

AVEKA Group

How Does Particle Characterization Enhance Research & Scale-Up, Validate Production, and Increase Your Bottom Line

PRESENTED BY: WILLIE HENDRICKSON CEO & FOUNDER

Particle Processing Services

Toll Manufacturing Research & Development Innovative Solutions

Presentation Outline

- Overview of AVEKA
- Why Do We Care About Particle Processing?
- General Challenges for Industrial Particle Processing
- The Economics of Particle Processing
- Examples
- Future Directions
- Conclusions

AVEKA Group Overview

- Employee Owned and Operated
- Particle technology company focused on contract manufacturing and process development
- Spin-off of 3M in 1994
- Comprised of 5 Manufacturing Sites in Minnesota and Iowa
- ISO certifications / food-grade certifications
- Currently 280 employees

The AVEKA Group – A Different Type of CMO

- Broad Range of Unit Operations & Industry Areas
- Active Research & Development Group
- Extreme Technical and Collaborative Business Model

Who Cares About Particle Processing?

1930's Taconite Processing and its Effects

Cement Manufacturing and Energy Costs

Xerography and the Information Age

COVID-19 and the Pandemic

Big Challenges in Industrial Particle Processing

Operations

- Economics
- Technology Readiness Levels

Technology

- Water
- Powder Flow
- Grinding Efficiency

Economics of Particle Processing Spray Drying - an Illustrative Example

Cost of Spray Drying Equipment: \$30,000,000

- Process Parameters:
 - Input Solids
 - Drying Rate
- Yields: 98-99%
- Operating Income: \$500-700/hour

Spray Drying Economics I

% Solids of Solution

Spray Drying Economics II

Assumptions

- 19%, 20%, and 21% solids
- 80%, 90%, and 95% Operational Time
- 2000 kg/hr Water Evaporation Rate

% Solids	Dried Product	80%	90%	95%
	kg/hr	(7008 hr/yr)	(7884 hr/yr)	(8322 hr/yr)
19	469	3,286,752	3,697,596	3,903,018
20	500	3,504,000	3,942,000	4,161,000
21	532	3,728,256	4,194,288	4,427,304

The AVEKA Group – A Characterization Focused CMO

- Broad Range of Characterization Methods
- Characterization for Process Control, Quality, Materials, Understanding & Development
- Focus on Data Development & Analysis

Particle Characterization at AVEKA

Particle Size Analysis

- Particles 1 nm to 2+ mm
- Particle size distribution (PSD)
- Sonic sieving
- Rototap

Electronic Imaging

- Optical microscopy
- Scanning electron microscopy (SEM)

Surface Area Analysis

True Density Analysis

Helium pycnometry

- High performance liquid chromatography (HPLC)
- Thermogravimetric analysis (TGA)
- Spectrophotometer
- Differential scanning calorimetry (DSC)

Flow Characteristics

- Freeman FT4
- Zeta potential analysis (ZP)
- Rheological analysis
- Moisture and solids analysis (MSA)
- Karl Fisher

The Examples...Finally

Spray Drying Optimization Classification Efficiency Grinding Beyond Particle Size Distribution Density, Shape, Final Understanding Maximizing Yields Controlled D₅₀ Characterization Methods New Methods and Uses

Statement of Need How We Approached the Problem What Went Right (or Wrong) Opportunities

Spray Drying Density

Statement of challenge

Depending on Dryer used Product Would Not Fit in Bag

Sodium Acetate

Large Scale
 Optimization
 Understanding

The Result

Dryer 1		
20.3 µm		
43.8 µm		
112 µm		
0.895		
0.44 g/cc		
0.48 g/cc	F	
0.50 g/cc		
	20.3 μm 43.8 μm 112 μm 0.895 0.44 g/cc 0.48 g/cc	

Dryer 2				
D ₁₀	2 6. 3 µm			
D ₅₀	65.1 μm			
D ₉₀	224 µm			
Sphericity	0.857			
Tap Density _o	0.35 g/cc			
Tap Density ₃₀	0.39 g/cc			
Tap Density ₁₂₀	0.40 g/cc			

SEM Images

High Magnification SEM Images

Spray Dryer 1

Spray Drying Spherical Powder

Statement of challenge

Spray Drying produced correct size, but not desired sphericity

The Result

Spay drying after bead milling produced the desired material

Starting Material

Mean PSD = 11.7 μm

Milled Material Mean PSD = 1.9 µm

SEM Spray Drying Milled Starting Material

SEM (5000x) of spray-dried silica without (left) and with (right) prior bead milling

Spray Drying Density

Statement of challenge Maximize Tap Density

With Small Changes in PSD

- Inorganic Material
- Spray Drying Methods

The Result

Most process changes did not work. % Solids in slurry did work.

Slurry 23% Solids Mean PSD = 11.4 µm

Tap Density = 0.28 g/cc

Slurry 30% Solids Mean PSD = 19.5 µm Tap Density = 0.37 g/cc

What is Really Happening Here?

