Generation, Properties and Applications of Oxygen Nanobubbles in Aeration

Wen Zhang, Ph.D., P.E., BCEE

Professor

Department of Civil and Environmental Engineering Department of Chemical and Materials Engineering New Jersey Institute of Technology Office Phone: (973) 596-5520 Email: wen.zhang@njit.edu Website: <u>http://www.wenresearch.com/</u>

Dr. Xiaonan Shi (former Ph.D. student; graduated in 2022) Department of Civil and Environmental Engineering Email: xs98@njit.edu

Shan Xue, Ph.D. candidate Department of Civil and Environmental Engineering Email: sx59@njit.edu

HORIBA Scientific Webinar on Thursday, February 23, at 1:30 PM **Eastern Time**

Research areas of nanobubbles at Zhang's lab

- 1. Agricultural applications of nanobubbles for smart irrigation (e.g., plant growth mechanisms and nutrient release soil characteristics)
- 2. Development of ozone nanobubble generation, characterization and disinfection
- 3. Aeration and dissolution behavior of oxygen nanobubbles in water for hypoxia remediation
- 4. Soil remediation (oil removal and other pollutant removal)

WVIRO

AL PROTEC

United States Department of Agriculture National Institute of Food and Agriculture

Content

- Fundamentals of nanobubbles, chemistry, colloidal properties, and generation
- The method we produce nanobubbles in water
- Characterization of bubble properties
- Aeration studies using nanobubbles

Nanobubbles and their properties

Nanobubbles (NBs) are nano-size gaseous bubbles with a diameter of less than 1 µm according to the calculation of Peclet number for the ratio of buoyancy force and the Brownian motion

Image cited from Temesgen, Tatek, et al. "Micro and nanobubble technologies as a new horizon for water-treatment techniques: review." Advances in colloid and interface science Volume 246, August 2017, Pages 40-51 New Jersey Institute of Technology

Don't rise to the surface due to pronounced

Low rates of collapses or burst unless under disturbances such as sonication/laser irradiation

A long residence time in water (e.g., 24 h- several

High mass transfer rates or efficiency of air or

Minor hydroxyl radical production under

Surface hydrophobicity and negative charges

Nanobubble generation methods

Hydrodynamic pressurization/depressurization

Electrochemical redox reactions

(c)

Diaphragm

Wen Zhang, Shan Xue, Xiaonan Shi, Taha Marhaba. Chapter title: *Nanobubble Technology: Generation, Properties and Applications*. Book title: Emerging Nanotechnologies for Water Treatment; Chemistry in the Environment Series. *Royal Society of Chemistry*. Print ISBN: 978-1-83916-302-9. Publication year: 2022. https://pubs.rsc.org/en/content/ebook/978-1-83916-389-0

New Jersey Institute of Technology

Visual comparison of microbubbles and nanobubbles

Video sources: http://newmantech.co.kr/nanoe/

formation Bubble on surface and rising behavior

The difference between surface and bulk NBs

Martin Knudsen at work in a laboratory. (Courtesy: University of Copenhagen, Denmark)

- According to the pinning theory, surface NBs usually deform to spherical-cap compared to bulk suspended NBs and thus may have a larger radius of curvature than bulk NBs and a reduced Laplace pressure.
- According to the Knudsen number analysis, bulk NBs may NOT be a Knudsen gas type, whereas the surface NBs are a Knudsen type.
- A Knudsen gas is a gas with the mean free path of molecules (λ) greater than bubble size (height or diameter).
- Moreover, the surface NBs are shown to have a similar order of magnitude of internal pressures with the bulk NBs, though the surface NBs may have deformed to spherical-cap compared to bulk NBs and thus may have a larger radius of curvature than bulk NBs and a reduced Laplace pressure.

Nanobubble generation in Zhang's laboratory

Major research findings in the past:

- Established a colloidal force balance model and a contact mechanics model that yielded consistent predictions of the internal pressures of various NBs (120 psi-240 psi or 8-16 atm).
- \triangleright Dissolution kinetics of O₂ NBs are highly dependent on the initial bubble size as indicated by the changes of bubble size and DO.
- Smaller NBs raised up DO faster, whereas larger NBs could lead to higher equilibrium DO levels.
- The dissolving NBs may <u>either swell or shrink</u> according to the model prediction.

