Particle Analytics for Vaccines

P

particlesellc.com

Kevin Dahl, PhD - 20 years of particle and spectroscopic experience in pharma

Technology Consulting

Instrumentation, laboratory \bigcirc

Data Consulting

Reanalysis, interpretation, CMC support \bigcirc

Document Consulting

Drafting and Review \bigcirc

Method Consulting

Development, Optimization, Qualification, Validation

Experimental Consulting and Services

Study design, execution, analysis, interpretation **Training Services**

Selected Instruments

kd@particlesellc.com

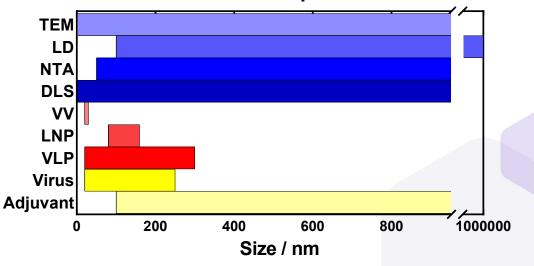
 The reward for work well done is the opportunity to do more.
 Jonas Salk

Challenges in Vaccine Development

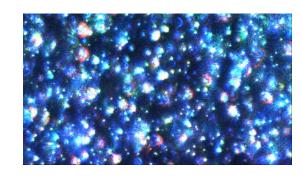
- Discovery
 - Rapid viral evolution antigenic shift
- Formulation
 - Stabilization/delivery
- Storage and transport
 - Freeze-thaw
- Stability (ICH Q5C)
 - Toxic/immunogenic species
- In-use stability
 - O Thaw/recon -> patient
- Release testing
 - Quality (ICH Q6B/Q6A)

Particulate and Spectroscopi c Analytical Tools

- Modern vaccines inhabit a gray area between biotherapeutics (DS) and small molecule suspensions (DP)
 - Drug substance covered by ICH Q5A(R1) (safety)
 - Above deal with viral contamination/clearance, concentration, etc.
- What about drug product characteristics as CQAs?
- WHO Expert Committee on Biological Standardization, DRAFT Evaluation of the quality, safety and efficacy of messenger RNA


VACC CONS^{Particle size distribution (purity, consistency, safety)}

light scattering such as dynamic or static light scattering; nanoparticle tracking analysis; electron microscopy; size-exclusion chromatography


Vaccines and Analytics

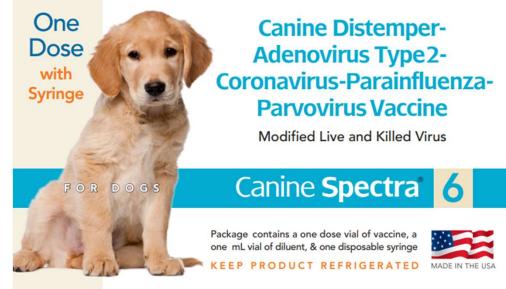
- Vaccine Delivery
 - Live Attenuated or Inactivated Virus Polo
 - Adjuvanted Nuvaxovid
 - Lipid Nanoparticle (LNP) Pfizer/Moderna PARTICLE
 - Viral Vector/AAV J&J
 - Virus Like Particle (VLP) Gardasil
- Relevant Size Ranges and Common Techniques
 - Cryo-TEM
 - O DLS
 - O NTA
 - Laser Diffraction (LD)

S!

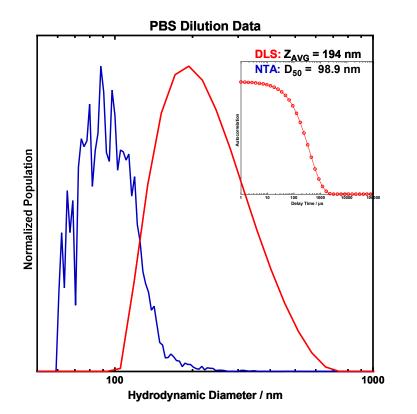
- Based on video taken of point-scattering from particles
 - Particle movement in suspension described by Brownian motion:

$$D_h = \frac{k_B T}{3\pi \eta D_m}$$

 \bigcirc Light scattering techniques measure hydrodynamic radius (D_h)

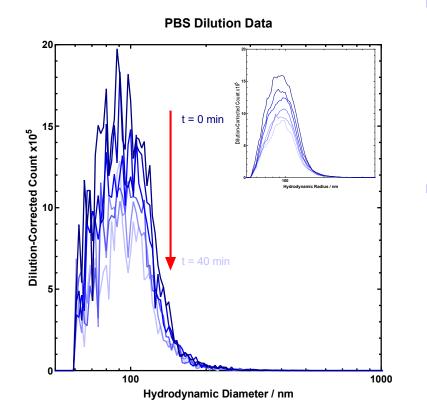

Strengths

- Polydisperse (aggregated) samples
- Single-particle (number-based) technique
- Less sensitive to oversized material (relative to DLS)
- O Governed by ISO 19430, ASTM E2834-12



- Lyophilized sample with included diluent (1 mL)
 - Modified live virus with adjuvant (proprietary), sub-Q delivery, pH
 6-8
 - Reconstitution after aseptic diluent addition, "SHAKE WELL"
- Sample diluted 10⁵ in PBS
 - Concentration range match for NTA instrument
- 3-laser NTA system (445/520/635 nm)
 - 350 µl sample stirred in cuvette
 - Practical limit of ~50 nm
 - Fluorescence capable

Reference: https://www.durvet.com/product/canine-spectra-6/



DLS results show a broad peak centered at 200

nm

- Width suggests polydisperse sample not optimal for DLS
- Resolving power is $\sim x3/x5$ for two modes
- Intensity-based distribution r⁶ intensity dependence
- Number-based NTA shows a single mode at 100 nm
 - DLS signal dominated by a small amount of larger debris
 - Reconstitution/dilution?
 - NTA signal characterizes main population in sample

• 40 min collection time for six replicates

- 50% decrease in particle concentration after 40 min
 - Access to concentration is critical!
- D90 of 140 nm (no prominent aggregation observed)

Change in sample indicates instability

 \cap

Dilution in PE	3S de	estabili	izes th	ne forn	nulatic	n
Sample	Rep	Counts	D50 (nm)	D90 (nm)	Conc.	

