

David Tuschel

Raman Spectroscopy with Practical Applications

May 29, 2019

Presentation Topics

- Raman spectroscopy and photoluminescence
- Polymorphism
- Liquid and head space Raman spectroscopy
- Raman spectroscopy of polymers
- Particle size characterization with chemical identification

Vibrational Spectroscopy

- Vibrational spectroscopy studies vibrations in a system using light.
- IR and Raman spectroscopy are the most common and complementary to each other.
 - IR spectroscopy is absorption (or reflection) spectroscopy
 - Raman spectroscopy is scattering spectroscopy
- Applications of vibrational spectroscopy
 - Molecular spectroscopy
 - Vibrations of atoms within molecules
 - Gas, liquid and solid
 - Solid state and material science
 - Vibrations of atoms within molecules (e.g. molecular crystals, amorphous materials)
 - Vibrations between atoms and molecules (e.g. amorphous materials)
 - Vibrations of crystalline lattice
 - From liquid to solid (e.g. gel, crystal)

Raman Scattering

Raman Spectra of Polystyrene at 532, 638 and HORIBA 785 nm Excitation

Raman Spectra of Polystyrene at 532, 638 and HORIBA 785 nm Excitation

Raman Spectra of Glass Microscope Slide at 532, 638 and 785 nm Excitation

HORIBA

Raman Spectra of Fused Quartz at 532, 638 and 785 nm Excitation

Photoluminescence of Few-Layer MoS₂

Raman Spectra of Al₂O₃:Cr at 532 and 633 nm Excitation

HORIBA

Photoluminescence Spectra of Al₂O₃:Cr at 405, HORIBA 532 and 633 nm Excitation

Raman Spectra of Methanol and Ethanol

HORIBA

Spectral Analysis: Comparison

The same chemical composition $C_6H_{12}O_6$ but different molecular structures

Similar Molecular Structures

Diastereomers

Substitution

Carbon Nanotubes

Raman Spectroscopy and Polymorphism

Monoclinic and Tetragonal ZrO₂ Anatase and Rutile TiO₂ Acetaminophen Forms I and II

ZrO₂ : Monoclinic and Tetragonal

At ambient conditions the monoclinic phase is stable. The high T tetragonal phase can be stabilized by alloying with oxides such as Y_2O_3 , AI_2O_3 , CaO. There is a third phase which is cubic, and stable at even higher temperatures.

Anatase and Rutile TiO₂ with 532 nm Excitation

Rutile with Anatase TiO₂ Impurity, Green Spectrum

Liquid and Head Space Raman Spectroscopy

Hydrogen Bonding and Molecular Interactions

27

Macro-Raman Sampling from a Cuvette

Macro-Raman Sampling from a Bottle

Head Space of Beer – CO₂

Sparkling Water – CO₂

Ammonia – Hydrogen Bonding

Methanol – Hydrogen Bonding

Raman Spectroscopy of Polymers

Aromatic Polymers PET Stretched Polypropylene

Polymers

- Very long chain of (usually) organic repeating unit. Extensive flexibility is possible:
 - Non-oriented "spaghetti" form (amorphous), or oriented chains, as a result of extrusion, which can be amorphous or crystalline
 - Orientation is a requirement for crystallinity (but not visa versa)
 - Often there are lamellae, regions where the chains fold back and forth over each other

Raman Characterization of Polymers

- Types of Information
 - Chemical Identification
 - Tacticity (side group positioning)
 - Morphology
 - Orientation
 - Crystallinity
- Applications
 - Contaminant ID
 - Composition of copolymer or blend
 - Engineering strength, elasticity, dyeability, etc.
 - Drug delivery (API solvent)
 - Barrier films (food, biomedical, etc.)

Raman Spectra of Aromatic Polymers

The strong band near **1000 cm⁻¹** that is characteristic of a ring mode in PS is never observed in any aromatic with 1,4 substitutions on the ring, as in Kevlar and PET.