ACS Publication:

The concentration/size distribution of NBs measured by Horiba ViewSizer 3000

- Nanobubble concentration in the DI water reach up to: $4 \times 10^8 + 3.31 \times 10^7$ bubbles $\cdot mL^{-1}$
- Nanobubble mean size: 70 +/- 12.2 nm

The effects of water flow rate, gas pressure and wettability of membrane surface on bubble concentration 250

- The concentration of NBs decreased with the increase of the water flux, due to the reduced time of gas/liquid contact and bubble formation or transfer
- \succ The average size of NBs remained stable when the water flux or cross-flow velocity is less 30 m/h.
- > The bubble size had slight increase with the increase of the water flux, suggesting that high shear flows are not beneficial for nanobubble formation at the membrane/water interface.

Modeling Analysis of Colloidal Stability of NBs in Water

Colloidal force balance model

The suspended or bulk NBs in water could be stabilized by the outbound and inbound pressures from a number of interfacial forces.

The outbound pressure (P_{out})

$$P_{out} = P_s + P_{int}$$

The inbound pressure (P_{in})

 $P_{in} = P_{r} + P_{0} + P_{h}$

When the bulk NBs are stabilized in water ($P_{in} = P_{out}$), the NB's internal pressure (P_{int}) :

$$P_{\text{int}} = \frac{2 \cdot \gamma}{r} + (P_0 + \rho \cdot g \cdot h) - \zeta^2 \left(\frac{\varepsilon}{\lambda_D}\right)^2 \frac{\varepsilon_0}{2 \cdot L}$$

where D is the relative dielectric constant of the gas bubbles (assumed unity) and σ is the surface charge density (C·m⁻²), ε_0 is the dielectric permittivity of a vacuum, 8.854×10^{-12} (C·V⁻¹·m⁻¹), ε is the dielectric constant of water, 80.36 (20 °C), ζ is the zeta potential of NBs (V), z is the distance from the particle's surface to the slipping plane (0.335 nm), **r** is the bubble radius (nm), and λ_D is the Debye length (nm). γ is the water surface tension (72.80 mN·m⁻¹ at 20 ° C), g is the gravity acceleration (9.80 m·s⁻²), ρ is the density of water (kg·m⁻³), and h is the height of water (m).

- Khaled Abdella Ahmed, A., Sun, C., Hua, L., Zhang, Z., Zhang, Y., Marhaba, T., & Zhang, W. (2018). Colloidal properties of air, oxygen, and nitrogen nanobubbles in water: effects of ionic strength, natural organic matters, and surfactants. Environmental Engineering Science, 35(7), 720-727.
- Shi, Xiaonan, et al. "Probing Internal Pressures and Long-Term Stability of Nanobubbles in Water." Langmuir 37.7 (2021): 2514-2522.

(1)

)

Direct experimental measurement of the internal pressure of surface NBs in water

The internal pressure of NBs

$$P_{\text{int}} = \frac{F_{\text{loading}}}{\pi \cdot a^2} \qquad (R - \delta)^2 + a^2 = R^2$$

where the loading force $(F_{loading})$ is the compression force that the AFM probe tip exerts on the sample surface 500pN and a is the radius of the spherical contact area, which is related to the indentation (δ) and the AFM tip radius (R). W is the adhesion energy per unit area $(J \cdot m - 2)$ and E^* is the reduced Young's modulus (MPa), adhesion force (F_{adh}) read directly from the force-distance curve.

Contact mechanics model Johnson-Kendall-Roberts (JKR) model

$$E^* = \frac{F_{adh} \cdot R \cdot \sqrt{2 \cdot R - \delta}}{9 \cdot \delta^{3/2} \cdot (R - \delta)^2}$$

Derjaguin-Muller-Toporov (DMT) model

$$E^* = \frac{F_{loading} + F_{adh}}{\sqrt{R \cdot \delta^3}}$$

E* is related to the Poisson's ratios (v_s and v_T) and the Young's moduli (E_s and E_T) of the sample and tip

$$E^* = \left[\frac{3}{4}\left(\frac{1-\nu_s^2}{E_s} + \frac{1-\nu_T^2}{E_T}\right)\right]^{-1} \approx \left[\frac{3}{4}\left(\frac{1-\nu_s^2}{E_s}\right)\right]^{-1}$$

Assessment of mechanical properties of surface NBs in water

Dissolution Behavior of Oxygen Nanobubbles in water

There are three wide-reported reasons for high colloidal stability and longevity: Selective adsorption of anions such as -OH