Sample	Rep	Counts	D50 (nm)	D90 (nm)	Conc. (part/mL)
Spectra 6 - PBS	1	5349	98.9	136.3	1.0E+13
Spectra 6 - PBS	2	4531	99.9	139.2	8.6E+12
Spectra 6 - PBS	3	4067	99.9	140.0	7.8E+12
Spectra 6 - PBS	4	3355	100.6	137.9	6.4E+12
Spectra 6 - PBS	5	3134	99.9	139.5	6.0E+12
Spectra 6 - PBS	6	2730	100.0	142.9	5.2E+12
	Average	3861	99.9	139.3	7.4E+12
	%RSD	25.3	0.5	1.6	25.3

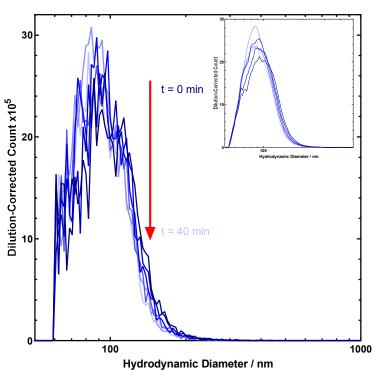
NTA Results: Dilution w/ 0.02% PS20

 \bigcirc

 \bigcirc

• Addition of 0.02% PS20 with PBS

 PS20 should provide surface protection of unstable charge

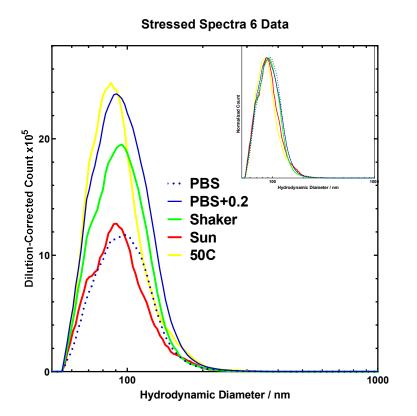

40 min collection time for six replicates

~15% decrease in particle concentration after 40 min

Sample	Rep	Counts	D50 (nm)	D90 (nm)	Conc. (part/mL)
Spectra 6 - PBS+0.02% PS20	1	5981	97.9	134.4	2.3E+13
Spectra 6 - PBS+0.02% PS20	2	5786	97.4	133.6	2.2E+13
Spectra 6 - PBS+0.02% PS20	3	5762	96.7	133.0	2.2E+13
Spectra 6 - PBS+0.02% PS20	4	5123	96.3	131.7	2.0E+13
Spectra 6 - PBS+0.02% PS20	5	5121	94.8	129.8	2.0E+13
Spectra 6 - PBS+0.02% PS20	6	5003	94.5	131.2	1.9E+13
	Average	5463	96.3	132.3	2.1E+13
	%RSD	7.79	1.44	1.29	7.79

NTA Results: Dilution w/ 0.2% PS20

Addition of 0.2% PS20 with PBS


PBS with 0.2% PS20 Dilution Data

• 40 min collection time for six replicates

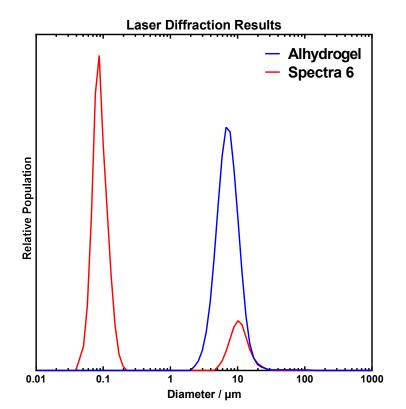
- No decrease in particle concentration after 40 min
- O D90 135 nm
- PS20 reversing "hidden" aggregation?
 - Distribution width shifting and narrowing

Sample	Rep	Counts	D50 (nm)	D90 (nm)	Conc. (part/mL)
Spectra 6 - PBS+0.2% PS20	1	7665	104.1	143.9	2.9E+13
Spectra 6 - PBS+0.2% PS20	2	7852	100.6	140.6	3.0E+13
Spectra 6 - PBS+0.2% PS20	3	8009	97.2	135.2	3.1E+13
Spectra 6 - PBS+0.2% PS20	4	7599	96.0	133.5	2.9E+13
Spectra 6 - PBS+0.2% PS20	5	7904	93.8	129.8	3.0E+13
Spectra 6 - PBS+0.2% PS20	6	7100	94.4	129.6	2.7E+13
	Average	7688	97.7	135.4	2.9E+13
	%RSD	4.24	4.07	4.28	4.24

