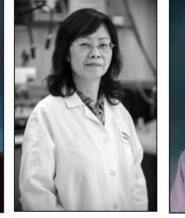


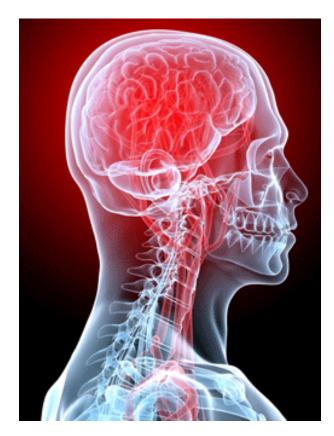
Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature's Biological Nanoparticles


June 11, 2020 HORIBA Webinar Particle Characterization Series

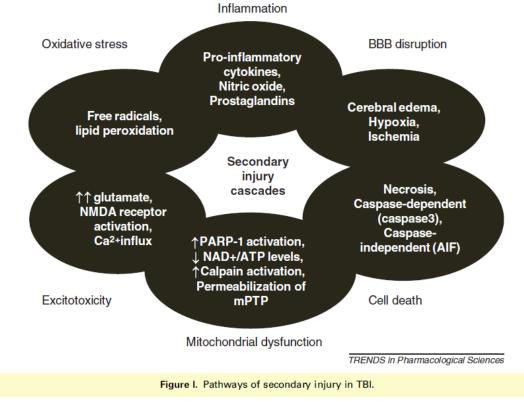
Niaz Zafar Khan

MD/PhD Candidate University of Maryland School of Medicine Medical Scientist Training Program Program in Neuroscience

The Lab for the Study of Central Nervous System Injury

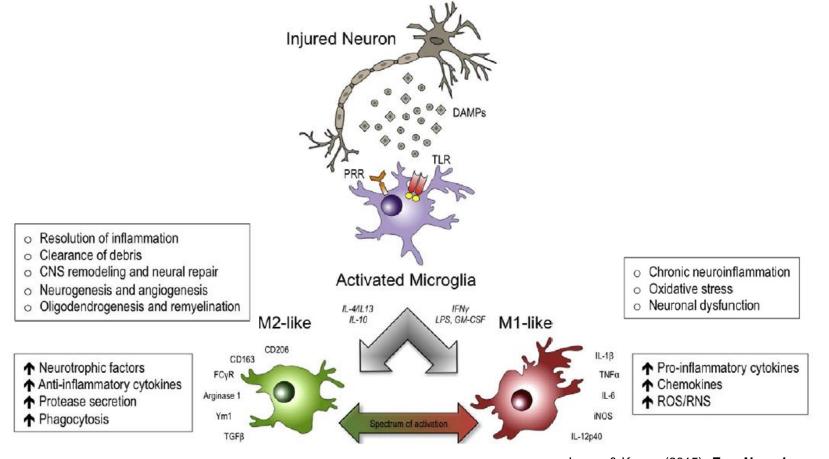

Dr. Alan Faden Dr. Bogdan Stoica Dr. Junfang Wu Dr. Marta Lipinski

Dr. David Loane


UNIVERSITY of MARYLAND School of Medicine

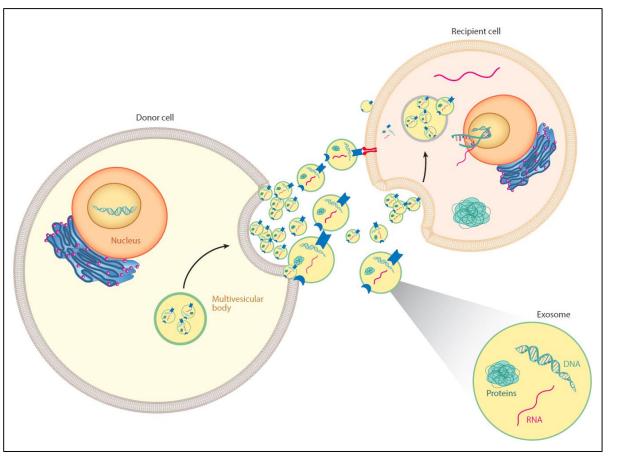
Pathophysiology of CNS Injury

Primary Injury


Secondary Injury

Loane and Faden (2010), Trends Pharmacol Sci

Secondary injury contributes to progressive cell loss after neurotrauma.


Neuroinflammation after CNS Injury

Loane & Kumar (2015), *Exp. Neurol.*

Pro-inflammatory, microglial activation persists months after neurotrauma.

Extracellular Vesicles (EVs)

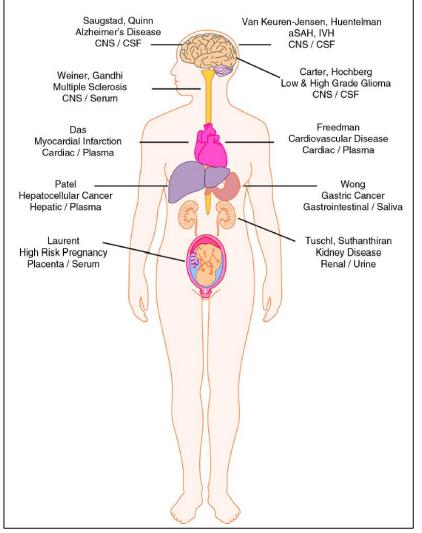
Kourembanas et al. (2015), Annu Rev Physiol

EVs are biological messengers that can transfer proteins, lipids, and nucleic acids.

Brit. J. Haemat., 1967, 13, 269.

The Nature and Significance of Platelet Products in Human Plasma

PETER WOLF


External Scientific Staff of the Medical Research Council, Department of Experimental Pathology, University of Birmingham

