

Modern Particle Characterization Techniques Series

Zeta Potential

Formulation and Applications

David Fairhurst, PhD. Colloid Consultants, Ltd.

Fundamental Parameters that control the Nature and Behavior of all Particulate Suspensions

Surface Area* (external/internal) Porosity INTERFACIAL CHEMISTRY

Surface Charge* Nature/type of group(s) Number and distribution Dissociation/ionization Preferential adsorption Hydrophobic/hydrophilic balance Surface(interfacial)Tension Contact Angle

Zeta Potential is related to surface charge

The Electric Double Layer and the Zeta Potential

The Zeta Potential (ζ) is a mathematical concept
non-linear relation to surface charge
"effectiveness" of the surface charge in solution

Magnitude of ZP depends upon

- Fundamental "surface" sites
 - how many, what type
- Solution conditions
 - electrolyte concentration, pH, temperature

Useless to quote a single zeta potential value without specifying suspension solution conditions!

Electrokinetic Phenomena

Arises when two phases move with respect to each other with an electric double layer at the interface

Four Related Phenomena All involve relative movement

> Charged surface _____ —__ Ions and fluid

(Micro) Electrophoresis

Movement of charged surface - Stationary liquid - Applied electric field Most widely adopted technique for suspensions \rightarrow commercial instrumentation Measure an electrophoretic mobility \rightarrow calculate a zeta potential

Electro-osmosis

Movement of liquid -Stationary charged surface - Applied electric field (i.e., the complement of electrophoresis)

Streaming Potential

Measured electric field - Movement of liquid – Stationary charged surface (i.e., the opposite of electro-osmosis)

Sedimentation Potential

Measured electric field - Movement of charged particles - Stationary liquid (i.e., the opposite of electrophoresis)

Nanoparticle Surface Chemistry

At 10nm particle size ca 30% of molecules/atoms that comprise the molecular structure become "surface moieties"

Crystal lattice defects (anisotropy) and impurities become critical attributes

For nano-size systems **surface charge effects** play a dominant role in determining the physicochemical properties (surface chemical activity and catalysis) of the system as a whole Zeta potential measurement is vital!

Effect of pH on Particle Charge

Imperative to check ZP vs pH profile for any material prior to use

Aqueous Isoelectric Points (IEP)

Zeta Potential of Commercial Carbon Blacks

Impacts choice of dispersant

The Nature of Surface Charge of Oxides in Water

Metal Oxides and Hydroxides

- difficult to control surface chemistry in manufacture and processing
- grinding not only reduces size but exposes new surface
 - reactant impurities

Metal Oxide in Water

Adsorption of protons and hydroxyl ions

 $MOH_2^+ \stackrel{H^+}{\leftrightarrows} MOH \stackrel{OH^-}{\hookrightarrow} MO^- + H_2O$

Formation of hydroxylated species

 $M^{n+} + xOH^{-} \leftrightarrows M(OH)_{x}^{(n-x)+}$

 $M(OH)_{x}^{(n-x)+} + OH- \leftrightarrows M(OH)_{x+1}^{(n-x-1)+}$

 $\mathsf{M}(\mathsf{OH})_{\mathsf{x+1}}^{(\mathsf{n-x-1})+} + \mathsf{H}+ \leftrightarrows \mathsf{M}(\mathsf{OH})_{\mathsf{x-1}}^{(\mathsf{n-x+1})+}$

Mineral oxide crystal lattices are anisotropic

- charge development because of n and p defects in crystal structure
- □ results in hydroxyl groups (-OH)
 - \rightarrow reaction with either H^+ or OH-

Dissociation driven by pH \rightarrow avoid swings in pH

Equilibria driven by particle concentration \rightarrow constant %solids

Silica Surface Chemistry

Different ratio: silanol to siloxane groups

Different types of silanol groups*

The Zeta Potential will be different for each silica type \rightarrow impacted by degree of hydration

Zeta Potential of Commercial Silicas

Surface treatments affect silicas differently. Be careful of substitution of material from different suppliers without first checking ZP!

Surface Modification

Manufacturer Label: "Ti-pure Rutile" RXXX

Bulk	% Coating	IEP (pH units)	
SiO ₂	Al_2O_3		
		6.6	
	4.5	8.4 (R900)	
6.5	3.5	5.8 (R960)	
8.0	8.0	4.6 (R931)	

Bulk percentages (elemental analysis) of each chemical coating not reliable indicator of how the **surface** will behave in solution → measure the ZP!

Read the MSDS \rightarrow Trust but verify!

Organosilanes

Silicones

Care needed when dispersing!

Zeta Potential of Commercial Pigmentary Grade* Titanium Dioxide

Batch-to batch and lot-to-lot variation over a 5-year period

Important to QC incoming material!

*Mean particle size: 260nm

Zeta Potential of Non-oxides

Surface impurities and contamination matters!

Zeta Potential of Commercial Polymer Latices

Poly Ethyl Acrylate

Storage stability!

Zeta Potential of Proteins

The IEP of any adsorbed species is important!

Zeta Potential of Gelatins

Maximum ZP directly related to COOH concentration

The Polishing of Optical Glass: Slurry Zeta Potential

Glass: Corning 7940 Fused Silica (IEP: 3.5) Polishing agents: CeO_2 , ZrO_2 (monoclinic) and Al_2O_3 (nanocrystalline)

Polishing Agent	IEP	Surface Charge at pH 4	Surface Charge at pH 7	Surface Charge at pH 10
ZrO ₂	6.3	++	-	
CeO ₂	8.8	++++	++	
AI_2O_3	9.3	+++++	+++	-

The zeta potential of the polishing slurries varies with solution pH \rightarrow positive or negative depending upon the metal oxide IEP

The Polishing of Optical Glass: Glass Surface Roughness

The glass surface roughness depends upon the **difference** in fluid pH and the IEP of the polishing agent. The more **positive** the difference the smoother the surface

Solution pH must be > the polishing agent IEP Choose CMP agent whose IEP < Fluid pH

Preparation of Béarnaise Sauce

Monique's* Recipe for Béarnaise Sauce

Mix **vinegar**, shallots, tarragon and ground pepper. Add ½ glass of white wine. Boil until practically all the liquid has evaporated. Cool until nearly <u>cold</u>. Add **egg-yolks**, oneby-one while stirring vigorously. Add ½ glass of white wine and mix well. Heat the mixture on a "bain-marie" while <u>stirring all the time</u>. When the sauce becomes creamy, cool slowly again continuously stirring. When the pot temperature is such that you can touch it with your hands, <u>add clarified **butter**, a small amount at a time</u>. The <u>temperature</u> of the clarified butter should be about the same as the temperature of the pot mixture. <u>Continue stirring</u>. When all the butter is incorporated, sieve the mixture and add one spoonful of cut chervil. Keep the sauce tepid on the bain-marie. <u>Never heat it up again</u>. The consistency of the sauce should be similar to that of mayonnaise .

*Monique de Jaeger

Egg yoke complex mixture: components include carotenes, phospholipids, proteins and lecithin (emulsifier)

Q: Why does a homemade sauce taste better? Q: Why does a packet sauce mixture always work?

Emulsion Droplet Size Distribution determines sauce mouthfeel/texture

Egg Yoke Zeta Potential determines sauce stability!

For more information, to send samples, to arrange a demonstration at your facility, or to speak to a technical applications specialist, please contact:

nz you!

labinfo@horiba.com 1-800-446-7422

www.horiba.com/particle