NTA Results: Additional Work

• Three stress conditions tested for 48 hours

• Shaker plate, direct sunlight, 50 °C

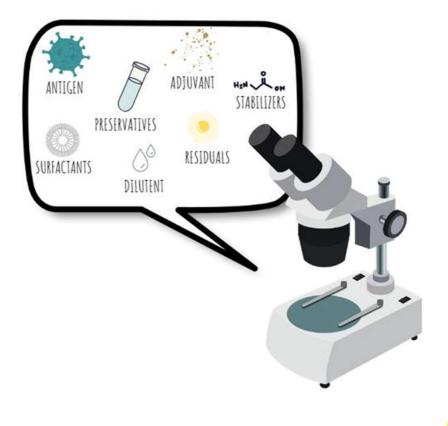

Sample tolerates shaking

Sample tolerates elevated temperature well

Sample does not tolerate direct sunlight (UV)

Sample	Cond.	Counts	D50 (nm)	D90 (nm)	Conc. (part/mL)
Spectra 6 - PBS	None	3861	99.9	139.3	7.4E+12
Spectra 6 - PBS+0.2% PS20	None	7688	97.7	135.4	2.9E+13
Spectra 6 - PBS+0.2% PS20	48 hr. Shake	6693	98.9	133.6	2.6E+13
Spectra 6 - PBS+0.2% PS20	48 hr. Sun	3648	93.6	139.6	1.4E+13
Spectra 6 - PBS+0.2% PS20	50C	6828	91.2	137.4	2.6E+13

- Laser diffraction records scattering angle vs. intensity of scatter from suspension
 - Widely used for powder/high conc. suspensions
 - Minimum volume ~5 mL
 - Volume-weighted (r³) distribution, can go below 100 nm
- LD is applicable to PS determination in vaccines
 - Products contain high concentration of particles
 - Spectra 6 product shows band at 10 µm in addition to adjuvant band
 - Likely due to incomplete reconstitution
 - Explains poor DLS performance for same product!


- Vaccines are analytically 'different'
 - Biologic product necessitates specific testing
 - Particles are the product, testing with new technologies
- Incorporation of particle techniques
 - Directly measure CQA of Drug Product
 - Useful in formdev, stability, transport, and in-use studies
 - Can be readily worked into product release workflow
- Kevin Dahl, PhD: kd@particlesellc.com

A-TEEM for Vaccines Vaccines Are Challenging Samples

Scientific © 2021 HORIBA, Ltd. All rights reserved.

Vaccines - Characterization Challenges

Content and Format of Chemistry, Manufacturing and Controls Information and Establishment Description Information for a Vaccine or Related Product

2. Specifications and Methods

A description of all test methods selected to assure the identity, purity, strength and/or potency, as well as the lot-to-lot consistency of the finished product and the specifications used for the drug product should be submitted. Certificates of analysis and analytical results for at least three consecutive batches should be provided.

3. Validation Results

The results of studies validating the specificity, sensitivity, and variability of each method used for release testing should be provided. Where applicable this should include descriptions of reference standards and their validation. For analytical methods in compendial sources, the appropriate citations should be provided.

Up to 70% of manufacturing process is QC

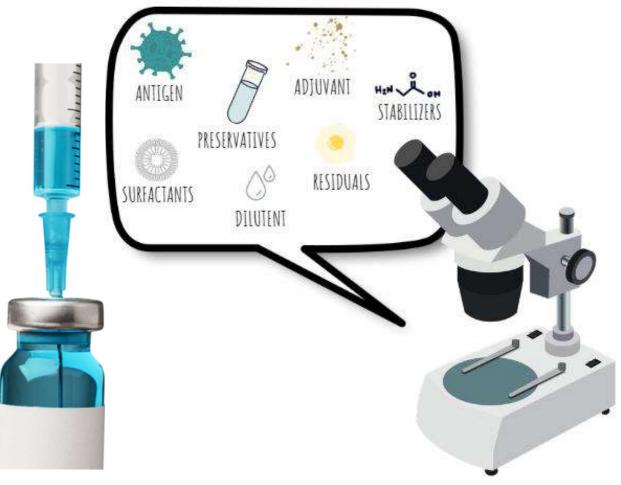
Need same information - but faster

and comparing various PAT methods and instruments. In-line monitoring and RTR, for example, would enable a substantial reduction in product release time (1–2 days compared to weeks–months). They would also improve the quality, efficiency and supply of the product through enhanced in-line monitoring, and indirect and multivariate sensors along with multivariate analysis and predictive modeling.

