

Fresh Insights into Nanoparticle Characterization: DLS, Diffraction, or NTA

Jeffrey Bodycomb, Ph.D.

Feb. 17, 2021

Outline

Overview

- Laser Diffraction
- Dynamic Light Scattering
- Nanoparticle Tracking Analysis

Analysis Techniques

Laser Diffraction

- Converts scattered light to particle size distribution
- Quick, repeatable
- Powders, suspensions
- Most common technique

LA-960 Optics

Scientific © 2021 HORIBA, Ltd. All rights reserved.

Diffraction effects arise due to scattering from various points in the particle (and, in the large particle limit only the edges)

Effect of Size

As diameter increases, intensity (per particle) increases and location of first peak shifts to smaller angle.

Interpreting Scattering Data

- Scattering data typically cannot be inverted to find particle shape.
- We use optical models to interpret data and understand our experiments.
- Modern systems use particle refractive index in a 3-D calculation (Mie Theory) that includes behavior of light inside of particles.

Gustave Mie Image courtesy ThomasHB4 at English Wikipedia

Flexible Sample Handlers

5-10 ml

35 ml

200 ml

powders

- Wide range of sample cells depending on application
- High sensitivity keeps sample requirements at minimum
- Technology has advanced to remove trade-offs

How much sample (wet)?

It depends on sample, but here are some examples Larger, broad distributions require larger sample volume Lower volume samplers for precious materials or solvents

Sample Handlers	Volume (mL)	
Aqua/SolvoFlow	180 - 330	
MiniFlow	35 - 50	
Fraction Cell	15	
Small Volume Fraction Cell	10	

Instrument to instrument variation

4 instruments (real sample)

	Dmean	D5	D10	D50	D90	D95
Average (nm)	155	112	119	152	193	208
Std. Dev. (nm)	0.8	0.8	0.7	1.0	1.1	0.7
CV (%)	0.5	0.7	0.6	0.6	0.6	0.3

Figure 8: Instrument to instrument variation across four LA-950 systems for Formulation 1.

	Dmean	D5	D10	D50	D90	D95
Average (nm)	193	136	147	187	247	264
Std. Dev (nm)	1.5	0.5	0.4	0.6	0.4	1.1
CV (%)	0.8	0.4	0.3	0.3	0.2	0.4

Figure 9: Instrument to instrument variation across four LA-950 systems for Formulation 2.

Laser Diffraction Benefits

Wide size range

Most advanced analyzer measures from 10 *nano* to 5 *milli* Important when quantifying larger particles in sample

Flexible sample handlers

Powders, suspensions, emulsions, pastes, creams

Very fast

Allows for high throughput, 100's of samples/day

Easy to use

Many instruments are highly automated with self-guided software

Good design = Excellent precision

Reduces unnecessary investigation/downtime

First principle measurement

No calibration necessary

Massive global install base/history

© 2021 HORIBA, Ltd. All rights reserved.

What is Dynamic Light Scattering?

Dynamic light scattering (DLS) refers to measurement and interpretation of light scattering data on a <u>microsecond</u> time scale.

Dynamic light scattering can be used to determine

- Particle/molecular size
- Size distribution
- Relaxations in complex fluids

DLS Optics

Use scattering as a function of time to determine size and size distribution

Brownian motion

Brownian Motion

Particles in suspension undergo Brownian motion (random thermal motion).

- Brownian Motion
 - Random
 - Related to Size
 - Related to viscosity
 - Related to temperature

Hydrodynamic Diameter

 D_m diffusion coefficient D_h hydrodynamic diameter η viscosity k_B Boltzman's constant

What is Hydrodynamic Size?

DLS gives the diameter of a sphere that moves (diffuses) the same way as your sample.

Hydrodynamic Size

The instrument reports the size of sphere that moves (diffuses) like your particle.

This size will include any stabilizers bound to the molecule (even if they are not seen by TEM).

Gold Colloids

Technique	Size nm		
Atomic Force Microscopy	8.5 ± 0.3		
Scanning Electron Microscopy	9.9 ± 0.1		
Transmission Electron Microscopy	8.9 ± 0.1		
Dynamic Light Scattering	13.5 ± 0.1		

SEM (above) and TEM (below) images for RM 8011

Lab to Lab comparison

Colloidal Silica

	Mean determined Z-average size (nm)	COV (%)
Dynamic Light Scattering with SZ- 100, laboratory 1	34.4	0.7
Dynamic Light Scattering with SZ- 100, laboratory 2	34.6	0.3

Why DLS?

