

AVEKA Group

Particle Agglomeration

A Technical How-To Guide with Illustrative Examples

January 26, 2023

PRESENTED BY: WILLIE HENDRICKSON, CEO

Presentation Outline

VEK A

- Overview of AVEKA
- Particle Processing 101 the big 6
- Particle Processing Dilemmas
- Agglomeration Methods
- Examples
- Opportunities
- Conclusions

AVEKA Group Overview

- Particle technology company focused on contract manufacturing
- Spin-off of 3M in 1994
- Employee owned and operated
- Comprised of 5 Manufacturing Sites in Minnesota and Iowa
- ISO certifications / food-grade certifications
- Currently 290 employees

Particle Processing: The Big Six

Particle Processing Dilemmas

- Equipment Availability
- Volume / Scalability
- Powder Flow
- Functionality

What are Engineered Particles?

Size Controlled	Multicomponent	Tightly Adjusted Composition
Complex Structure or Shape	Functional Property	Chemically or Biologically Active
	Controlled Release	

Uses of Agglomerated Materials

Functionality in Agglomeration Processing

- Dedusting
- Powder Flow
- Density Control
- Wettability
- Compositional Uniformity
- Tableting

Agglomeration Process Steps

So, What Can Go Wrong?

Everything !

- Water addition rate too fast
- Starting material inconsistent
- Agglomerate too weak
- Agglomerate forms wrong structure
- Drying into a too dry particle
- Functional character is wrong

Agglomeration Technologies

Multiple Options:

- High Shear Agglomeration
- Fluid Bed Spray Agglomeration
- Extrusion Agglomeration
- Tableting
- Drum Granulation

Drying Technologies

- Spray Drying
- Tray Drying
- Roll Drying
- Fluid Bed Drying
- Ring Drying
- Turbulizers

What Makes a Fluid Bed So Versatile

- Liquid Addition
- Top Spray Agglomeration, Coating
- Bottom Spray Coating
- Drying to Final Product

The Examples...Finally

Extrusion Agglomeration

- Mineral Example
- Food Example

High Shear Agglomeration

Personal Care for Dissolution

Fluid Bed Agglomeration

- Protein for Dust Control
- Food for Dissolution
- Protein for Flow
- Protein for Density

Statement of need

How we approached the problem

Why we chose the particular agglomeration process and parameters

Extrusion Agglomeration

Statement of challenge

- Mineral Composition

 Reduce Dustiness
- Agglomeration of mineral mixture
 Dustiness reduced significantly

The Result

High Shear Granulation

Mineral destroyed extruder

Beautiful product, but too abrasive for this process

THE REALITY

Switched to high shear agglomeration Product still caused substantial wear

Extrusion Agglomeration

Statement of challenge

- Live Yeast
 - Improve wettability
- Agglomeration without added water or binder
 - Filtration
 - Low temperature drying

The Result

Live Yeast

After Agglomeration

Nothing Yeast was viable Wettability met customer requirements

THE REALITY

Commercial processLow strength of granule reflects lack of binder

High Shear Agglomeration

The Result

Diameter (µm)

Statement of challenge

- Laundry Composition
 - Wettability
- Agglomeration of mineral mixture
 Dustiness reduced significantly

Nothing

Very consistent product with acceptable wettability

THE REALITY

Currently in production

Agglomeration Using Fluid Beds

Statement of challenge

 Agglomerate Dairy Powders to improve dispersibility by capillary absorption

The Result

Dispersion Times	
 Raw Material 	>90 sec
 Fast Water Addition 	>90 sec
 Slow Water Addition 	24 sec
 Low Water Addition 	17 sec

Nothing

Agglomeration shown to produce better dissolution for dairy products

THE REALITY

Process proven Customer took in house for processing

Agglomeration Using Fluid Beds

The Result

Agglomerated Material

Statement of challenge

- Improve density of soluble fiber
 Agglomeration with water
- Inconsistent results

Inconsistent Results

THE REALITY

Process improvements still being looked at for production

Agglomeration Using Fluid Beds

Particle Size Distributions (microns)

Statement of challenge

- Improve spray dried protein material flow
 - Agglomeration with water
 - Agglomeration with added binder
- Decreased Dustiness

	D ₁₀	D ₅₀	D ₉₀
Raw Material	15	50	113
Agglomerated with Water	87	202	380
Agglomerated with Binder	75	174	324

Raw Material

Agglomerated Material

Nothing Fluid bed material flowed better and was less dusty

THE REALITY

Customer currently evaluating

Agglomeration Using Fluid Beds

The Result

Statement of challenge

- Improve spray dried protein material flow
 - Agglomeration with water
- Improved flow and wettability

Raw Material

Agglomerated Material

Nothing Fluid bed material flowed better

THE REALITY Customer took process in-house Note globby structure – function of starting material and processing conditions

Agglomeration Using Fluid Beds

Statement of challenge

Improve spray dried wettability of drink additives

- Agglomeration with water
- Single component example
- Multi component examples

Variable final agglomerate structure

Fluid Bed Agglomeration of Protein (Target $D_{50} > 400 \ \mu m$)

Challenges:

- 1.Very low bulk density of 0.079 g/ml (typical organics are ~0.5 g/ml). This means very little material can be loaded into the agglomeration chamber.
- 2.Large volume increase during agglomeration the bed expansion quickly buries the spray nozzle before the target particle size is achieved.
- 3.Large masses of wet material resulting in large yield loss.

Fluid Bed Agglomeration of Protein (Target $D_{50} > 400 \ \mu m$)

What Did I Leave Out?

Major Uses of Agglomeration

- Pharmaceutical Agglomeration
- Tableting and Briquetting

Equipment Variations

- Batch vs. continuous fluid beds
- Spray drying/fluid bed combined systems
- Agglomerating Spray Drying
 - Particle injection into spray chamber
- Process Conditions

Fluid Bed Processing Thoughts

Resources

International Fine Particle Research Institute (IFPRI) www.ifpri.net

Rachel Smith University of Sheffield (Rachel.Smith@sheffield.ac.uk)

Paul Mort Purdue University (pmort@purdue.edu)

Glatt, Vector, GEA

PARTICLE TECHNOLOGY SERIES

THE SCIENCE AND ENGINEERING OF GRANULATION PROCESSES

Jim Litster and Bryan Ennis

Kluwer Academic Publishers

Summary

Agglomeration has multiple advantages

- Functionality
- Many processing options

Process conditions and materials are critical

It is hard to analyze too much

Contact Information:

AVEKA Group Inc AVEKA@aveka.com 651-730-1729