De Souza Lima, Powder Technology 359, 161-171, 2020.

Characterization and Analysis can be Misleading Without an Understanding of the Process and the Materials

Classification Optimization

Statement of challenge

Maximize yields during classification

Glass beads

Air classified

The Result

Small cut points had huge yield results

Glass Bead Classifications & Yields

Objective: Increase yield after classification

Glass Bead Classification & Yields

Starting Beads

Broad Cut (24-50 µm) 73% Yield

Narrow Cut (25-48 µm) 43% Yield

Opportunity: Increased yields using characterization

Two Step Classification - Silica

Raw Material - 10.97 µm

First Pass Classification – 11.43 µm

Second Pass Classification – 12.08 µm

Two Step Classification - Silica

Raw Material 10.97 µm

Second Pass Classification 12.08

Milling and Classification Optimization

Statement of challenge

Control PSD to enhance flow for Additive Manufacturing

- Polymer Powder
- Jet Milled
- ➢ Air classified

The Result

Jet Milling step followed by air classification step. Particle size measurement using number not volume distribution

Jet Milling and Classification of Polymer

Jet Milled Polymer – Volume Distribution

Jet Milled Polymer – Number Distribution

Jet Milled and Classified Polymer – Volume Distribution

Jet Milled and Classified Polymer – Number Distribution

Jet Milling and Classification of Polymer

Starting Material

Jet Milled and Classified Polymer

Jet Milled Polymer

Grinding Optimization

Statement of challenge

Tighten Distribution and Reduce Processing Time of Ceramic Substrates

Multi-step grindingGrinding aid addition

The Result

3x reduction in grinding time

 D_{50} tightened from 15-35 μm to 17-19 μm

Multi-Step Grinding Line

- Tote Tipper Feeder
 Komar Industries auger crusher
 Pneumatic conveying to screener
 Ball Mill and final screening

Multi-Step Grinding Line

2003
$$D_{50} = 15$$
-35µmCrushing and Ball Milling2006 $D_{50} = 18$ -24µmHammer and Ball Milling2013 $D_{50} = 16$ -19µmCrushing, Hammer Milling and Ball Milling2015 $D_{50} = 17$ -19µmAdded Grinding Aid

Opportunity: Process and yield optimization

CAVEAT, CAVEAT, CAVEAT

You are Never Really Done

PSD of Sample that Passed Final Requirement

Small number of large particles not measured with laser diffraction method

Wet Screening with visual inspection required to count large particles

PSD of Sample that did not Pass Final Requirement

Process and Material Unknowns

Statement of challenge

Produce Cellulose Fiber with High Water Holding Ability (20X weight)

- Removal of lignin and hemicellulose from corn bran
- Caustic Washes and Concentration

> Drying

The Result

Process not optimized as received from customer

Desired product not purified cellulose, but rather microfibrilated bran

What Went Wrong

- Yields were poor
- Process Incredibly Inconsistent
- Water Holding Results were inconsistent

Solution

- Analyze
- Understand

TGA of Cellulose and Hemicellulose

TGA of Corn Bran and Purified Cellulose

New Characterization Method Required for Process Understanding

Process Scale-Up Analysis

Statement of challenge Define equipment parameters for heating

- Organic Materials
- > Alloyed
- Melted and atomized

The Result

Scale-up of prilling process using DSC (Differential Scanning Calorimetry)

Determination of Process Heating Requirements using DSC Process for reacting & prilling a plurality of components to form an alloy

Representation of Prilling Process

DSC data to calculate heating requirements For each component and the alloy

Characterization and Particle Processing

- It's always the economics
- Small changes in processing can have profound effects on profitability
- How do you optimize your processes or develop new materials without extensive characterization

Characterization

- Never use only one technique
- Always consider your process and the materials in your analysis
- Images are great, but they can be misleading

E. W. Merrow Chem Eng <u>24</u>, 89-92, 1988

"Estimating Startup Times for Solids-Processing Plants"

Does industrial, academic, and funding management understand the critical value of particle processing in profitability and how characterization improves profitability?

Where We Go from Here?

Horiba/AVEKA Webinars - 2023 (proposed)

- Spray Drying
- Agglomeration
- Industrial Challenges of Particle Processing
- Contract Manufacturing
- Jet Milling

Do you have any interests that we can address?

International Fine Particle Research Institute (IFPRI)

- New Merrow Report Commissioned by IFPRI
- Current and Past Projects on Most Areas Mentioned in this Talk
- Forum for Learning Best Practices from Some of the Best Practitioners

Summary

AVEKA Group

- We are in the broadest and most exciting field in the world
- This is a challenging field, but characterization can help with understanding and profitability
- Let us know if we can help

Full Scale Manufacturing

Pilot Testing

R&D / Lab-Scale Testing

Contact Information: <u>aveka@aveka.com</u> 651-730-1729