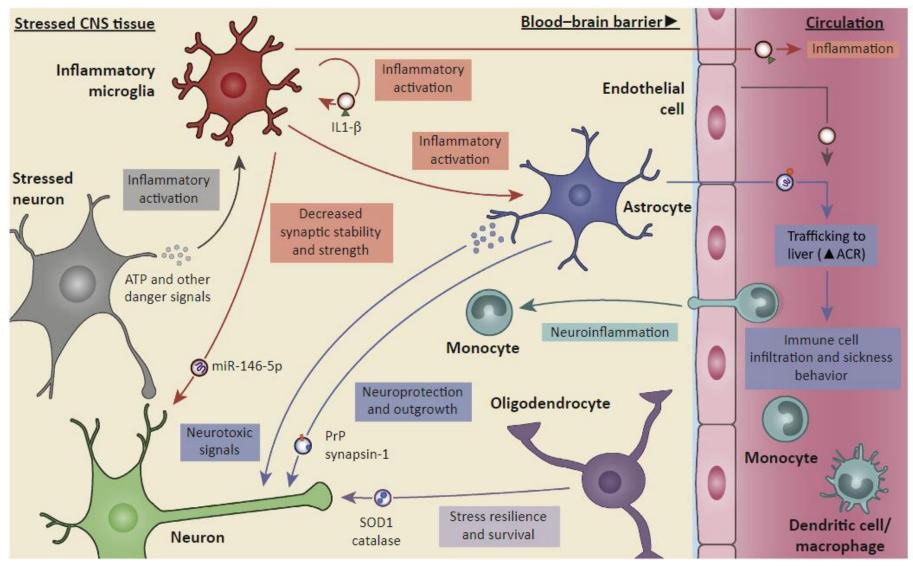
It has been observed that the coagulant activity of citrated plasma increases progressively with storage over some hours. This process has been attributed to 'activation' of platelets (Hougie, 1955). On the other hand, it has been noted that plasma, freed from intact platelets, generates thrombin on recalcification and that the rate of this thrombin generation can be reduced by prior high-speed centrifugation of the plasma (Chargaff and West, 1946). Plateletlike activity has also been found in serum (O'Brien, 1955).

The purpose of the present communication is to provide evidence for the occurrence in normal plasma, serum and fractions derived therefrom of <u>coagulant material in minute</u> particulate form, sedimentable by high-speed centrifugation and originating from platelets, but distinguishable from intact platelets. It is suggested that this material, hereafter referred to as 'platelet-dust', is responsible for the phenomena referred to above. Observations on the

EVs were once thought to be just "dust".

EVs in Biological Fluids

Implications:

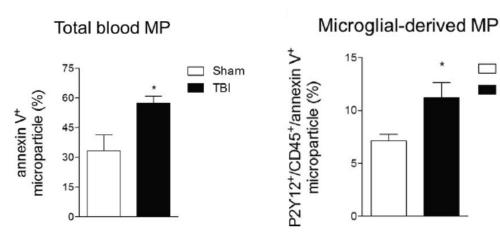

- (1) Biomarker Potential
- (2) Long-distance communication between organ systems
- (3) EVs as drug delivery carriers

Quinn et al. (2015), *J Extracell Vesicles*

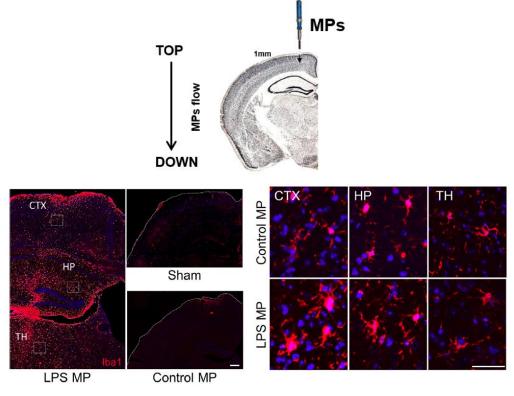
EVs as Biomarkers for Disease

Exosomes and Microvesicles NA and proteins								
Shared mechanisms: extracellular vesicle-mediated cross-talk Aspects of disease affected by the function and contents of extracellular vesicles								
Cancer	Cardiometabolic disease	Neurologic disease	Infectious disease					
 Chemotherapy resistance Oncogenesis Tumor immunity Metastatic disease 	 Cardiomyocyte size Cardiovascular risk factors and prognosis Potentiation or attenuation of cardiac hypertrophy Allograft rejection Metabolic syndrome 	• Neurodegenerative diseases • Trauma • Stroke	 Immune surveillance Response to therapy Early detection Tracking of disease activity 					

Bidirectional Cellular Crosstalk through EVs



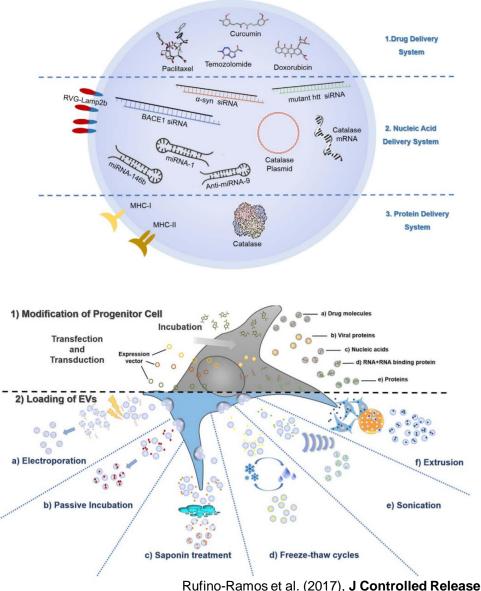
Holm et al. (2018), Trends Neurosci


EVs and Neuroinflammation after TBI

Sham

TBI

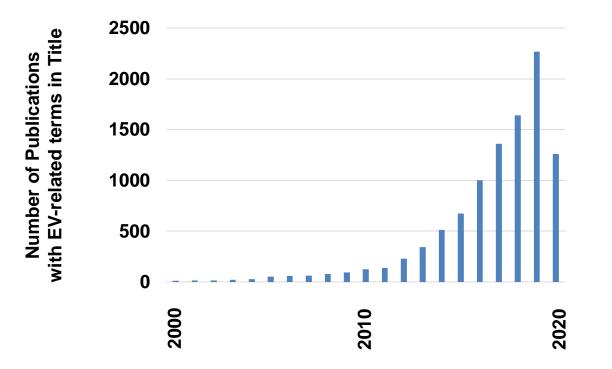
Kumar et al. (2017), *J. Neuroinflammation*



Kumar et al. (2017), J. Neuroinflammation

Blood microparticles (MPs) of microglial-origin analyzed by flow cytometry after TBI.

Pro-inflammatory microglia release MPs that can promote inflammatory activation.


EVs as Therapeutics

- Advantages over synthetic nanoparticle systems may include:
 - Can be Personalized
 - Long circulating half-life
 - Reduced immunogenicity
 - Inherent targeting capabilities
 - Ability to cross biological barriers such as the bloodbrain barrier

EV Research is Skyrocketing!

