k Measurement Vacuum	🔽 Air		
Sampling Condition	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			
T% for sampling -				
C Yes	(• No			
Max T% 98	Min T% 95			
Auto Measurement Button Configuration of Plank Measurement				
	J ↓ vacuum	J∙ A		
C Yes Setting	What is turned Of	N to acquire the	Blank	
Feeder speed				
Speed: 100	Initial coefficient: 1.2			
() automa				
Response time :	Medium	Target T%: 86		A
Air				The
Presser: 0.03	_▼ MPa			
	ОК	Cancel		

ſ	Advanced			×	1
	Sample Information Calculat	ion Measuremen	it System	System : Preparation	
	Configuration to Stop after Measurement				
	✓ Vacuum	🔽 Air	✓ Feeder		
	Auto Measurement Button Configuration of Blank Measurement Current	🔽 Vacuum	🔽 Air		
	Sampling Condition	@ No			
ampling Condition		.• nu			
Yes Max T% 98 Start trigger	 € No Min T% 95 	← What	scans are "go	ood"	
Yes Intensity level Deleu times to St	No 200 Sensor No 64 art	← Possi	ible Start conc	dition using ir	ntensity
itop trigger Yes	@ No	← Other	· possible Sto	p condition	
Setting T% 99	Stop immediately	(Stop after waiting		Sec.
	Presser: 0.03 VPa				

Advanced		Statement Statement	×	
Sample Inform	tion Calculation	Measurement System	System : Preparation	
	<u> </u>			
Configuration	o Stop after Measurement			
Vacuum	🔽 Air	✓ Feeder		
Starting speed	*M "Kickstart	JJ I√ Air		
Sampling Con-	fition			
- Feeder speed				
Speed: 100	Initial coefficient: 1.2			
 automatic 	C Fixed	☐ ← Feedback ON		
Response time : Medium	•	Target T%: 97		
	© No			
Feedback R	esponse	Feedback Targ	et	
Cau	omatic • Fis	ed		
Response t	me: Medium	Target T%: 86		
Air Presser: 0.0	3 • MPa			0
	OK	Cancel		

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Advanced				×
Sample Information	alculation Mea	surement Sy	ustem	System : Preparation
Configuration to Stop after Measure	ement			
🔽 Vacuum	🔽 Air		🔽 Feeder	
 Auto Measurement Button Configuration of Blank Measurement 				
🗖 Current	🔽 Vacuum		🔽 Air	
Sampling Condition				
C Yes	No			
Max T% 98 Min T%	95			
- Start trigger				
C Yes	No			
Intensity level 200 S	iensor No 64			
Deley times to Start 0				
Choose ai	r pressure,	greatly a	ffects dis	spersion
Cautomatic	Presser: 0.03	▼ MPa		
Besponse time : Litedium		Larget T %: 86		
Air (we k	now) >_<			
	OK		Cancel	

Explore the future

Starting a Measurement

Two Options

- Begin collecting scans immediately
- Wait for Detector/Channel/Sensor to activate when powder flows (Start Trigger)
- Typically, we choose Option 1
- Take care with the Stop Trigger and powder loading on feeder tray

Explore the future

Stopping a Measurement

Two Options

- Timed measurement (number of Scans)
- Measure all powder (Stop Trigger)
- Typically, sampling determines choice
 - Choose timed measurement for easy
 - Measure entire tray for difficult sampling

Take care to use wait period (Delay) with Stop Trigger

Explore the future

During the Measurement

Collect all scans or only "good"?

- •T% control improves precision
- Tight range = best precision
- Take care with very agglomerated powders
- To Feedback, or not to Feedback
 - •We always use this
 - Take care that Target T% is inside T% range for "good" scans

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Superior Dry Powder Feeder

- Feedback control of sample flow rate
 - •This is <u>critical</u>
 - Maximum precision
 - No ghost peaks or funny business
 - Fewer headaches!
 - Unique to HORIBA
- Supersonic dispersion
- Auto Measurement function

Explore the future

What we'll talk about

Why measure dry?