Vaccines Roadmap

BioPhorum

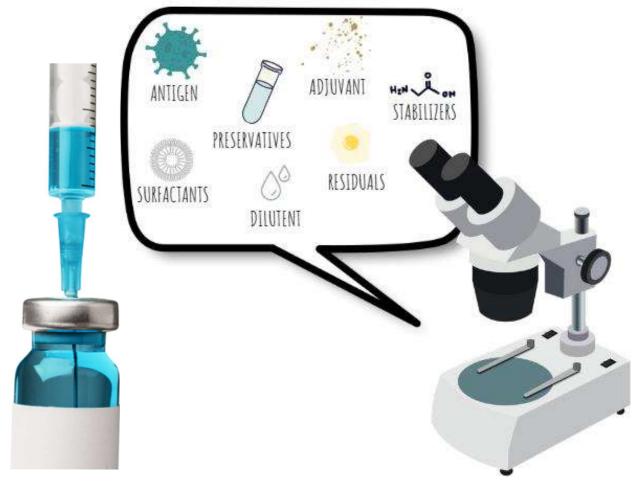
Manufacturing USA



Vaccines – Struggle for Vibrational Spectroscopy

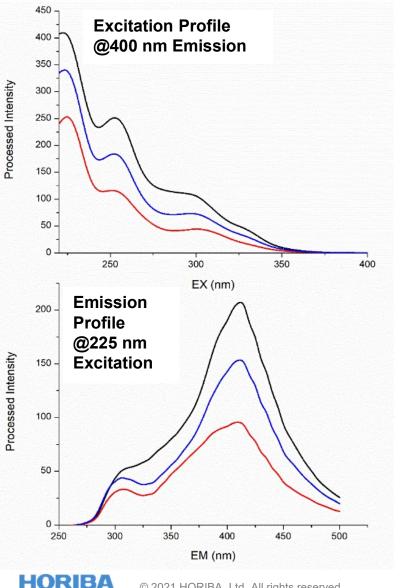
Vibration Spectroscopy – go-to option for rapid analysis

Struggle with vaccine samples

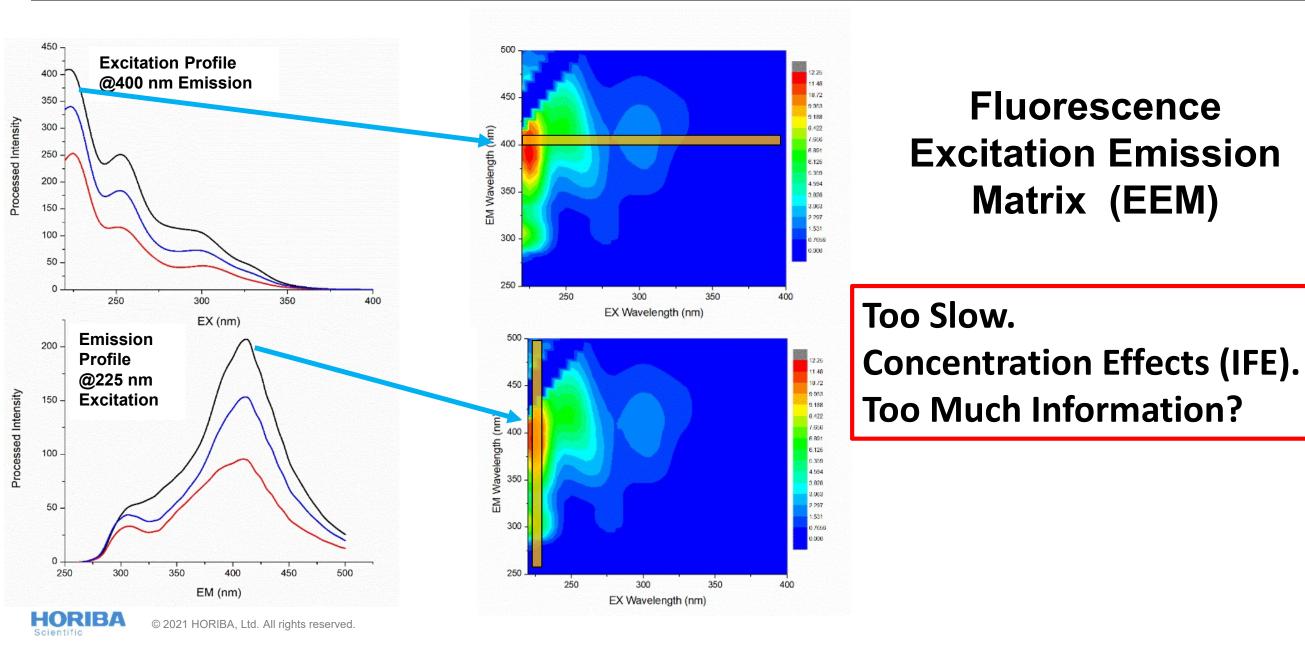


Shingrix - lyophilized powder	Amount	Role	Concentration
Glycoprotein E			0.1 mg/ml
Sucrose	hallenge for	Raman	40 mg/ml
Polysorbate 80	U.8 mg	Excipient	
Sodium Dihydrogen Phosphat	e 0.16 mg	Excipient	
Dipotassium phosphate	0 116 mg	Excinient	
Water-based diluent	Challenge fo	r FTIR/NI	R

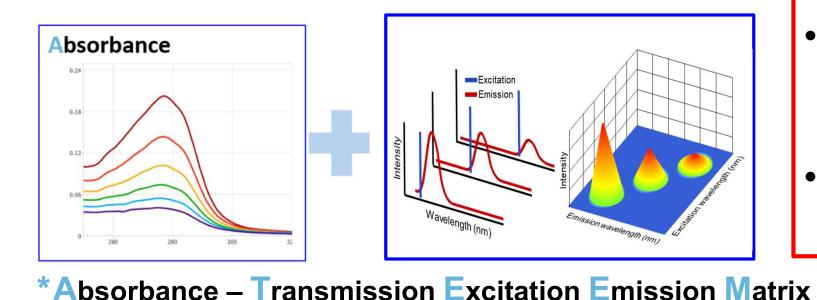
Vaccines – Ideal for Fluorescence


Fluorescence is <u>sensitive</u> to protein, while being insensitive to pure water and sugar. Could that work?