PubMed Filter for EVs

Need for Standardization in EV Research

JOURNAL OF EXTRACELLULAR VESICLES 2018, VOL. 7, 1535750 https://doi.org/10.1080/20013078.2018.1535750

OPEN ACCESS Check for updates

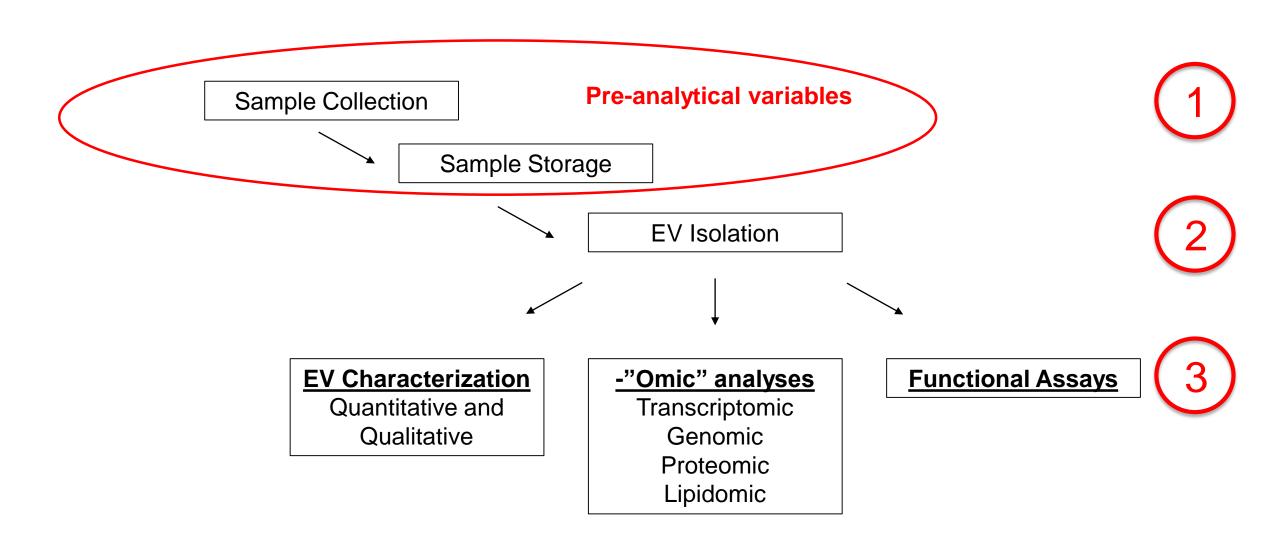
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

Clotilde Théry 10103*[£], Kenneth W Witwer 10217,218*^{&£}, Elena Aikawa^{19,79[£]}, Maria Jose Alcaraz¹¹², Johnathon D Anderson²⁸⁸, Ramaroson Andriantsitohaina⁹⁷, Anna Antoniou^{70,265}, Tanina Arab²⁵⁷, Fabienne Archer³¹⁸, Georgia K Atkin-Smith¹³¹, D Craig Ayre^{15,158}, Jean-Marie Bach²⁵⁴, Daniel Bachurski³⁰¹ Hossein Baharvand^{195,353}, Leonora Balaj¹⁴³, Shawn Baldacchino³²¹, Natalie N Bauer³⁵⁴, Amy A Baxter¹³¹, Mary Bebawy³⁵⁷, Carla Beckham³⁵⁰, Apolonija Bedina Zavec¹⁶⁵, Abderrahim Benmoussa²⁶⁰, Anna C Berardi¹⁷⁹, Paolo Bergese^{39,111,283}, Ewa Bielska²⁸², Cherie Blenkiron^{277&}, Sylwia Bobis-Wozowicz¹¹⁹, Eric Boilard²⁶⁰, Wilfrid Boireau⁵⁸, Antonella Bongiovanni¹⁰⁶, Francesc E Borràs^{72,73,250}, Steffi Bosch²⁵⁴, Chantal M Boulanger^{100,261 £}, Xandra Breakefield¹⁴⁰, Andrew M Breglio^{92,169}, Meadhbh Á Brennan^{82,144,258}, David R Brigstock^{174,221}, Alain Brisson^{238\$}, Marike LD Broekman^{78,134,142}, Jacqueline F Bromberg^{155,379}, Paulina Bryl-Górecka¹³⁶, Shilpa Buch³³⁴, Amy H Buck³⁰⁵, Dylan Burger^{128,180,337}, Sara Busatto^{148,283}, Dominik Buschmann²¹², Benedetta Bussolati³⁶⁰, Edit I Buzás^{160,201&}, James Bryan Byrd³³⁰, Giovanni Camussi^{359É}, David RF Carter¹⁸¹, Sarah Caruso¹³¹, Lawrence W Chamley²⁷⁹, Yu-Ting Chang¹⁷⁰, Amrita Datta Chaudhuri²¹⁸, Chihchen Chen^{171,172}, Shuai Chen¹³³, Lesley Chenq¹³¹, Andrew R Chin²⁵, Aled Clayton²³, Stefano P Clerici²³⁹, Alex Cocks²³, Emanuele Cocucci^{220,222[£]}, Robert J Coffey³⁷³, Anabela Cordeiro-da-Silva³⁴⁶, Yvonne Couch³⁴⁰, Frank AW Coumans⁷⁵, Beth Coyle²²⁷, Rossella Crescitelli³⁰⁸, Miria Ferreira Criado³⁵², Crislyn D'Souza-Schorey³³⁵, Saumya Das141, Paola de Candia116, Eliezer F De Santana Junior225, Olivier De Wever22,75, Hernando A del Portillo^{101,104,117}, Tanguy Demaret²⁵⁶, Sarah Deville^{262,377}, Andrew Devitt¹², Bert Dhondt^{22,74,75}, Dolores Di Vizio^{25&£}, Lothar C Dieterich⁴⁹, Vincenza Dolo³¹⁵, Ana Paula Dominguez Rubio²⁴³, Massimo Dominici234,333#, Mauricio R Dourado298,338, Tom AP Driedonks369, Filipe V Duarte53, Heather M Duncan^{150,152}, Ramon M Eichenberger¹²⁰, Karin Ekström³⁰⁶, Samir EL Andaloussi^{51,127}, Celine Elie-Caille⁵⁸, Uta Erdbrügger^{366&}, Juan M Falcón-Pérez^{32,94&}, Farah Fatima³⁵¹, Jason E Fish^{233,362}, Miguel Flores-Bellver³⁰², András Försönits²⁰¹, Annie Frelet-Barrand⁵⁸, Fabia Fricke^{68,267}, Gregor Fuhrmann^{86,87,197}, Susanne Gabrielsson¹²⁶, Ana Gámez-Valero^{72,251}, Chris Gardiner^{264⁸}, Kathrin Gärtner⁸⁵, Raphael Gaudin^{99,259}, Yong Song Gho^{187£}, Bernd Giebel^{266#}, Caroline Gilbert²⁶⁰, Mario Gimona¹⁸³, Ilaria Giusti³¹⁵, Deborah CI Goberdhan³³⁹, André Görgens^{51,123,2665}, Sharon M Gorski^{16,204}, David W Greening¹³¹ Julia Christina Gross^{270,271}, Alice Gualerzi¹¹⁵, Gopal N Gupta¹³⁵, Dakota Gustafson³⁶², Aase Handberg²⁴, Reka A Haraszti³²⁵, Paul Harrison²⁸¹, Hargita Hegyesi²⁰¹, An Hendrix^{22,75}, Andrew F Hill^{131&£}, Fred H Hochberg^{200,293}, Karl F Hoffmann⁶, Beth Holder^{95,159}, Harry Holthofer^{263 £}, Baharak Hosseinkhani⁸³, Guoku Hu³³⁴, Yiyao Huang^{162,217}, Veronica Huber⁶¹, Stuart Hunt²²⁹, Ahmed Gamal-Eldin Ibrahim²⁶, Tsuneya Ikezu¹⁸, Jameel M Inal³¹³, Mustafa Isin¹¹⁸, Alena Ivanova⁶⁹, Hannah K Jackson²²⁷, Soren Jacobsen^{38,304}, Steven M Jay³²⁴, Muthuvel Jayachandran¹⁴⁵, Guido Jenster⁴⁷, Lanzhou Jiang¹³¹, Suzanne M Johnson³²², Jennifer C Jones^{166⁵}, Ambrose Jong^{30,355}, Tijana Jovanovic-Talisman³⁴, Stephanie Jung⁷¹, Raghu Kalluri³⁵⁸, Shin-ichi Kano²¹⁹, Sukhbir Kaur¹⁶⁷, Yumi Kawamura^{164,365}, Evan T Keller^{327,331}, Delaram Khamari²⁰¹,