Sampling & dispersion tips

Unique PowderJet features

Method development studies

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Dry Method Workflow

- First get sampling right & determine RI
- Measure at 3 different pressures (low, medium, high)
- Determine optimum pressure based on good dispersion while not breaking particles
- Can also compare dry vs. wet measurements
- Adjust other settings to optimize sample concentration & duration
- Ideally measure all of powder placed into the sampler
 - Segregation can occur on vibrating tray
 - Constant mass flow rate important for stable concentration during measurement
- Once settings chosen, test reproducibility

Goals for any Method

- Reproducible method that tracks product performance
- You might have other goals
 - Accuracy: tricky subject, is it the "real" particle size?
 - Repeatability: liquid suspension re-circulating in sampler
 - Reproducibility: prepare, measure, empty, repeat
 - Resolution: optimize to find second populations
 - Match historic data (sieves), but quicker, easier technique
- Use structured approach for any decision/choice that may influence result
- Have data to support selections made
- Document process so colleagues understand your choices

Accuracy vs. Precision

(A) Low accuracy, low precision measurements form a diffuse, off-center cluster;
 (B) Low accuracy, high precision measurements form a tight off-center cluster; (C)
 High accuracy, low precision measurements form a cluster that is evenly distributed but distant from the center of the target; (D) High Accuracy, high precision measurements are clustered in the center of the target.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

The Basis for Reliable Data

Reproducibility!

Prepare, measure, empty, repeat

What would be good reproducibility? Look at the accepted standards

ISO 13320 COV < 3% at Median (D50) COV < 5% at D10 and D90

USP <429> COV < 10% at Median (D50) COV < 15% at D10 and D90 COV = 100*(StDev / Mean)

Note: All limits double when D50 < 10 µm Note: Must acquire at least 3 measurements from unique samplings

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Calculation Automation

Item List			Summary Items	
Test or Assay, Number Remarks 1 Remarks 2 Remarks 3 Remarks 3 Remarks 5 Remarks 6 Remarks 7 Remarks 8 Remarks 9 Remarks 10	8	Add>>> Delete	Sample Name Matenial Source Lot Number D(v.0.1) D(v.0.5) D(v.0.9)	
Font: MS Sans Self			Up	Down Open
Orientation Portrait Show Summary Avera Show Coefficient of a	Landscape ages ⊽	Show Summary S	td. Dev.	Save As
Validation	aranonih rotanya	sourcest		Cancel
Specification : USP 42	9 U Hanget Iz All	D(v.0.5) Hangel	1: 11. D(v/1.9) Fange (z. 11)	OK.
D(v.0.5) == 10µm 15 ;		10	15	
		6		

Summary Re	port						
Export Summary Print Summary		Edit Layout	Best Fit Columns		Hide Selected		Exit
		153					
File N	lame	Sample Name		D(v,	0.1)	D(v,0.5)	D(v,0.9)
200811061138068.NGB		Zircoa Slurry		0	.065	0.107	0.185
200811061140069.NGB		Zircoa Slurry		0	.071	0.145	11.896
2008110611440)70.NGB	Zircoa Slurry		0	.069	0.129	3.838
Average				0	.068	0.127	5.306
Std. Dev.	td. Dev.				.003	0.019	5.992
CV (%)				4	.471	15.023	112.921
ISO 13320-1				PASS	SED	FAILED	FAILED

Unique, automatic feature in LA-950 software See Technical Note 169 in Download Center for instructions to use these features

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Dry Method Development Case Studies

Magnesium Stearate Microcrystalline Cellulose

© 2012 HORIBA, Ltd. All rights reserved.

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Effect of Air Pressure: Mg Stearate

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Effect of Air Pressure: Mg Stearate

Explore the future

Reproducibility Test at 3 Bar

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Reproducibility Test at 2 Bar

Reproducibility Test at 1 Bar

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Effect of Air Pressure: MCC

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Effect of Air Pressure: MCC

Explore the future

Reproducibility Test at 3 Bar

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

PowderJet Applications (TiO2)

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

PowderJet Applications (Zirconia)

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

PowderJet Applications (Zirconia)

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

PowderJet Applications (Zirconia)

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Large Particle Detection

 Need exceptionally stable optical bench
 Vertical design means no density limit for dry

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

LA-950: Laser Diffraction

- Particle size performance leader
- Ninth generation
- Ultra durable
- Lowest total cost of ownership
- Suspension, emulsion, powder, paste, gel
- 10 nanometer 3 mm

Explore the future

For More Details

Visit <u>www.horiba.com/us/particle</u>

Contact us directly at labinfo@horiba.com

Visit the **Download Center** to find this recorded presentation and many more on other topics

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

