

Horiba Instruments Inc. Particle Characterization

Jeff Bodycomb, Ph.D.

System Verification

August 6, 2019

Scope

Is my analyzer working? Is my analyzer clean? Is my procedure OK?

Not: Is my sample OK (that is method development)

Prerequisite to running good sample data

Calibration vs. Verification

Calibration : enter standard sample(s), adjust instrument response to show expected result

Example: particle counters

Verification: enter standard sample(s), observe if response within accepted range

Example: DLS, laser diffraction

From ISO 13320, 6.5.1 Calibration: "Laser diffraction systems are based on first principles, though with idealized properties of the particles. <u>Thus, calibration in the strict sense is not</u> <u>required.</u> However, it is still necessary and desirable to confirm the correct operation of the instrument by a validation procedure."

Verification

From ISO 13320: "Primary validation can be made with any certified or standard reference material, acceptable to the practice of the end-users' industries."

"Certified or standard reference materials consisting of a known distribution having a range of spherical particles over one decade of size are preferred."

Note:

- **1.** This implies using a polydisperse standard
- 2. Most people still using monodisperse standards
- 3. Most polydisperse standards are not over one decade of size

Monodisperse Standards

Very narrow distribution	
Only tests central point	www.thermo.com
Not d10, d90	
Available in sizes 20 nm – 1000 μ m	
Mostly suspensions	
Easy to use	www.nist.gov
Relatively inexpensive	
Verifies optics only	
1 μ m particles will stay in suspension	ion even
if sampler pump broken	www.pol
Will pass even if poorly suspended	(for
example, some particles floating	g on top)

1690	Polystyrene Spheres (1 µm)
1691	Polystyrene Spheres (0.3 µm)
1692	Polystyrene Spheres (3 µm)
1961	Polystyrene Spheres (30 µm)
1963a	Polystyrene Spheres (0.1 µm)
1964	Polystyrene Spheres (0.06 $\mu m)$
1965	Polystyrene Spheres (10 μm) (on slide)

Monodisperse Standards

No official pass/fail criteria So make your own **HORIBA IQ/OQ:** 0.1, 1.0, 100 μm PSL (plus 3-30 μm polydisperse glass beads) Mean +/- 5% from certified value Why measure so many sizes? Two should cover all detectors Larger sizes cost more Which sizes?

40 nm 50 nm 60 nm 70 nm 80 nm 90 nm 100 nm 125 nm 150 nm 200 nm 220 nm 240 nm 270 nm 300 nm 350 nm 400 nm 450 nm 500 nm 500 nm 560 nm 600 nm 700 nm 800 nm 900 nm Sizes available from Thermo. Still Duke Scientific to me.

20 nm

30 nm

1.0 µm 1.0 µm 1.1 µm 1.3 µm 1.6 µm 1.8 µm 2.0 µm 2.5 µm 3.0 µm 4.0 µm 5.0 µm 6.0 µm 7.0 µm 8.0 µm 9.0 µm 10 µm 12 µm 15 µm 20 µm 25 µm 30 µm 40 µm 50 µm 60 µm 70 µm 80 µm 100 µm 115 µm 140 µm 160 µm 200 um 240 µm 280 µm 300 µm 400 um 500 µm 550 µm 650 µm 750 µm 1000 µm

No one says measure near actual sample size

Polysdisperse Standards

Defined (certified) distribution

Defined procedure and pass/fail criteria (ISO and USP)

Can buy directly from NIST (or

other sources)

Tests entire instrument

SRM	Description	Particle Diameter Distribution (µm)
1003c	Glass Beads	20 to 45 (635 to 325 mesh)
1004b	Glass Beads	40 to 150 (270 to 120 mesh)
1017b	Glass Beads	100 to 400 (140 to 45 mesh)
1018b	Glass Beads	220 to 750 (60 to 25 mesh)
1019b	Glass Beads	750 to 2450 (20 to 10 mesh)

www.nist.gov

SRM	Description	Particle Diameter, nominal (nm)
8011	Gold Nanoparticles	10 nm
8012	Gold Nanoparticles	30 nm
8013	Gold Nanoparticles	60 nm

Not really polydisperse?