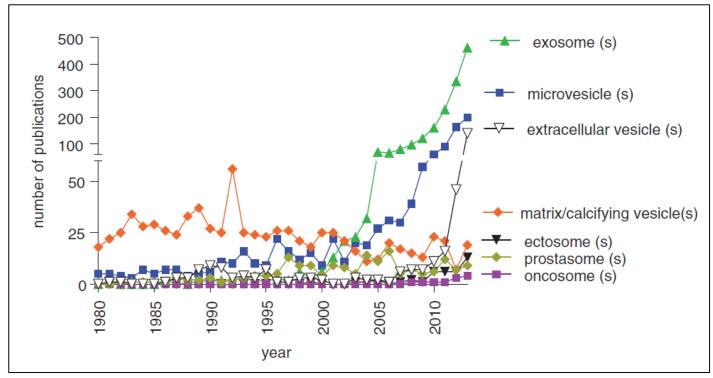
CONTACT Clotilde Théry 😨 Clotilde.Thery@curie.fr 😨 Institut Curie/INSERM U932, 26 rue d'Ulm, 75005 Paris, France; Kenneth W Witwer ©kwitwer1@jhmi.edu 😳 733 North Broadway, MRB 829 Baltimore, MD 21205, USA

Journal of Extracellular Vesicles

CONCTION

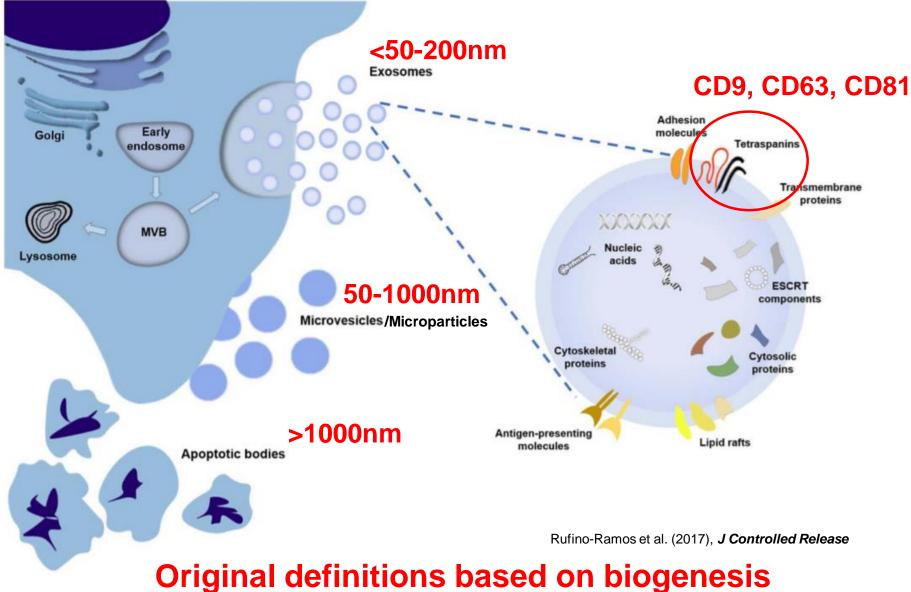

EDITORIAL

Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles


Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

Keywords: extracellular vesicles; microvesicles; microparticles; exosomes; ectosomes; extracellular RNA

Workflow in EV Research


EV Nomenclature

ISEV (2014), J Extracell Vesicles

Extracellular vesicle (EV) is the umbrella term endorsed by ISEV

Classification of EVs

Classification of EVs

Centrifugation Steps <u>Traditional definitions</u>

- 1. 1000*g*, 10 min \longrightarrow Cell Debris
- 2. 2000g, 20 min \rightarrow Apoptotic Bodies
- 3. 10,000g, 30 min \rightarrow Microvesicles
- 4. 100,000g, 2 hr \longrightarrow Exosomes

