HORIBA Explore the future

HORIBA Scientific

Particle Analysis

Carl Lundstedt

BET Theory and how its used to calculate surface area

August 4th, 2020

BET Theory seeks to explain the physical adsorption of gas molecules onto solid surfaces

Adsorption differs from absorption, which deals with permeation of surfaces

ADsorption

ABsorption

Particles of similar size can vary drastically in surface area

HORIBA

Physical adsorption occurs due to Van der Waals forces when at low temperatures and without chemical reactions

BET Theory extends the Langmuir theory from monolayer adsorption to multilayer adsorption

Langmuir adsorption model

By SmugBoy - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5164981

BET model

By Life of Riley - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10137983

We use the BET equation to determine the monolayer absorbed gas volume (v_m)

$$\frac{1}{v[(p_0/p) - 1]} = \frac{c - 1}{v_m c} \left(\frac{p}{p_0}\right) + \frac{1}{v_m c}$$

v = adsorbed gas quantity p_0 = saturation pressure of adsorbate p = equilibrium pressure of adsorbate c = BET constant = exp $\left(\frac{E_1 - E_L}{RT}\right)$

 E_1 = heat of adsorption for the first layer E_L = heat of vaporization

HORIRA

HORIBA Scientific

BET equation can be plotted to determine monolayer adsorbed gas quantity and the BET constant

Take numerical values for slope and intercept to solve for $v_{\rm m}$ and c

$$slope = \frac{c - 1}{v_m c}$$
$$intercept = \frac{1}{v_m c}$$
$$1$$
$$v_m = \frac{1}{slope + intercept}$$
$$c = 1 + \frac{slope}{intercept}$$

From the monolayer absorbed gas volume (v_m) , we can determine total and specific surface area

$$S_t = \frac{v_m N s}{V}$$

 S_t = total surface area of sample material

 v_m = monolayer absorbed gas volume

 $N = Avogadro's number = 6.02 \times 10^{23} molecules/mol$

s = cross-sectional area of adsorbed gas molecule (0.162 nm² for N²)

V = molar volume of adsorbed gas

$$S_{BET} = \frac{S_t}{a}$$
 [=] m²/g

 S_{BET} = specific surface area a = mass of sample

HORIBA Scientific

Can only assume linear relationship for adsorption isotherms in the range of 0.05 < p/p_0 < 0.30

Pore width can make a big difference on the shape of the isotherm

Usually apply BET theory to Type 2 and Type 4 isotherms, apply to Type 1 with caution

HORIBA Scientific

Capillary condensation explains the hysteresis loop in Type 4 isotherms

Have to insert sample into cell and degas sample to remove excess moisture on surface

BET measurement includes calibration of 1 cm³ of nitrogen, adsorption, and desorption

Large surface area samples will adsorb and desorb more nitrogen

HORIBA Scientific

Plot at least 3 points to obtain multi-point plot, solve for BET constant (c) and V_m (monolayer volume)

Applications

Cement Catalysts **Activated Carbon Pharmaceutical products Batteries** Ceramics

Thank you