HORIBA Scientific

Raman Studies of PET: Polarization and Crystallinity

Introducing ParticleFinder

- ParticleFinder offers
 automated
 - Particle location on optical images
 - Particle size/shape characterization
 - Particle analysis using Raman spectroscopy
 - Particle chemical identification

- ParticleFinder includes:
 - Morphological analysis
 - Thresholding
 - Morphological filtering
 - Size and shape parameters
 - Chemical analysis
 - Automated Raman acquisition
 - Fast analysis with high throughput systems
 - Flexible capabilities* for different sample types
 - Multiple laser wavelengths (UV, visible, NIR)
 - High spectral resolution
 - Ultra-low frequency

Step-by-Step

Acquire video

Single image, or montaged wide field of view image

Threshold

Locate dark particles on bright background, or bright particles on dark background

Process

Erode/dilate/open/ close/majority, fill holes, remove edge particles

Step-by-Step

Characterize

Position, size, shape

Select

Screen particles based on position, size or shape

Acquire Raman

Automatically analyze each particle

Application Example

Video image

Pharmaceutical crystals on glass slide

- $1 \times 1 \text{ mm}^2$ area imaged with video montage (12 images)
- Image thresholds locate 44 particles
 - Exclude edge particles
 - Exclude particles with area < 50 μ m²

STATISTICS	(mean)	
DIAMETER	19.7	μm
PERIMETER	109.7	μm
AREA	386.0	μm ²
MAJOR AXIS	33.6	μm
MINOR AXIS	14.8	μm
ELLIPSE RATIO	0.50	
CIRCULARITY	0.64	

ParticleFinder Workspace – Paracetamol and PMMA

HORIBA

ParticleFinder Tabulated Results

Include	Class	Index	X pos ▼	Y pos	Area	Diameter	Perimeter	Major axis	Minor Axis	Ellipse ratio	Circularity	Brightness	Image	Raman	ID	
Jse filteri Filter limi	ng (min)		U	U	\cup	\cup	\cup	\cup			U	U				
ilter limi	s(max)															
		1(9)	-1440.8	703.0	30554.6	197.2	770.4	277.7	149.1	0.54	0.80	18.1		ull r.		
)		2(13)	-1396.4	1297.5	21636.4	166.0	559.7	167.7	165.1	0.98	0.93	22.0	0	dat h		
)		3(1)	-1323.0	-983.4	55891.5	266.8	891.2	276.5	258.6	0.94	0.94	17.2		all a		
		4(4)	-974.5	-262.3	11996.0	123.6	411.1	127.0	119.7	0.94	0.94	21.3		al a la		
•		5(5)	-497.6	-111.3	76771.5	312.6	1043.1	328.9	297.7	0.91	0.94	18.6		della		
]		6(10)	-404.0	888.8	77722.6	314.6	1077.5	341.8	291.9	0.85	0.92	19.2		and the state		
		7(7)	17.7	73.7	19943.7	159.4	538.6	161.9	156.9	0.97	0.93	20.9	0	L. L		
		8(11)	117.4	1038.1	72582.1	304.0	1018.7	330.3	281.2	0.85	0.94	19.8		ulle 1		
·		9(8)	175.9	61.0	10174.0	113.8	385.6	116.7	111.2	0.95	0.93	21.6		M. I		
, ,		10(2)	080.2	-464.7	31703.4	200.9	670.1	202.8	198.4	0.98	0.94	17.0		uller 1		
		10(3)	1042.0	107.4	14290.0	124.0	450.0	120.2	120.1	0.00	0.04	22.2		white of		
		11(0)	1045.0	1007.0	50667.6	072.0	450.5	200.1	251.0	0.05	0.04	10.7		white the		
, 		12(12)	1205.2	1207.0	0.1150.0	273.3	924.0	296.1	251.9	0.05	0.93	19.7		ull_mh		
J		13(2)	13/4./	-550.5	64158.8	285.8	1002.0	332.1	247.7	0.75	0.90	18.2		ullen		
loon			_91.0	220.7	42007.0	210.5	749.5	238.5	204.6	0.88	0.02	10.7				
Stdev			986.6	715.5	25117.3	73.0	248.7	84.1	66.6	0.12	0.04	1.6				
ledian			17.7	61.0	31703.4	200.9	770.4	276.5	198.4	0.93	0.93	19.7				

Conclusions

- Raman spectroscopy and laser excited photoluminescence can be performed using the same instrument.
- Raman spectroscopy can be used to differentiate polymorphs and characterize polymers.
- Vapor phase and liquid molecular interactions are manifest in Raman spectra.
- Particle size characterization with chemical specificity

Thank you