Current ISEV recommendations

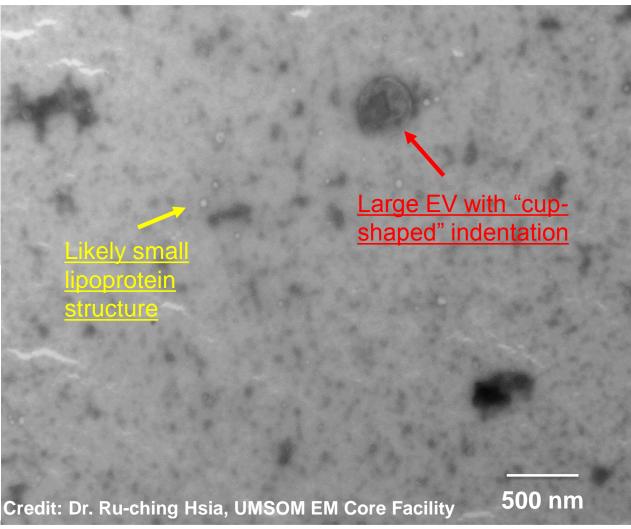
- No current isolation protocol can purify based on biogenetic origin
- Size is not an appropriate defining feature alone
- Describe EVs based on
 - Physical characteristics
 - Size: Large EVs, medium EVs, small EVs
 - Biochemical characteristics
 - Cell origin or stimulus condition

Original definitions based on biogenesis and physical separation

EV Isolation

SCIENTIFIC REPORTS

OPEN Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection


Received: 14 January 2016 Accepted: 21 March 2016 Published: 18 April 2016

Barbara W Sódar¹, Ágnes Kittel², Krisztina Pálóczi¹, Krisztina V Vukman¹, Xabier Osteikoetxea¹, Katalin Szabó-Taylor¹, Andrea Németh¹, Beáta Sperlágh², Tamás Baranyai², Zoltán Giricz³, Zoltán Wiener¹, Lilla Turiák⁴, László Drahos⁶, Éva Pállinger¹, Károly Vékey⁶, Péter Ferdinandy³, András Falus¹ & Edit Irén Buzás¹

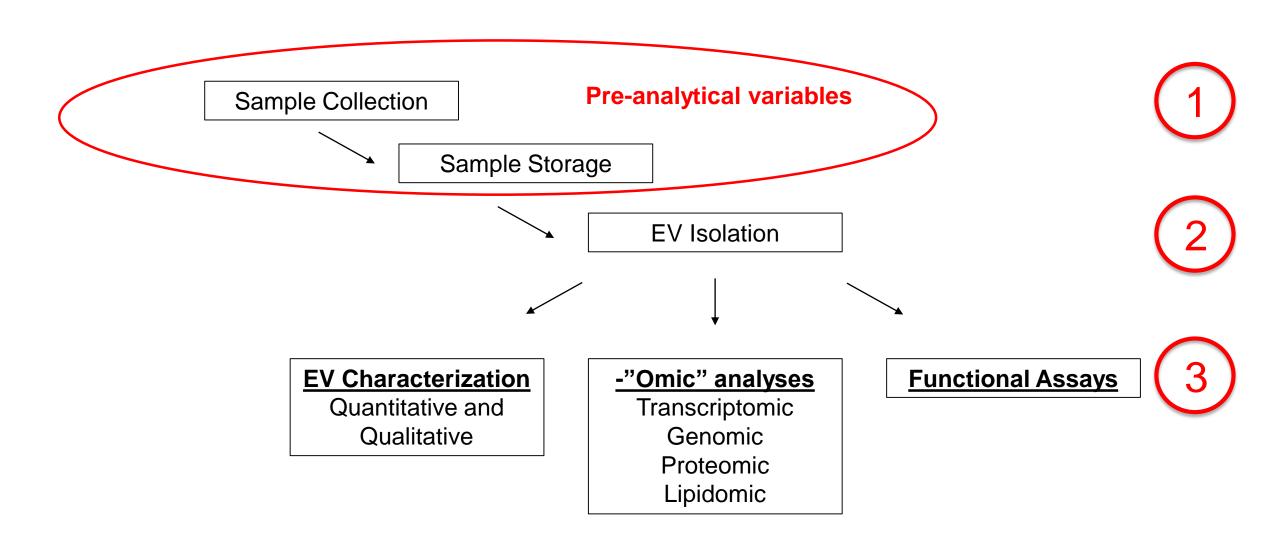
Article

Reassessment of Exosome Composition

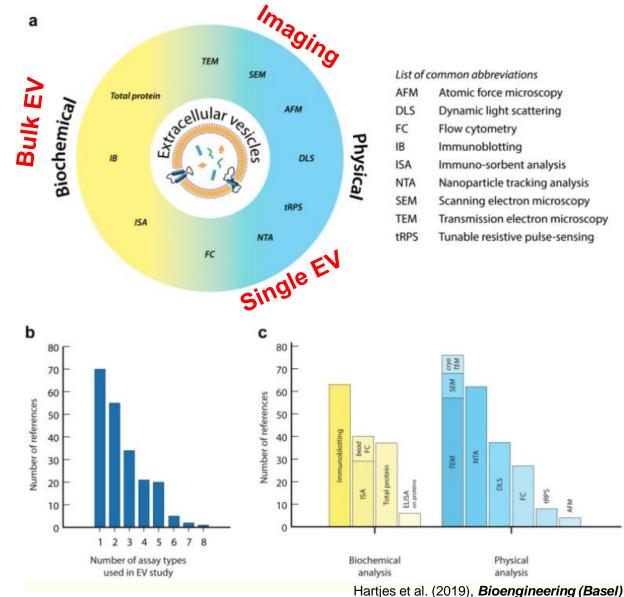
Dennis K. Jeppesen,¹ Aidan M. Fenix,² Jeffrey L. Franklin,^{1,2,8} James N. Higginbotham,¹ Qin Zhang,¹ Lisa J. Zimmerman,³ Daniel C. Liebler,³ Jie Ping,⁴ Qi Liu,⁴ Rachel Evans,⁵ William H. Fissell,⁶ James G. Patton,⁶ Leonard H. Rome,⁷ Dylan T. Burnette,² and Robert J. Coffey^{1,2,8,9,*} ¹Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA ²Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA ³Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University Medical Center, Nashville, TN 37232, USA ⁴Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA ⁵Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA ⁶Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA ⁷Department of Biological Chemistry, David Geffen School of Medicine and the California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA ⁸Veterans Affairs Medical Center, Nashville, TN 37232, USA ⁹Lead Contact ^{*}Correspondence: robert.coffey@vumc.org https://doi.org/10.1016/j.cell.2019.02.029