- <u>Non-invasive</u> measurement
- Requires only <u>small quantities</u> of sample
- Good for <u>detecting trace amounts</u> of aggregate
- Good technique for <u>macro-molecular sizing</u>

DLS vs. Diffraction: Nanoemulsion

Nanoemulsion production challenges:

- Stability
 - The presence of particles over 1 micron may destabilize the emulsion through Ostwald-ripening
- Sterilization
 - Removal of bacteria by filtering though a 0.22 micron rated filter
 - Preferred sterilization method in vaccine adjuvants, cancer drugs (injectables)
 - Most particles should be below 0.22 microns so they do not plug the filter

NEED effective measurements of particles over 1 micron. Recommend laser diffraction

Symmetric

Nanoemulsion – Vaccine Adjuvant

Smaller particles lead to better flow through filter. You want to follow your size reduction process to help the downstream steps.

Nanoemulsion – Vaccine Adjuvant

Squalane Emulsion processed with Microfluidizer

Effective measurements of particles over 1 micron to give consistent results from start to finish: Recommend laser diffraction

DLS vs Diffraction BSA

BSA- well characterized protein (and likes to aggregate!) DLS – Can be used to determine the aggregation state of the protein

Example on right is aggregated BSA with a lot of dimer.

DLS: does well at small particle size, tiny sample volume (10 microliters

Should be just over~ 7 nm

Nanogold Data

10 nm is lower limit of laser diffraction. DLS is much more comfortable.

Z-avg. Diameter, nm Avg. 50.5 St. Dev. 0.9 COV 1.7 %

	Z-avg. Diameter, nm
Run 1	10.5
Run 2	10.6
Run 3	10.2
Run 4	10.5
Run 5	10.3
Avg.	10.4
St. Dev.	0.2
COV	1.9 %

Scientific

Use scattering to track positions of particles over time to extract size of each particle.

- Visualization of polydisperse particles
- Accurate & reproducible measurement of:
 - Particle number concentration
 - Particle size distribution
 - Particle kinetic processes

Visualization of Brownian motion

What is nanoparticle tracking?

Hydrodynamic size

Gives the diameter of a sphere that moves (diffuses) the same way as your sample.

Problem: Intensity vs size

450 nm laser on polystyrene beads

DLS – large particles skew results (small not detected) or mask small particles

- cNTA different sized particles can't be seen simultaneously (highly irregular images for large particles, dim for smallest)
- cNTA interrogated volume depends on particles size and their refractive index (similar to FC problem when sizing)

Well known problem:

INTERNATIONALISOSTANDARD19430

Particle size analysis — Particle tracking analysis (PTA) method

"Sample <u>polydispersity affects the ability to track and therefore</u> <u>analyze different size fractions</u> in the particle number-size distribution. [...] <u>In a polydisperse sample large particles scatter a lot more than small</u>

particles making it difficult to detect or track small size particles."

Solution: Intensity vs size

450 nm laser on polystyrene beads

© 2021 HORIBA, Ltd. All rights reserved.

Why three colors?

Key benefits of ViewSizer

- Individual particle method, not ensemble average
- Accurate PSD for polydisperse samples
- Concentration measured, not estimated
- Absolute method (no calibration needed)
- Particle visualization

NIST exploratory poly-standard

Concentration values AND detailed distribution means m-NTA

Detailed distribution means m-NTA.

BUT DLS is much faster: ~1 min vs ~13 min.

Concentration values AND detailed distribution means m-NTA

Again, you pay in speed.

Laser diffraction needs more sample.

Lysozyme heated to 60 C

Concentration values AND detailed distribution means m-NTA

But you don't see monomer-dimer like you would with DLS.

Phage Analysis

NTA

Bacteriophage. 2011 Mar-Apr; 1(2): 86–93

Closing Comparison

Issue	Laser Diffraction	DLS	Multi-laser nanoparticle tracking
Large (>1 micron) particles in sample that need to be analyzed	++		-
Small quantity of sample	-	+	+
Smallest particles (<10~50 nm)	-	++	-
Speed	++	+	-
Nanoparticle Distribution	-	-	+
Analyze only tagged particles			+
Nanoparticle Concentration			+

HORIBA Scientific