- > Hydrogen bonding network
- > Local oversaturation of gas molecules such as air or oxygen
- The high internal pressures lead to fast dissolution rate or driving force of dissolution according to the Henry's law.
- The dissolution leads to the size changes and internal pressure changes

The dissolution behavior and mechanisms of bulk NBs in liquid

https://www.sciencedirect.com/science/article/abs/pii/S0021979721019639

Volumetric mass transfer coefficient ($K_L \cdot a$) and the change of DO during the aeration using O₂ NBs The bulk mass transfer efficiency in aeration is often

Eq:

described by :

$$V\frac{dC}{dt} = K \cdot A \cdot \left(\frac{P_a}{K_H} - C\right) \qquad I$$

 $C_{\rm s} = \frac{P_{\rm int}}{K_{\rm H}}$ where $C_{\rm s}$ is the saturation concentration of oxygen in water and follows the Henry's law

All NBs are treated as spheres with a homogenous radius, calculation of specific surface area (a) using

$$a = \frac{N}{V'} \cdot 4\pi \cdot r^2 = \frac{1}{V'} \cdot \frac{1}{V'}$$

 $K_L \cdot a$ is the volumetric mass transfer coefficient (h⁻¹) is almost 5-8 times that for the O_2 macrobubbles. K_L is the bulk liquid film coefficient that was estimated by the correlation of mass transfer coefficients using Schmidt Number (Sc) Sherwood Number (Sh) by

$$K_L = Sh \cdot D \, / \, ($$

where V is the volume of the solution (m3), C is the O2 concentration in the water (mol·L-1), t is the aeration time (h), K is the bulk transfer coefficient (m·h-1), A is the air-water surface area (m2), Pa is the partial pressure of O2 that governs the DO following the Henry's Law, KH is the Henry's law constant (770 L-atm-mol-1, in water at 298.15 K), and Pa/KH is the saturation concentration of O2 in water (Cs, mol·L-1). The integration of Eq. (1) with boundaries of C=C0 and C=Ct at t=0 and t=t. Pint is internal bubble pressure, Pinj is specific injection pressure.

and

 $(2 \cdot r)$

Volumetric mass transfer coefficient ($K_L \cdot a$) and the change of DO during the aeration using O₂ NBs

This result is predicted by assuming spherical bubbles are well dispersed in a closed water tank without any DO loss due to evaporation or bubble exit from liquid to air (at the initial aeration period of less than 0.2 s).

$$In(\frac{C_s - C_t}{C_s - C_0}) = -(K_L \cdot a) \cdot t$$

The rate of DO increase for 100-nm NBs is almost 4 times that of 1000-nm NBs, due to the high *a* term (the specific surface area of bubbles in liquid $(m^2 \cdot m^{-3}).$

Harmful Algal Bloom (HAB) mitigation by micro/nanobubbles integrated on a multifunctional algal scavenger boat under NJDEP funding support (2021-2024) DO With Treatment

60.0

25AM 25AN

(5:09AN

Ċ

6:09AN

.09A

8-09 A 39:09A 40:09A

ċ

ö

0

31:34AN

ö

Ċ

Volumetric mass transfer coefficient ($K_L \cdot a$) and the change of DO during the aeration using O₂ NBs

(a) when purging O₂ NBs (400 nm) with different K_L (0.0001-0.01 m·s⁻¹) under $P_{ini} = 414$ kPa and (b) when purging O₂ NBs (400 nm) with different injection pressures (100-500 kPa). Other important parameters used in the calculation include: the O₂ gas flow, $Q=7.5\times10^{-6}$ m³·s⁻¹, the volume of NB water, $V=4\times10^{-4}$ m³, DO concentrations in the water at time 0, $C_0 = 9 \text{ mg} \cdot \text{L}^{-1}$

Model prediction of DO and bubble size changes during dissolution of O_2 NBs in water

According to the Epstein-Plesset theory:

$$\frac{dr}{dt} = -\frac{D'\Delta c}{\rho_{\rm g}} \left(\frac{1}{r} + \frac{1}{\sqrt{\pi}}\right)$$

If we ignore the loss of oxygen, the increase of the dissolved gas concentration (c) will be proportional to the dissolution of the gas molecules from NBs, which yields the following equation

$$\frac{dc}{dt} = \frac{N}{V} \frac{dn}{dt} = \frac{N}{V} \frac{dn}{dt}$$
$$= \frac{1}{RT} \frac{N}{V} \left(\frac{V' dP_{\text{int}}}{dt}\right)$$
$$= \frac{1}{RT} \frac{N}{V} \left(-\frac{2\gamma V'}{r^2}\right)$$

(a) The predicted DO levels during the dissolution of O_2 NBs in water (NBs were prepared with the initial radii of 100 and 400 nm). (b) The predicted bubble radius changes during the dissolution. The N/V of $10^{14} \# m^{-3}$ was used in the model calculation.