Ultracentrifugation has been the gold-standard procedure but lacks purity

Cell

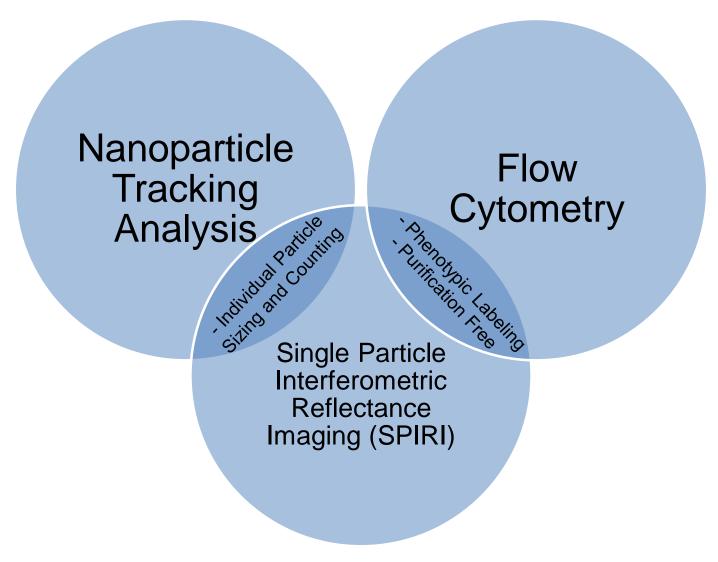

EV Isolation

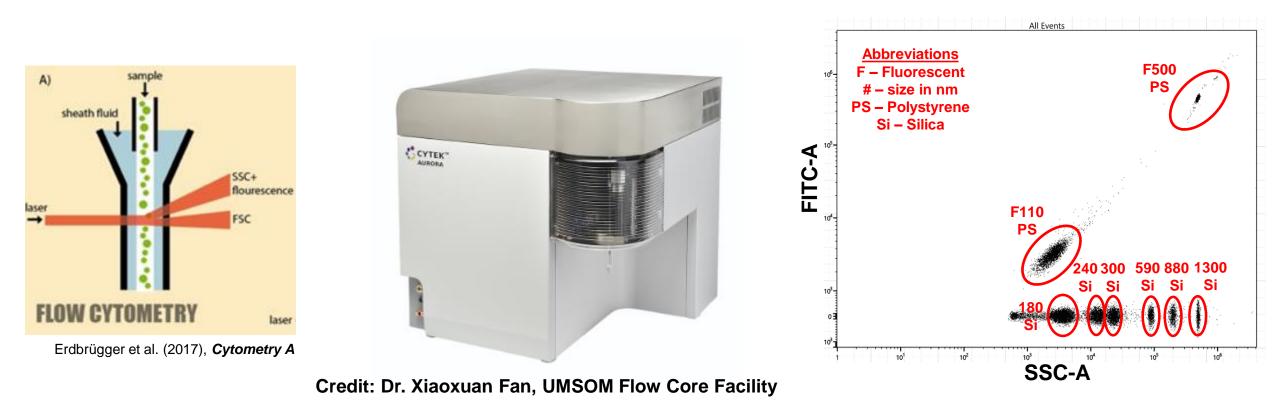
	Differential Centrifugation (DC)	Density Gradient Centrifugation (DGC)	Size Exclusion Chromatography (SEC)	Ultrafiltration (UF)	Immuno Capture (IC)	Precipitation (P)
CONTAMINANTS	Lipoproteins, protein aggregates, viruses	Lipoproteins (HDLs)	Lipoproteins, protein, protein aggregates, viruses	Same size particles	Soluble proteins	Protein
MAJOR ARTEFACTS	EV-particle aggregates			EV-particle aggregates		Protein complex, EV - particle aggregates
EV RECOVERY %	2 to 80	10	40 to 90	10 to 80		90
ASSAY TIME (h)	3 to 9	16 to 90	0.3	0.5	4 to 20	0.3 to 12
SAMPLE VOL	mL-L	μL-mL	µL-mL		μL-mL	μL-mL
CLINICAL APPLICABILITY	NO	NO	YES	NO	YES	YES


https://www.nanoviewbio.com/characterize

Isolation methods have differing levels of recovery and purity

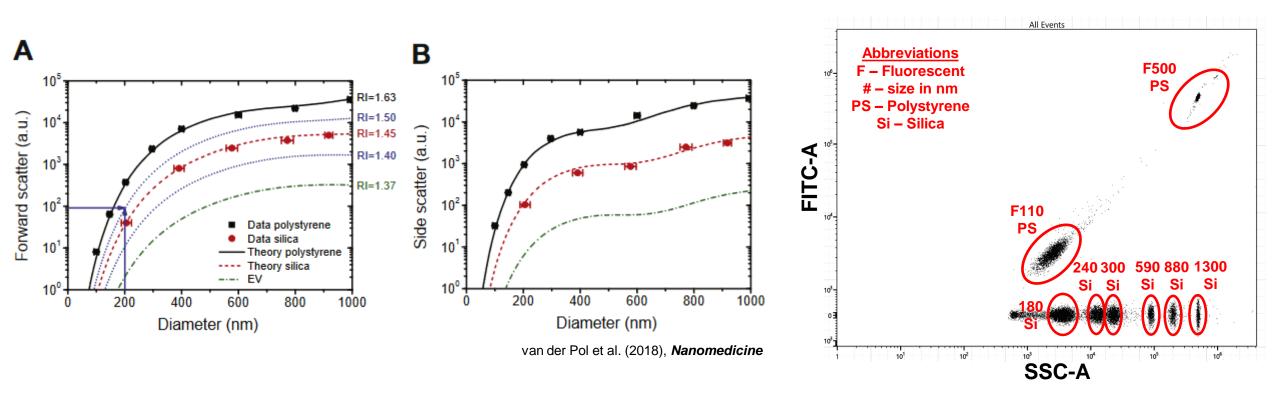
Workflow in EV Research


EV Characterization Toolbox

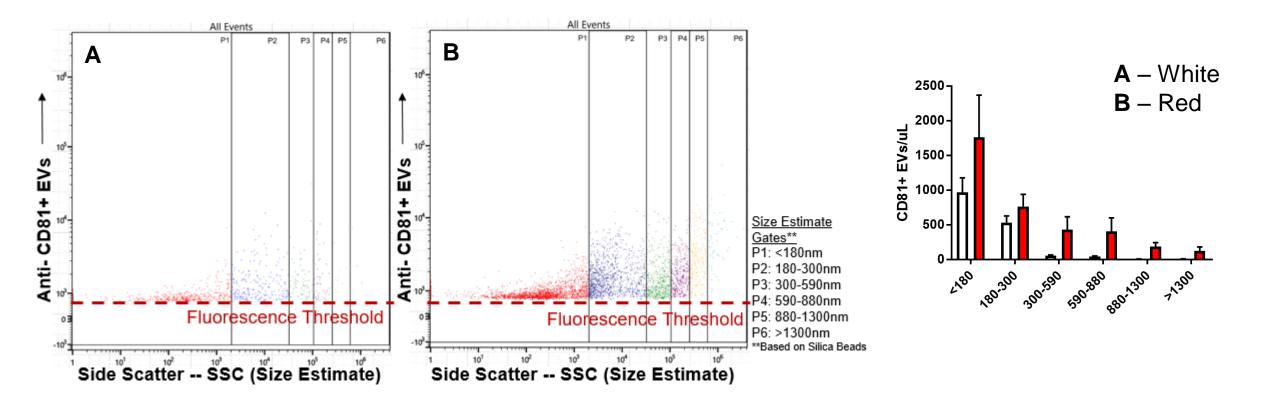

Considerations in evaluating technology:

- EV Size
- EV Count
- EV Phenotype
- EV Morphology/Visualization
- Single EV or Bulk analysis?
- Isolation or Direct detection?