Shingrix - lyophilize	ed powder	Amount	Role	Concentration
Glycoprotein E	No proble	em for fluo	rescen	.1 mg/ml
Sucrose				Ĵ mg/ml
Polysorbate 80		0.8 mg	Excipiei	nt
Sodium Dihydroger	n Phosphate	0.16 mg	Excipie	nt
Dinotassium nhosn	hate	0 116 mg	Excinie	nt
Water-based diluer	nt No	problem	for fluo	rescence


What about Fluorescence Spectroscopy?

Limited information content... IF Just excitation or just emission


© 2021 HORIBA, Ltd. All rights reserved.

Add More Dimensions! Emission for Every Excitation

A-TEEM* – Clear Molecular Fingerprint

Data Collection: Same Sample @ Same Time CCD collects emission trace in an instant

- CCD Detector Collects full
 EEM in 60 sec Too Slow.
- 2-in-1 UV/Vis + EEM for robust IFE correction

Concentration Effects (IFE).

Multivariate analysis Tee

Much Information?

(12) United States Patent Gilmore et al.

 (10) Patent No.:
 US 8,901,513 B2

 (45) Date of Patent:
 Dec. 2, 2014

A-TEEM Method on Aqualog- UV/Vis and Fluorescence

Aqualog with autosampler – preferred configuration for A-TEEM in Biopharma

FAST-01 – Batch Sampling Accessory For unattended, Multi-sample Measurements Eliminates "blur"

- Clear molecular fingerprint
- Low limit of detection
- Sensitive and specific
- Rapid and inexpensive

© 2021 HORIBA, Ltd. All rights reserved

A-TEEM – Meets USP Specifications

(857) ULTRAVIOLET-VISIBLE SPECTROSCOPY

- Photometric accuracy
- Absorbance and Fluorescence Excitation
 Wavelength Accuracy
- Stray Light
- Emission Wavelength Accuracy
- Emission Spectral Shape Accuracy
- Water Raman Band Accuracy
- Water Raman Band Signal to Noise (SNR)
- Water Raman Band Area Scattering Units (RSU)
- Quinine Sulfate Units (QSU)

(853) FLUORESCENCE SPECTROSCOPY

Measuring Absorbance and Excitation Wavelength Accuracy and Excitation Spectral Correction

Measuring Water Raman Sensitivity and Wavelength Calibration

Measuring Photometric Accuracy and Linearity

Measuring Stray Light

Spectral Correction of Fluorescence Emission

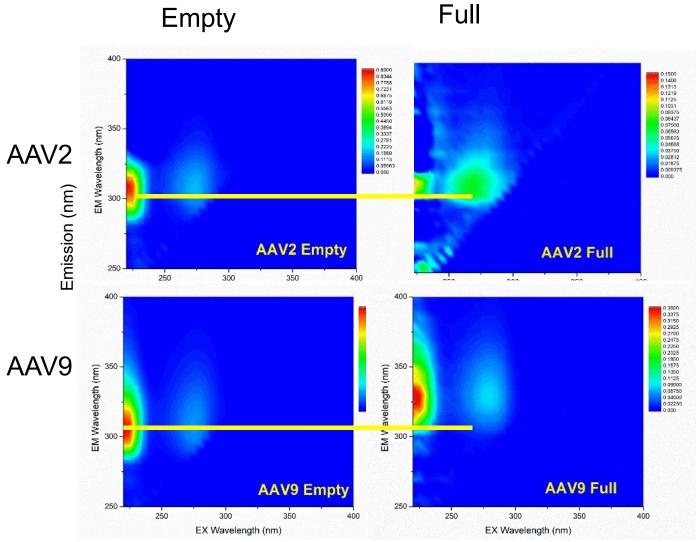
Installation Operation Qualification (IQ/OQ)

Tackling Quantitative Analysis – Beyond LOD

Technique	Sensitive	Selective	Repeatable	Reproducible	Comments	LOD (PPM)
A-TEEM (2-in-1) Fluorescence					UV/Vis & Fluorescence, Quantitative across broad concentration range	<0.001
3D/EEM Fluorescence	1				Poor analytical quantification, molecular fingerprint is concentration dependent	<0.1
Raman					Struggles with low concentrations	25-150
FTIR					Water interferes with molecular fingerprint	100-2000
UV/VIS					Low selectivity Low information content	0.3
NIR					Struggles with low concentrations Low selectivity	0.1-1

A-TEEM for AAVS AAV – rapid determination of empty/full ratio

HORIBA © 2021 HORIBA, Ltd. All rights reserved.

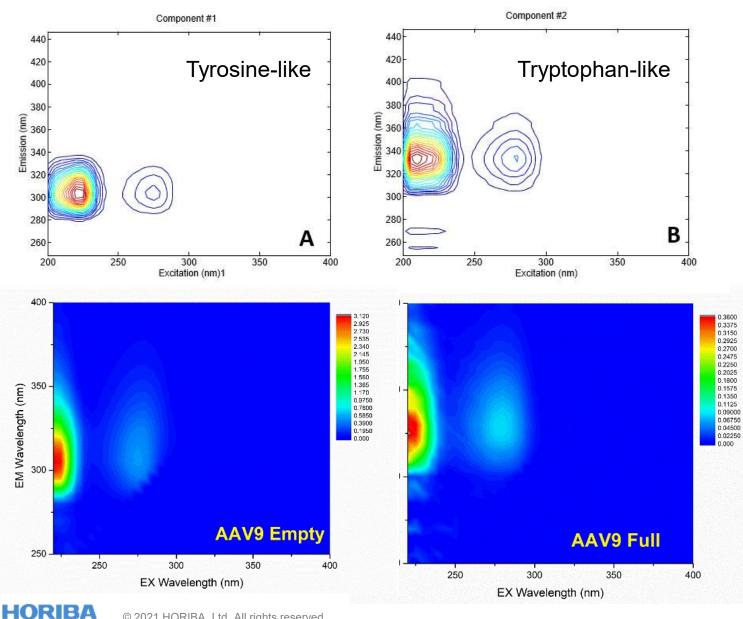

AAV Capsid Reference Samples

Serotype differentiation – AAV2 vs AAV9 Empty/Full ratio determination – Reference Samples