Polysdisperse Standards

Now good range of sizes available **Don't recommend 0.1-1** μ **m** Also testing ability to disperse particles Can buy in proper quantities for given samplers No sub-sampling concerns **Only option for dry powder feeders** No point in measuring more than one size range

Nominal Size	Catalogue Number	Nom Wt. Per Vial	Sold in 10 bottl Price per S		
(µm)	Number	(g)	£	€*	\$*
0.1 - 1 µm	PS180	0.01	206	315	415
U.I. Ipm	– PS181	0.02	240	365	485
	PS190	0.025	69	105	140
	PS191	0.05	92	140	185
1 - 10µm	PS192	0.10	115	175	235
	PS193	0.25	156	240	315
	PS194	0.50	206	315	415
	PS200	0.025	59	90	120
	PS201	0.05	69	105	140
3 - 30µm	PS202	0.10	92	140	185
5 - 50µm	PS203	0.25	115	175	235
	PS204	0.50	156	240	315
	PS205	1.0	206	315	415
	PS211	0.05	59	90	120
	PS212	0.10	80	125	165
10 - 100 µm	PS213	0.25	102	155	205
	PS214	0.50	146	225	295
	PS215	1.0	194	295	390

www.whitehousescientific.com/

Note: Whitehouse also supplies monodisperse

NIST 1003c

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 1003c

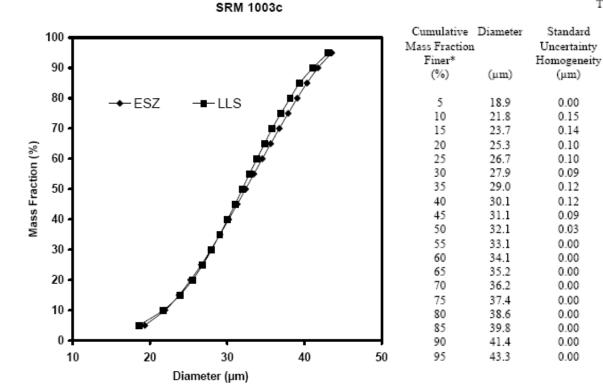


Table 1. Certified Diameter Values

Type B Standard

Uncertainty

(µm)

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

0.41

Combined.

Standard.

Uncertainty

(µm)

0.59

0.50

0.50

0.51

0.51

0.50

0.49

0.49

0.49

0.50

0.52

0.55

0.58

0.62

0.63

0.62

0.64

0.54

0.48

Expanded**

Uncertainty

(µm)

1.2

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.1

1.2

1.2

1.3

1.2

1.3

1.1

1.0

Standard

Uncertainty

Measurement

(µm)

0.43

0.24

0.26

0.30

0.30

0.27

0.25

0.24

0.26

0.29

0.33

0.37

0.41

0.47

0.48

0.46

0.49

0.36

0.25

Note: different techniques always give different results

ISO 13320 : Real World Samples

Test all samples 3 times for "repeatability"

I call this "reproducibility"

3 independent measurements

Prepare, measure, drain, repeat

Calculate mean & coefficient of variation (COV) for d10, d50, d90

COV = (st dev/mean) * 100 COV < 3% at median d ₅₀

COV < 5% at d_{10} & d_{90}

Double limits below 10 µm

Note: actual text reads

x₁₀, x₅₀, x₉₀ Only Germans use x, ROW uses d Guess who supervised writing ISO 13320...

"The response of a laser diffraction instrument is considered to meet this standard if the mean value of the x50 coming from at least three independent measurements deviates less than 3 % from the certified range of values of the Certified or Standard **Reference** Material, i.e. the mean value together with its standard deviation; the mean values for the x10 and x90 should deviate less than 5 % from the certified range of values."

ISO 13320 "Validation"

6.3.2 Precautions e) Validate the instrument operation with respect to both precision and accuracy at regular time intervals by measuring a control sample of known size distribution (see 6.4 and 6.5.2).

Therefore, two parts to the verification test. Measure standard 3 times. Calculate mean value at d10, d50, d90 for accuracy. Calculate COV for precision.

