

Size, Chemistry, and More: Raman and Laser Diffraction for Pharma Particle Analysis

Eunah Lee, Ph.D. and Jeff Bodycomb, Ph.D.

March 9, 2021

HORIBA Products for Biopharmaceuticals

Pharmaceutical Process

Submission – Technology Transfer

- Inhalation and parenteral: Particle counts, size, shape and chemistry
- Formulation for scale up and manufacturing

Submission – Technology Transfer

Pharmaceutical Process

Launch – Continuous Verification

Scientific © 2021 HORIBA, Ltd. All rights reserved.

Particle Characterization Techniques

Laser Diffraction

- Scattering technique large particles scatter intensely at narrow angles and small particles scatter weakly at wide angles
- Two color systems enable accurate measurement of small particles

Dynamic Light Scattering

- Scattering technique Brownian motion induces changes in scattered light intensity
- Intensity is measured as a function of delay time and scattering angle
- Static light scattering

Image Analysis

- Static image analysis uses a microscope and digital camera to collect images of deposited particles
- Dynamic image analysis drops particles between light source and camera projected shadows are recorded

Laser Diffraction

Laser diffraction overview

LA960 overview

A simple example – raw material analysis – one API, one excipient

Perspective

Scientific © 2021 HORIBA, Ltd. All rights reserved.

Laser Diffraction

Convert scattered light as a function of angle to a particle size distribution

- Quick, repeatable
- Powders, suspension
- Most common technique

LA-960 Optics

Path Length Difference

Diffraction effects arise due to scattering from various points in the particle (and, in the large particle limit only at the edges).

How much sample (wet)?

It depends on sample, but here are some examples: Larger, broad distributions require larger sample volume Lower volume samplers for precious materials or solvents.

Sample Handlers	Volume (mL)
Aqua/SolvoFlow	180 - 330
MiniFlow	35 - 50
Fraction Cell	15
Small Volume Fraction Cell	10

Instrument to instrument variation

4 instruments

(real sample)

Formula- tion 1	Dmean	D5	D10	D50	D90	D95
Average (nm)	155	112	119	152	193	208
Std. Dev. (nm)	0.8	0.8	0.7	1.0	1.1	0.7
CV (%)	0.5	0.7	0.6	0.6	0.6	0.3

Formula- tion 1	Dmean	D5	D10	D50	D90	D95
Average (nm)	193	136	147	187	247	264
Std. Dev (nm)	1.5	0.5	0.4	0.6	0.4	1.1
CV (%)	0.8	0.4	0.3	0.3	0.2	0.4

Excipient: Mg Stearate

Measured as a dry powder, note tight repeatability.

Run	Median Size, microns
1	8.25
2	8.20
3	8.21
4	8.24
Mean	8.22
Std. Dev.	0.024
CoV	0.3%

Nanoemulsion Vaccine Adjuvant

Smaller particle lead to better flow through a filter (e.g., filtration sterilization). **Monitoring size** helps downstream processing steps.

Nanoemulsion Vaccine Adjuvant

Effective measurements of particles over 1 micron to give consistent results from start to finish.

Scientific © 2021 HORIBA, Ltd. All rights reserved.

PLA for drug delivery

Polylactide nanoparticles, good vs bad batch.

D10, d50, d90 the same. Used volume mean as criteria.

An example – Children's tylenol

- Chewable in Bubble gum flavor:
 - Active Ingredient:
 Acetaminophen 160 mg in each tablet
 - Inactive ingredients: anhydrous citric acid, cellulose acetate, crospovidone, D&C red no. 7 calcium lake, dextrose, flavor, magnesium stearate, povidone, sucralose

Ltd. All rights reserved.

Suspension in Grape flavor:

- Active ingredient: Acetaminophen 160 mg in each 5 mL
- Inactive ingredients: anhydrous citric acid, D&C red no. 33, FD&C blue no. 1, flavors, glycerin, high fructose corn syrup, microcrystalline cellulose and carboxymethylcellulose sodium, purified water, sodium benzoate, sorbitol solution, sucralose, xanthan gum

Laser diffraction analysis results

Red and **Green**: Chewable in Bubble gum flavor

Black: Suspension in Grape flavor

Sample Preparation for Image Analysis

HORIBA © 2021 HORIBA, Ltd. All rights reserved.

Adding Chemical ID to Particle Characterization

- Inelastic light scattering
- Probe molecular vibrations within a sample

 λ_{lase}

Ravleigh scattering

 $\lambda_{laser} = \lambda$

- Non-invasive, non-destructive technique
- No sample preparation

XploRA confocal Raman microscope

- Excellent Performance
- High sensitivity
- Ultimate spatial resolution
- Multimodal optical microscopy
- Compact design

- Extreme Extension
- AFM-Raman
- Photoluminescence
- Macro accessory
- Remote sampling
- EMCCD options

- Technical Evolution
- Multivariate analysis
- SWIFT/SWIFT XS
- Particle Finder
- User Account Control
- Multiwell module
- KnowItAll database searching
- Advanced Automation
- OneClick Raman operation
- Laser switching
- Autocalibration
- Extended video montage/mosaic
- EasyNav

Soleil confocal Raman microscope

HORIBA © 2021 HORIBA, Ltd. All

LabSpec 6 Spectroscopy Suite

Particle Correlated Raman Spectroscopy (PCRS)

Auto Detect Particles

Particle morphology Index X pos Y pos Area Diameter Perimeter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 0.0 7359.3 556.8 10741.7 116.9 460.9 1(767 -1875.6 1434.4 27284.7 186.4 698.7 2(805) 16293.5 144.0 855.8 12194.0 -9826.5 3(193

0.0

Spectral acquisition

An example – Nasal Spray

- Spray action defines aerosol droplet size and dictates deposition area
- Particle size (single particle/agglomerate) effects API uptake and bioavailability

Particle Diameter

Scientific © 2021 HORIBA, Ltd. All rights reserved.

Ellipse Ratio

HORIBA © 2021 HORIBA, Ltd. All rights reserved.

An example – Paracetamol in suspension

HORIBA © 2021 HORIBA, Ltd. All rights reserved.

Particle characteristics and distribution

An example – Vitamin C in tablet

Particles embedded in matrix

Particle characteristics and distribution

*particles smaller than 100 μ m \times 100 μ m are excluded

HORIBA © 2021 HORIBA, Ltd. All rights reserved.

Size, shape and location of individual particle

Other Pharmaceutical and Cosmetic Examples

Particle Characterization: LA960 vs. XploRA PLUS

	LA960	XploRA PLUS
Technology	Laser diffraction	Static imaging + Raman imaging
Size range	10 nm to 5 mm	500 nm to 1 mm
Sample form	Good for dry or wet	Prefers dry, stationary
Shape	Possible	Possible
Chemical ID	No information	Yes
Speed	60 s per run, zillion particle per run Drum -> sampling from different parts, mix them well -> subsample -> run	Moderate
	Mixture -> sampling from different parts -> run them one -> compare statistics -> mixing quality	Run the same samples on Raman and see if chemical ID matches size distribution variation
Tandem analysis	Screening for outliers in batches	Root cause analysis