Effects of filtration/centrifugation on the DO levels of O₂ NBs water

DO levels in different conditions. The centrifugal speed and time were $5300 \times g$ and 10 min.

N lew Jersey Institute of Technology

Aeration and dissolution behavior of oxygen nanobubbles in water S Xue, Y Zhang, T Marhaba, W Zhang - Journal of Colloid and Interface Science, 2022

- The presence of O₂ NBs strongly dictates the DO level and follows the Henry's law.
- Once O₂ NBs are removed by filtration (or \checkmark partially by natural dissolution), the DO level is shown to progressively reduce and eventually reach the equilibrium level $(8.6 \pm 0.5 \text{ mg} \cdot \text{L}^{-1})$ with the ambient air.

Observations of the DO changes after the dilution of the water suspension of O_2 **NBs with DO-free water**

(a) DO levels versus the dissolution time under different dilution ratios (V_{H2O}/V_{NBs}) in an airtight container, (b) The ratio of the initial DO vs the equilibrium DO (C_{i}/C') and the decline rate of DO under different dilution ratio, (c) DO levels versus the dissolution time of O₂ NBs in the container fully filled up and open to the ambient air, and (d) The influence of dilution ratios on the average concentration of O₂ NBs.

New Jersey Institute of Technology

- \checkmark Figure a shows as the O₂ NB suspension was and all dropped to different stable levels (C'). Figure b shows that increasing the dilution C_{i}/C' .
- ✓ Figure c shows that when the liquid mixture occupied the overhead space.
- ✓ Figure d shows that the average number concentration of O₂ NBs in water proportionally reduced when varying dilution ratio (0:10, 3:7, 7:3, 9:1) deoxygenated water.

diluted with deoxygenated water, the initial DO levels (C_i) declined proportionally as expected

ratio (the volume of the spiked deoxygenated water divided by the volume of the NB suspension, V_{H2O}/V_{NB}) will increase the ratio of

was completely open to the air, the DO declined much faster (1.80 mg \cdot L⁻¹ \cdot h⁻¹) than that obtained $(0.38 \text{ mg} \cdot \text{L}^{-1} \cdot \text{h}^{-1})$ when the liquid mixture fully

> was the

with

Conclusion

- \succ The mass transfer coefficient (K_I) is highly dependent on bubble size.
- \succ The dissolution model based on Epstein-Plesset (EP) theory predicts that the saturated dissolved oxygen (DO) level and the size variation are dependent on bubble size.
- > During dissolution, NBs may either swell or shrink depending on the NBs number density
- \succ The internal pressures of O₂ NBs dictate the dissolve oxygen level and also drives the dissolution.
- \succ The experimental measurement and model prediction both revealed the bubble size decreases at high injection or internal gas pressures.
- \succ The colloidal force balance model implies that NBs elicit much higher internal pressures (120~240 psi) than the injection gas pressures (60-80 psi).
- \blacktriangleright Increasing the solution temperatures (6–40 °C) reduced bubble sizes from approximately 400 to 200 nm, which are validated by colloidal model.

Acknowledgement

- The United States Department of Agriculture (USDA), the National Institute of Food and Agriculture, AFRI project [2018-07549].
- The United States Environmental Protection Agency (US EPA) under Funding Agreement No. 83945101 and 84001901 (EPA P3 phase I and II).
- The United States Environmental Protection Agency (US EPA) P2 Program (NP-96259122)
- NJDEP Grant to Prevent, Mitigate and/or Control of Freshwater Harmful Algal Blooms (HABs) (Award Number: 1343716).
- The Lois Berger student fellowship for two Ph.D. students of Zhang's group

United States Department of Agriculture National Institute of Food and Agriculture

New Jersey Institute of Technology

Questions?

Thank you!