Precision:

COV < 3% at median d $_{50}$

COV < 5% at $d_{10} \& d_{90}$

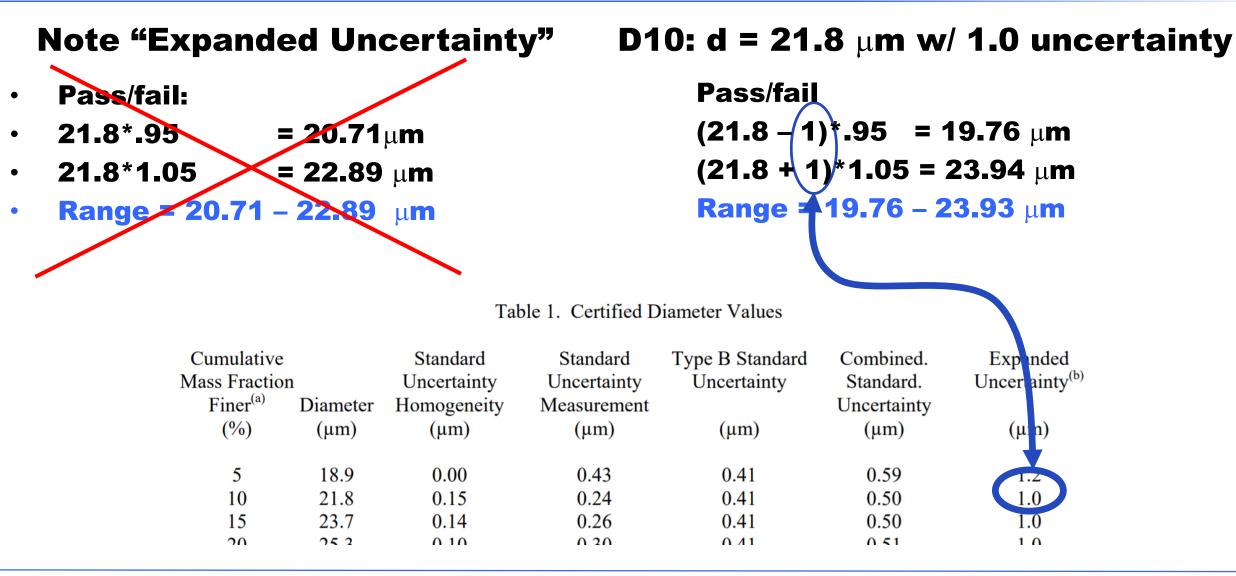
Accuracy:

d 50 within 3% of "certified range of values"

d10 & d90 within 5% of "certified range of values"

Pass/Fail: Example: NIST 1003

- **Only need D10, D50, D90**
- What about uncertainty?
- Use "Expanded Uncertainty" (95% confidence)
- Include the bottle uncertainty. If the bottle uncertainty for D50 is over 3%, then you will often fail due to bottle-to-bottle variations.


		Tał	ole 1. Certified D	iameter Values		\frown
Cumulative Mass Fraction Finer ^(a) (%)	n Diameter (μm)	Standard Uncertainty Homogeneity (µm)	Standard Uncertainty Measurement (µm)	Type B Standard Uncertainty (µm)	Combined. Standard. Uncertainty (µm)	Expanded Uncertainty ^(b) (µm)
5	18.9	0.00	0.43	0.41	0.59	1.0
10	21.8	0.15	0.24	0.41	0.50	1.0
10	23.7	0.14	0.26	0.41	0.50	170
20	25.3	0.10	0.30	0.41	0.51	1.0
25	26.7	0.10	0.30	0.41	0.51	1.0
30	27.9	0.09	0.27	0.41	0.50	1.0
35	29.0	0.12	0.25	0.41	0.49	1.0
40	30.1	0.12	0.24	0.41	0.49	1.0
15	51.1	0.09	0.26	0.41	0.49	1.0
50	32.1	0.03	0.29	0.41	0.50	1.0
22	33.1	0.00	0.33	0.41	0.52	170
60	34.1	0.00	0.37	0.41	0.55	1.1
65	35.2	0.00	0.41	0.41	0.58	1.2
70	36.2	0.00	0.47	0.41	0.62	1.2
75	37.4	0.00	0.48	0.41	0.63	1.3
80	38.6	0.00	0.46	0.41	0.62	1.2
0.5	39.8	0.00	0.49	0.41	0.64	
90	41.4	0.00	0.36	0.41	0.54	1.1
95	12.2	0.00	0.25	0.41	0.48	1.0

^(a) The cumulative mass fraction finer is the portion of SRM 1003c smaller than the certified diameter value.