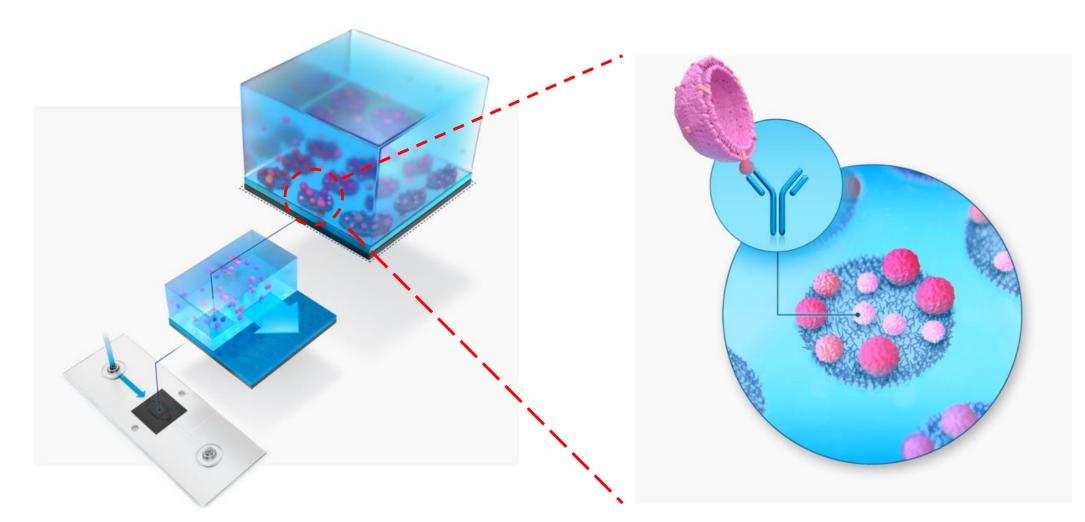
EV Characterization Toolbox



Phenotyping EVs by Flow Cytometry


Flow Cytometry provides excellent phenotyping capability but size resolution is a limitation, especially for small EVs

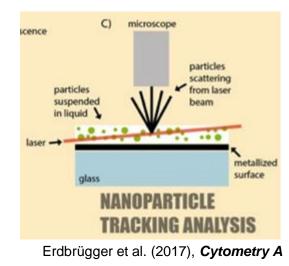
Phenotyping EVs by Flow Cytometry

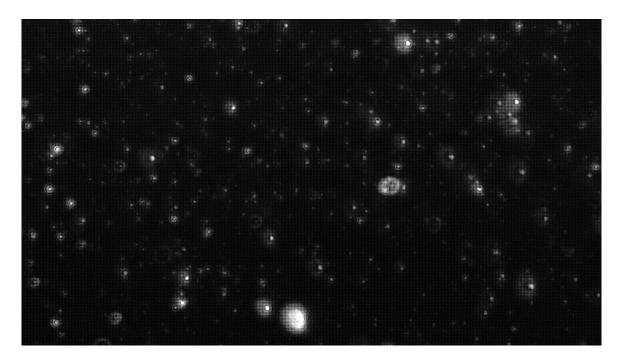

Sizing with beads to estimate EV size is inaccurate due to biophysical differences

Phenotyping EVs by Flow Cytometry

Flow Cytometry provides excellent phenotyping capability but size resolution is a limitation, especially for small EVs