				1	
Par	t Number	Physical Particle Count / mL	% Empty	Empty or Full	
RS	-AAV2-ET	1.27 x 10 ¹²	99.5%		
AAV9 RS-AAV9-ET		1.76 x 10 ¹²	93.1%	Empty	
		Vector Genome Count / mL	% Full		
RS	S-AAV2-FL	1.82 x 10 ¹¹	71.2%		
AAV9 RS-AAV9-FL		3.86 x 10 ¹¹	82.3%	Full	

Samples preparation - 100X dilution with PBS

A-TEEM Fingerprints – empty and full AAV capsids



Empty	λex (nm)	λem (nm)	Comments	
AAV2	223			
AAVZ	275	210	Tyr-like profile	
AAV9	223	310		
AAV9	275			
λex (nm)	λem (nm)	Comments	Comments	
AAV2	223	312	Quench slight) shift	
AAVZ	274	512	Quench, slight λ shift	
AAV9	223	330	Quench, large λ shift to	
AAV9	277	330	Trp-like in polar	

HORIBA © 2021 HORIBA, Ltd. All rights reserved.

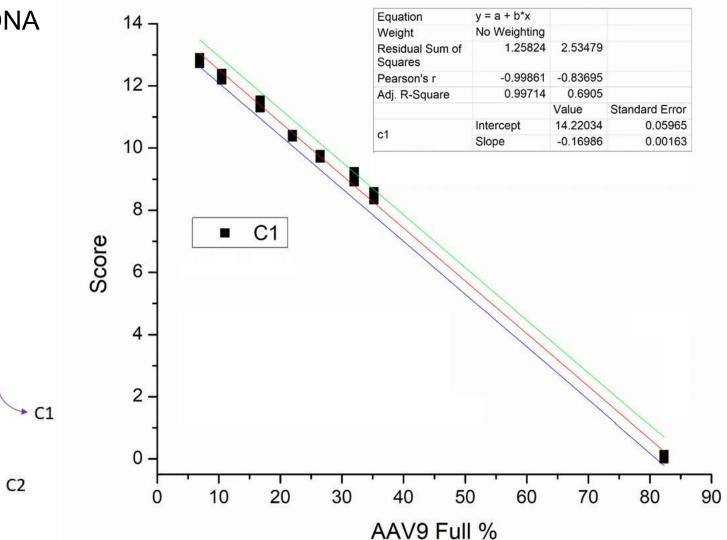
Scientific

Multivariate Modeling – PARAFAC Analysis

Empty	λex (nm)	λem (nm)	Comments	
	223			
AAV2	275	1 210	The life and file	
AAV9	223	310	Tyr-like profile	
AAV9	275	1		
λex (nm)	λem (nm)	Comments	Comments	
0.01/2	223	312	Quanch slight) shift	
AAV2	274	312	Quench, slight λ shift	
AAV9	223	330	Quench, large λ shift to	
AAVS	277	330	Trp-like in polar	

Scientific

Quantitative Modeling – Quantification of "Full"

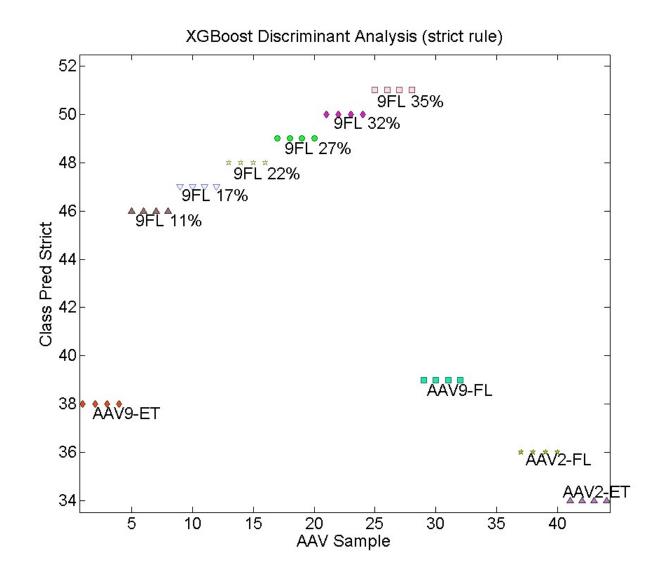

Component 1 (Tyr) fluorescence is ٠ quenched (linearly) by the presence of DNA payload.

AAV Full

CMV-GFP

PARAFAC component scores – plotted • against "full" metric provided by AAV manufacture

C2


Scientific

AAV Empty

Serotype Differentiation – XGBoost MVA Tool

Samples

- AAV9 and AAV2 FL (loaded) and ET (empty)
- Titration series of AAV9 Empty and Full
 Goal
- Assess capacity to resolve concentrations
 Result
- All samples correctly identified and grouped

A-TEEM for Rapid AAV Empty/Full Ratio Determination

- AAV2 vs AAV9 serotypes are differentiated by A-TEEM
- Empty/Full Ratio can be determined by A-TEEM
- Discrimination of loaded AAV's is possible with a precision of better than 3%

A-TEEM for Vaccine Characterization Repeatable? and Reproducible?