(b) The uncertainty at each percentile, computed according to the ISO and NIST Guides [4,5], is an expanded uncertainty at the 95 % level of confidence.

Pass/Fail: Example: NIST 1003

Example: NIST 1003

- d50 pass/fail (3%)
 - $(32.1 1)*.97 = 30.17 \ \mu m$
 - $(32.1 + 1)*1.03 = 34.09 \ \mu m$
 - Range = 30.17 34.09 μ m
- d 90 pass/fail (5%)
 - (41.4 1)*.95 = 38.38 μm
 - (41.4+1)*1.05 = 44.52 μ m
 - **Range = 38.38 44.52** μm
- Note: d5 d 95 range is 18.9 43.3, hardly "one decade", being addressed in next version of ISO 13320

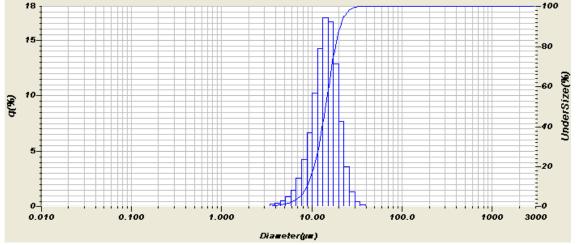
Table 1. Certified Diameter Values

Cumulative Mass Fraction Finer*	Diameter 1	Standard Uncertainty Homogeneity	Standard Uncertainty Measurement	Type B Standard Uncertainty	Combined. Standard. Uncertainty	Expanded** Uncertainty
(%)	(µm)	(µm)	(µm)	(µm)	(µm)	(µm)
5	18.9	0.00	0.43	0.41	0.59	1.2
10	21.8	0.15	0.24	0.41	0.50	1.0
15	23.7	0.14	0.26	0.41	0.50	1.0
20	25.3	0.10	0.30	0.41	0.51	1.0
25	26.7	0.10	0.30	0.41	0.51	1.0
30	27.9	0.09	0.27	0.41	0.50	1.0
35	29.0	0.12	0.25	0.41	0.49	1.0
40	30.1	0.12	0.24	0.41	0.49	1.0
45	31.1	0.09	0.26	0.41	0.49	1.0
50	32.1	0.03	0.29	0.41	0.50	1.0
55	33.1	0.00	0.33	0.41	0.52	1.0
60	34.1	0.00	0.37	0.41	0.55	1.1
65	35.2	0.00	0.41	0.41	0.58	1.2
70	36.2	0.00	0.47	0.41	0.62	1.2
75	37.4	0.00	0.48	0.41	0.63	1.3
80	38.6	0.00	0.46	0.41	0.62	1.2
85	39.8	0.00	0.49	0.41	0.64	1.3
90	41.4	0.00	0.36	0.41	0.54	1.1
95	43.3	0.00	0.25	0.41	0.48	1.0

* The cumulative mass fraction finer is the portion of SRM 1003c smaller than the certified diameter value

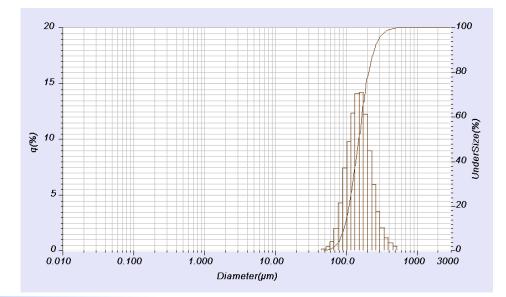
** The uncertainty at each percentile, computed according to the ISO and NIST Guides [4,5], is an expanded uncertainty at the 95% level of confidence.

Watch your mixing!

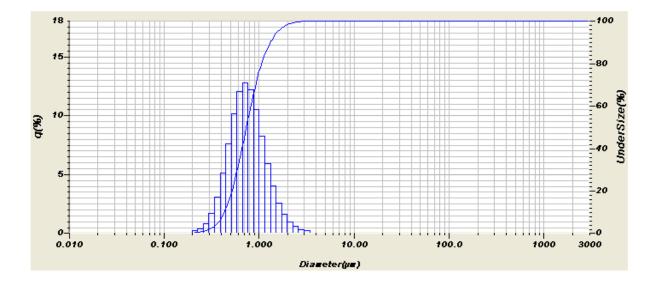

Had a customer that was measuring a 100 micron polystyrene bead.

