

Kuba Tatarkiewicz PhD, R&D Global Director

How to present and compare data obtained by particle tracking analysis and other related methods

3-6-2019

© 2019 HORIBA, Ltd. All rights reserved.

Particle tracking analysis

Measuring sizes of individual particles

hydrodynamic diameter $d_h > d_0$ due to diluent drag

Counting tracked particles in a given volume

investigated volume depends on size and refractive index

- Testing small volume of a sample
 - statistical process of estimating particle size distribution
 - volume tested about 100,000x smaller than sample volume

Concentration measurements

• **Definition of** C_N : counts per volume [part/mL]

other defs: mass C_M [mg/mL] or volume C_V [$\mu L/mL$]

- Typically \boldsymbol{C}_N is given for a range of sizes

e.g. between 100 nm and 1 μ m diameters

- Hence use of plots with size bins
 - bin widths not necessarily equal
 - some software do not support unequal bins (notably Excel)

Statistical considerations

• Error in counting proportional to \sqrt{N}

this applies to total counts and individual bin counts

Number of bins depends on expected errors

N=10,000 and 100 bins, average error 10 counts/bin or 10%

- To obtain "nice", smooth distributions:
 - decrease number of bins and use wider bins
 - use narrow bins to calculate parameters of a distribution

Example plots of size distributions

Binning

• Definition of a bin:

- $d \in [b_i, b_{i+1}]$ where i=1,...,N
- equivalent definition: $b_i \le d < b_{i+1}$ (non-overlapping bins)
- typically $b_1 = 0$ and $b_N = max$ size to be measured
- Strange bins definition encountered:

		Average particles per mL CV,	, %	
29	particle diameter bin	Define the particle diameter bin range, for example: 100 nm $\leq d \leq$ 109 nm. The preferred bin width is 10 nm. The total range should cover from > 100 nm to < 2 µm. The range may be narrower, depending the range of the instrument being used. An example range is		
30	(50 to 59) nm			
31	(60 to 69) nm			
32	(70 to 79) nm			
33	(80 to 89) nm	given here, but may be modified as appropriate		
34	(90 to 99) nm	for the measurement/instrument.		
35	(100 to 109) nm		,	

What is really plotted

- Concentration is just a rational number, also per bin
- Histogram uses area to represent a distribution
- With unequal bins natural measurable is:

density of particle size distribution (PSD)

units: number of particles per bin width and per investigated volume [part/nm/mL] total concentration ≡ area of a histogram

Dimensional analysis

• When plotting concentration vs. size,

DO NOT connect points*

- Total concentration is a sum of numbers, not an integral
- When plotting density of PSD, one can connect middle of bins // linear approximation
 - Total concentration \boldsymbol{C}_N is then

an area under the curve

*There's no data between points – by definition of a bin

Practical procedure

Create a list of measured sizes

typically diameters of nanoparticles are given in [nm]

Bin those sizes in specific binning

typically logarithmic binning

$$(b_{i+2} - b_{i+1}) / (b_{i+1} - b_i) = const$$

- Calculate density of PSD [part/nm/mL]; V₀ needed
- Plot as a histogram of density of PSD
- Calculate parameters of a distribution (AV, SD, D₅₀ ...)

Example of real data in logarithmic binning

Concentration from 50 nm to 700 nm = area of histogram of density of PSD

Real data vs. standards

• Most standards of size are mono-disperse

there are no standards for concentration...

Typically real life samples are poly-disperse

e.g. multiple sizes or continuous distributions

- Natural samples like sea water or blood:
 - highly poly-disperse with dominating small particles
 - Junge distribution $N(d) \sim d^{-x}$ where $x=3.5 \div 4$

Fitted data problem (NanoSight FTLA)

- Fitting unknown distribution of sizes
- Assumed binomial(s) distribution
- Height (or area) of different peaks

is NOT conserved during fitting

(not invariant of any fitting procedure)

- Looks great but lacks numerical accuracy
- Artificial peaks can be created cf. van der Pol et al. J Thrombosis and Haemostasis, 12, 1182 (2014)

Parametric description of distributions

- **Concentration** $B_i = (b_{i+1} b_i)$ $N_{total} = \sum_{i=1}^{N} \frac{n_i}{B_i} B_i = \sum_{i=1}^{N} n_i$
- Average size $d_{average} = \frac{1}{N_{total}} \sum_{i=1}^{N} n_i * (b_i + \frac{B_i}{2})$
- Standard deviation

$$SD = \sqrt{\frac{1}{N_{total}} \sum_{i=1}^{N} n_i * \left[d_{average} - \left(b_i + \frac{B_i}{2} \right) \right]^2}$$

• **D**₅₀
$$D_k = \frac{1}{N_{total}} \sum_{i=1}^k n_i$$

definition
$$D_k = 0.5 - k - b_k equal D_{50}$$

D50 & mode depend on binning!

Lies, damned lies, and statistics

• Parametric description using AV and SD

is not accurate or unique!

Anscombe's quartet – same AV and SD, various shapes

- Even higher moments do not give enough info
- Basic experimental question:

How similar are two measured distributions?

Kolmogorov-Smirnov statistics

Comparing parameters:

 $d_{av} = 256 \text{ nm}, \text{ SD} = 145 \text{ nm}, \text{ CV} = 0.57$ $d_{av} = 163 \text{ nm}, \text{ SD} = 68 \text{ nm}, \text{ CV} = 0.42$

Non-parametric test: *Kolmogorov-Smirnov statistics*

D _{A,B}	alpha	<i>D</i> _{<i>A,B,α</i>}	Reject?
0.2335	0.05	0.0338	yes

Anderson-Darling statistics

Area between two cumulatives is a good measure of distance between two or more distributions with unknown shape.

Distance between distributions

Normalize area between cumulatives

extreme case: a) particles at 10 nm, b) particles at 1000 nm

• **Distance is a number from the range** [0,1]

same distributions have distance 0

extreme case – distance 1

 If areas are calculated between distributions in same normalization, it can be a good measure