© 2021 HORIBA, Ltd. All rights reserved.

Vaccine Samples – Multicomponent

Vaccine Formulations

SOLO-JEC 5 5-way SOLO-JEC 5 delivers protection against five common canine infectious diseases.

SOLO-JEC 6 5-way + corona SOLO-JEC 6 delivers the same protection as SOLO-JEC 5 plus additional protection against coronavirus.

SOLO-JEC 9 5-way + 4-way lepto SOLO-JEC 9 delivers protection against four types of lepto that are known to infect dogs.

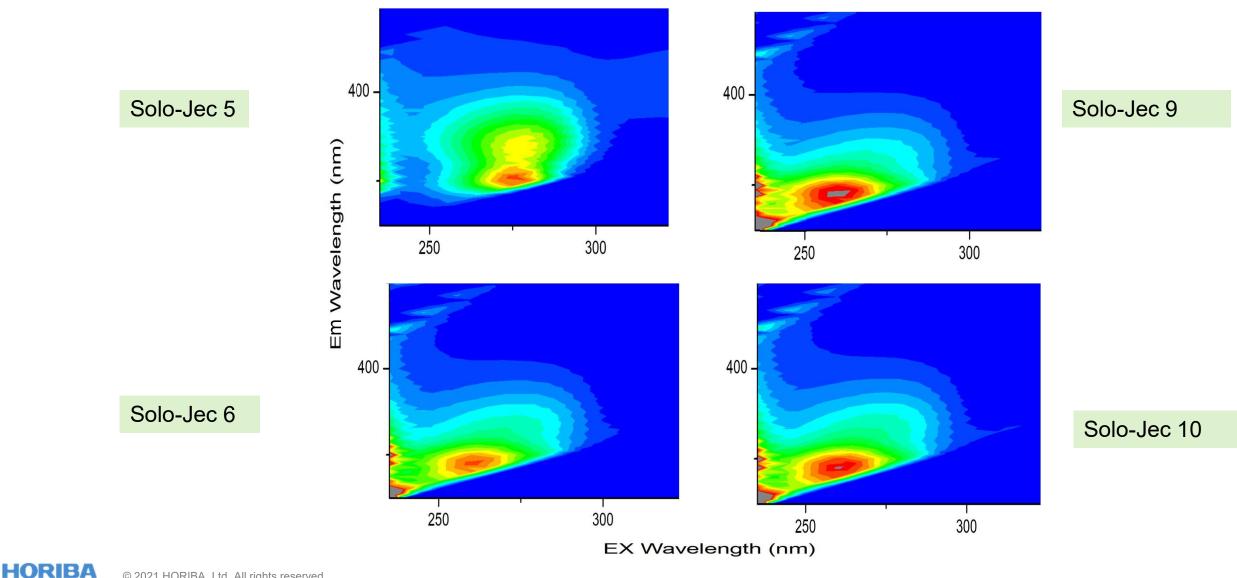
Scientific

SOLO-JEC 10 5-way + 4-way lepto + corona SOLO-JEC 10 delivers the same protection as SOLO-JEC 9 plus additional protection against coronavirus

		Basic Program Solo-Jec 5&6		ncluded ec 9&10
Disease	Solo-Jec 5	Solo-Jec 6	Solo-Jec 9	Solo-Jec 10
Distemper	•	•	•	•
Hepatitis		•	•	•
Adenovirus 1	•			
Adenovirus 2	٠	•	•	•
Coronavirus		•		•
Parainfluenza	•	•	•	•
Parvovirus	•	•	•	•
Lepto (4 types)		1	•	•
Gentamicin	•	•	•	
Amphotericin B	•			
Thimerosal		•	•	•
Adjuvant	•	•	•	•

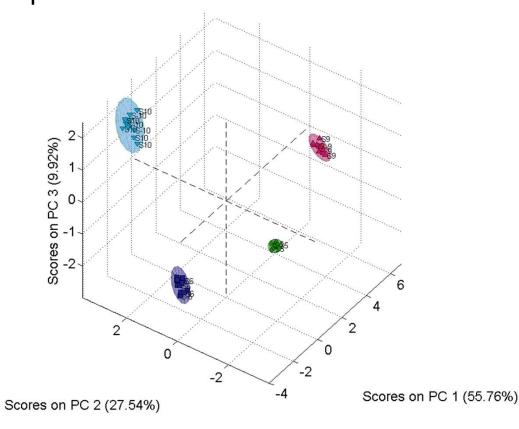
Vaccine Analysis: Repeatable & Reproducible?

Experimental:


- 1. Vaccines reconstituted per package instructions
- 2. Diluted with DI water 60X
- 3. Measured one sample on two separate days reproducibility of measurement
- 4. Measured a second sample different operator on a different instrument, different day to test model validation/reproducibility

© 2021 HORIBA, Ltd. All rights reserved.

Corrected A-TEEM Data – Quick Glance


© 2021 HORIBA, Ltd. All rights reserved.