- Needed a LOT of sample (1/2 of a bottle) for a test and scattering was very weak.
- Agitation was set low and beads floated to top of cup.
- Set agitation higher to ensure that beads were entrained.
- Also should have considered some surfactant.

HORIBA LA-960 Data: PS202


PS202 (3-30µm)	D10	D50	D90
Standard Value (µm)	9.14	13.43	20.34
Uncertainty (µm)	0.86	0.86	1.44
ISO standard error	5%	3%	5%
Lower limit (µm)	7.866	12.193	17.955
Measured Result (µm)	9.721	13.916	18.959
Upper Limit (µm)	10.500	14.719	22.869

HORIBA LA-950 Data : PS 225


PS225 (50-350μm)	D10	D50	D90
Standard Value (µm)	93.7	150.5	238.8
Uncertainty (µm)	3.54	2.52	6.02
ISO standard error	5%	3%	5%
Lower limit (µm)	85.652	143.541	221.141
Measured Result (µm)	94.217	153.815	252.542
Upper Limit (µm)	102.102	157.611	257.061

HORIBA LA-950 Data : PS 181

PS181 (0.1-1µm)	D10	D50	D90
Standard Value (µm)	0.36	0.65	1.11
Uncertainty (µm)	0.06	0.06	0.13
ISO standard error	5%	3%	5%
Lower limit (µm)	0.285	0.5723	0.931
Measured Result (µm)	0.434	0.709	1.296
Upper Limit (µm)	0.441	0.7313	1.302

Used only in the pharmaceutical industry Based on ISO 13320 Broader limits for reproducibility Same limits for verification

LA-960 Calculation Automation

Parameter	D(v,0.5)	-
Specification	USP-429	•
Standard Value	0.01	μm
Tolerance	± 0	μm
Certified range of	values	
D(v;0.5)>= 10µm	± 3	*
D(v;0.5) < 10µm	± 6	z
– Color Selection – Pass: Fail		

Distribution Graph Data Table Result	Data		
Mean Size Variance Median Size Mode Size Std.Dev. Chi Square R Parameter Diameter on Cumulative % Cumulative % on Diameter	0.18408(μm) 1.8988E-3(μm ²) 0.17730(μm) 0.1649(μm) 0.0436(μm) 4.162519 3.7379E-1		
Verification	: (9)53.00 (μm)- 100.000(%) : (10)38.00 (μm)- 100.000(%) : 1.0K 4.3% [D(v.0.5) 0.170 : 2.0K 3.5% [D(v.0.1) 0.130 : 3.0K 6.5% [D(v.0.9) 0.230	(μm)(± 6.000%)] (μm)(± 10.00%)]	
Data Name Grap	h Type Transmittance(R)	Median Size	R Parame
andy1'	88(3(%)	0.17730(µm)	0.373795
200801181026014	81.1(%)	9.35329(µm)	0.069234
andy1		0.17730(µm)	0.373795

Aqueous vs. Solvent

All results shown were run in H₂O What if system is used for solvent?

Switch over to water - test - back to solvent

Always form emulsion when switching to H₂O Watch your background!

Test until system passes???

SAMPLE ID	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	AVG	Spec*	
PS-202 in IPA								
D10	9.31	9.32	9.37	9.37	9.37	9.35	7.87 - 10.50	 Passes in IPA
D50	13.87	13.88	13.95	13.96	13.95	13.92	12.19 - 14.72	
D90	19.88	19.89	19.98	20	19.97	19.94	17.96 - 22.87	
PS-202 in Hexanes								-
D10	10.07	10.13	10.16	10.18	10.24	10.16	7.87 - 10.50	Doesn't in hexane
D50	14.96	15.05	15.1	15.12	15.21	15.09	12.19 - 14.72	
D90	21.37	21.47	21.51	21.53	21.62	21.50	17.96 - 22.87	

Conclusions

Verify system on a regular basis

Current practice: daily to annually

Should be risk based decision

Run plant on particle size = daily

Use for research 3 times/year = annually

Switch to using polydisperse standards to also test samplers

Most companies still using monodisperse latex – but be aware of risk and "paper trail" not strong

Thank you