Scientific

Differentiate? Yes

Repeatable? Yes

Multiple measurements of same vaccine tightly clustered Different vaccine formulations well separated 3 components – 93% of variance

Date of acquisition	Spectra vaccine code labels
November 19	S5, S6, S9, S10
December 1	S-5, S-6, S-9, S-10

Principal Components Analysis Percent Variance Captured by PCA Model

Principal	% Variance	% Variance	
Component	Captured	Captured	
Number	This PC	Total	
1	55.76	55.76	
2	27.54	83.30	
3	9.92	93.23	

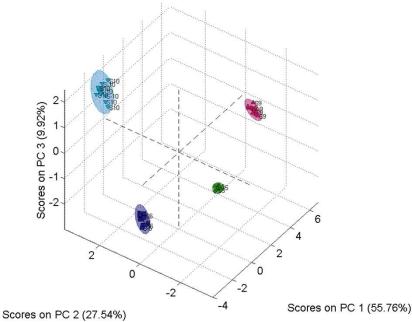
Method Validation – Model Stability

- New batch of the vaccines U5, U6, U9, U10
 - Measured on a different instrument
 - Prepared and measured by different operator
 - Added to the calibration set
- Samples S-5, S-6, S-9, S-10
 - Served as validation set

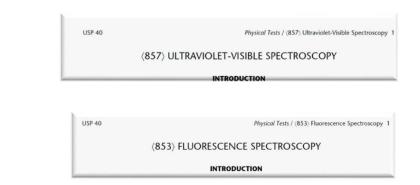
HORIBA © 2021 HORIBA, Ltd. All rights reserved.

Prediction Probability – Tabular

100% Correct Classification of "unknowns" using model developed previously


- 5 repeats
- 4 vaccine products

Sample	Class Pred Probability S-5,S5	Class Pred Probability S-6,S6	Class Pred Probability S-9,S9	Class Pred Probability S-10,S10	Misclassified
U5	0.95	0.01	0.01	0.03	0
U5	0.95	0.01	0.01	0.03	0
U5	0.94	0.01	0.01	0.04	0
U5	0.95	0.01	0.01	0.03	0
U5	0.95	0.01	0.01	0.03	0
U6	0.01	0.98	0.01	0.00	0
U6	0.01	0.98	0.01	0.00	0
U6	0.01	0.98	0.01	0.00	0
U6	0.01	0.98	0.01	0.00	0
U6	0.01	0.98	0.01	0.00	0
U9	0.01	0.01	0.94	0.05	0
U9	0.01	0.01	0.95	0.04	0
U9	0.01	0.01	0.94	0.05	0
U9	0.01	0.01	0.94	0.05	0
U9	0.01	0.01	0.94	0.05	0
U10	0.05	0.05	0.05	0.85	0
U10	0.06	0.06	0.06	0.81	0
U10	0.05	0.05	0.05	0.85	0
U10	0.05	0.05	0.05	0.85	0
U10	0.05	0.05	0.05	0.85	0


Extreme Gradient Boost – Discriminant Analysis

A-TEEM for Vaccine Characterization

- 1. Rapid minutes not hours
- 2. Differentiate similar, multi-component vaccines
- 3. Repeatable & Reproducible
- 4. Validatable

Date of acquisition	Spectra vaccine code labels
November 19	S5, S6, S9, S10
December 1	S-5, S-6, S-9, S-10

Differentiate + Reproducibly + Validatable

A-TEEM – High Sensitivity Tool for Vaccines

Application Examples

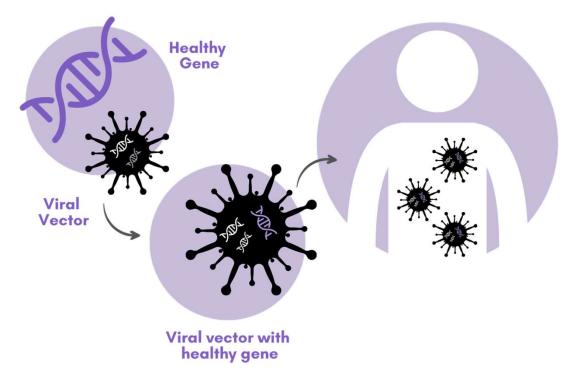
- AAV serotype differentiation
- AAV rapid empty/full ratio determination
- Vaccines differentiate similar, multicomponent vaccines, QC

Compared to NIR/FTIR/Raman

- Lower Limits of Detection
- Exquisite discrimination
- Excellent quantification

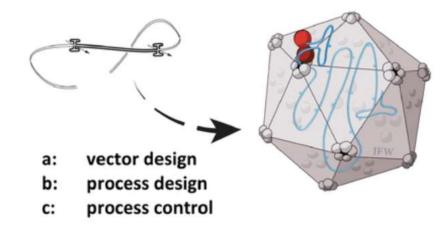
Compared to EEMs

- Speed of acquisition
- Robust IFE correction true A-TEEM Fingerprint
- 2-in-1 modality, adds UV/Vis modality to data set


Acknowledgements

Adam Gilmore, A-TEEM Product Manager, HORIBA Karoly Csatorday, HORIBA, *retired*

Viral Vectors – Characterization Challenges


Human Gene Therapy Products Incorporating Human Genome Editing

Draft Guidance for Industry

Abstract

This article describes quality control testing and characterization of adeno-associated virus (AAV) gene therapy vectors for clinical product development. It explores the relationship between AAV vector design and manufacturing process design with product critical quality attributes required for safety and durable efficacious expression, with emphasis on vector immunogenicity.

rAAV purity, potency and safety = f (a, b, c)

Wright, J.F. (2021), Quality Control Testing, Characterization and Critical Quality Attributes of Adeno-Associated Virus Vectors Used for Human Gene Therapy. Biotechnol. J., 16: 2000022. <u>https://doi.org/10.1002/biot.202000022</u>