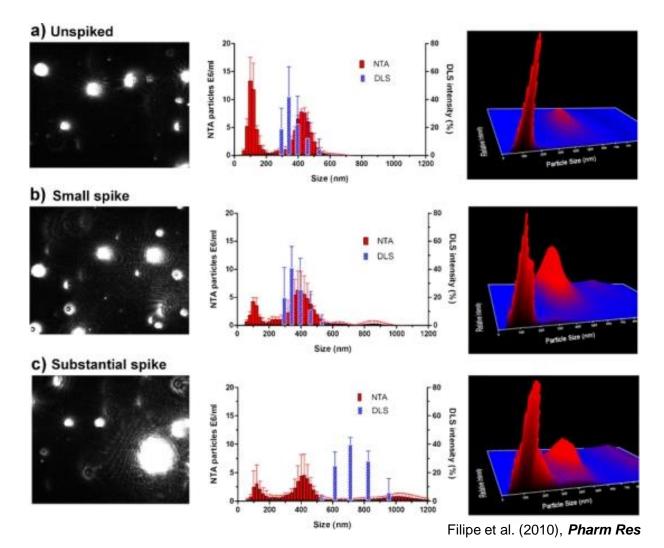
ExoView® R100 Technology


Antibody capture and imaging of tetraspanin positive EVs -- CD9, CD63, CD81



CD9 Capture Spot

Nanoparticle Tracking Analysis for EVs


Stokes-Einstein equation

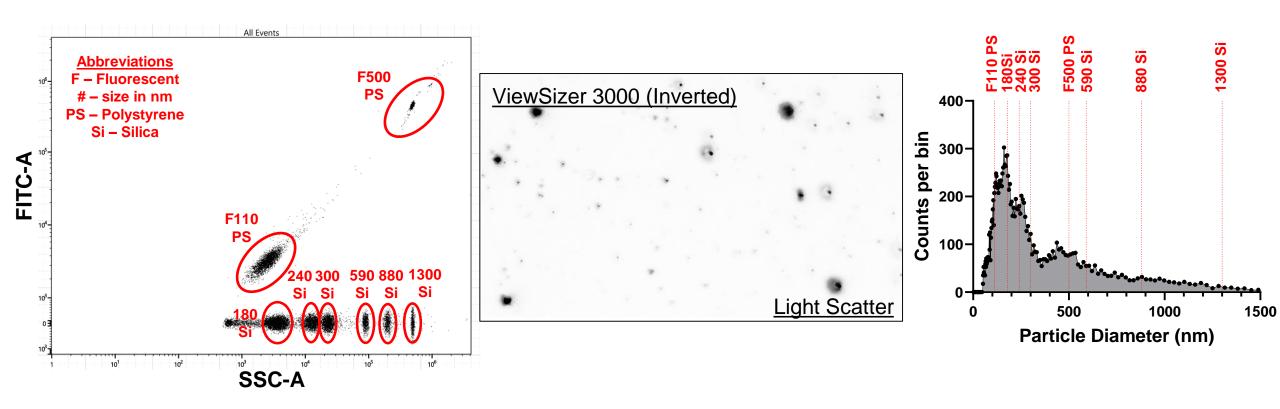
$$D = \frac{k_B T}{6\pi\mu R_0}$$

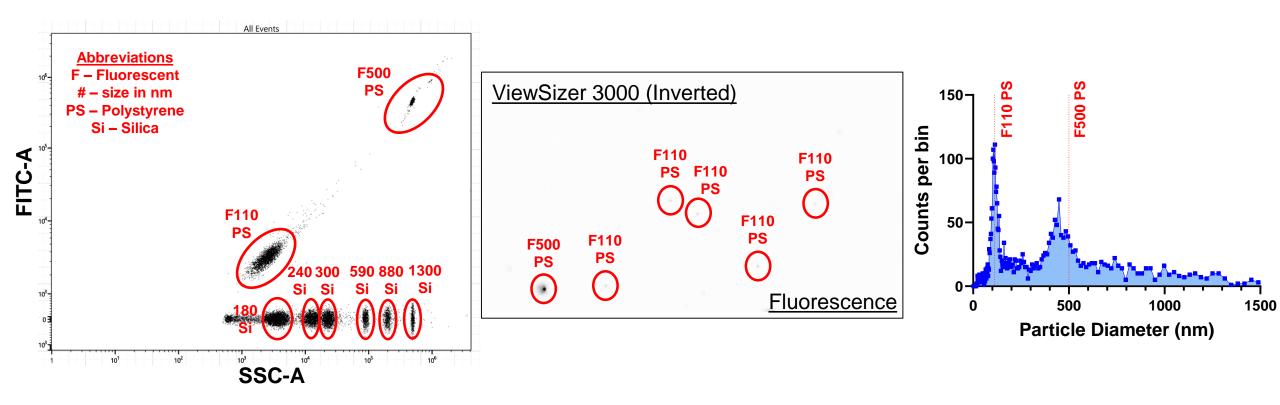
D – diffusion coefficient μ - solvent viscosity R_0 – solute radius k_B – Boltzmann's constant T – temperature (K)

NTA has been used extensively in EV research since the mid-2000s

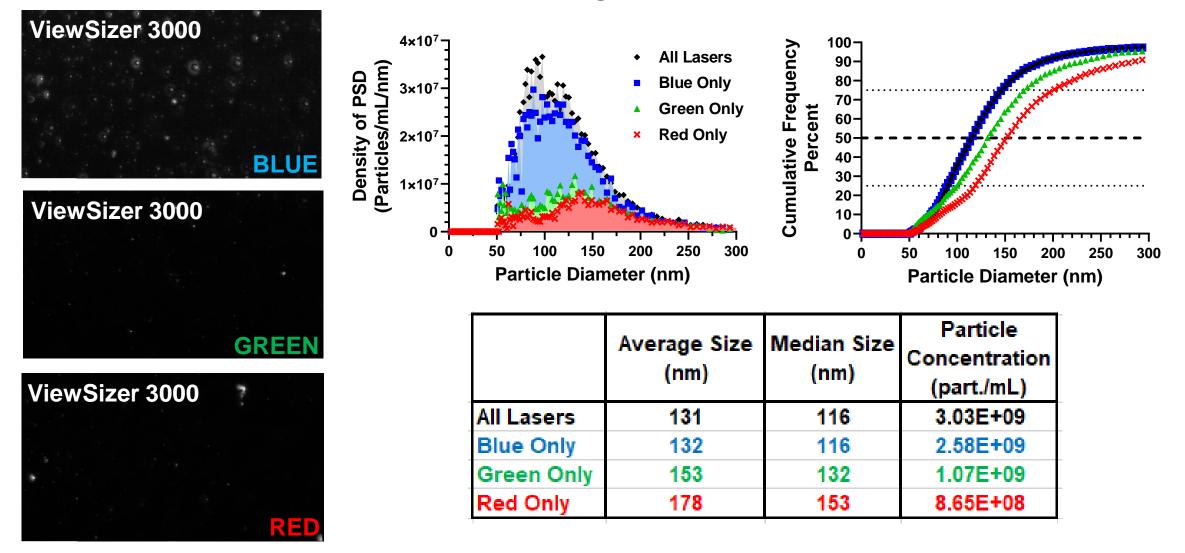
Nanoparticle Tracking Analysis for EVs

NTA represented an important advance over DLS for polydisperse mixtures

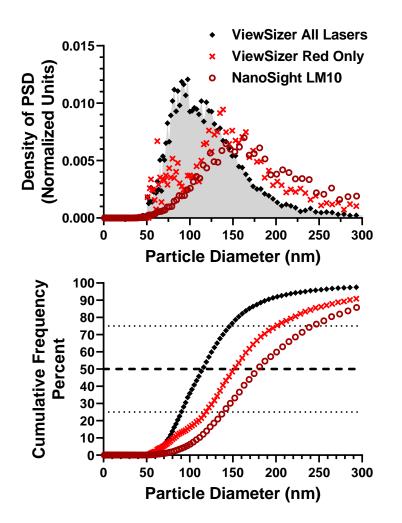

Multi-Spectral Advanced NTA (MANTA) ViewSizer 3000


ViewSizer can use three lasers simultaneously to visualize nanoparticle samples

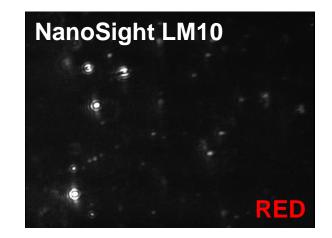
ViewSizer 3000 Performance


ViewSizer can accurately resolve a complex, polydisperse bead mixture.

ViewSizer 3000 Performance


ViewSizer can identify fluorescent particles uniquely out of a polydisperse mix.

Influence of Laser Wavelength on Particle Detection



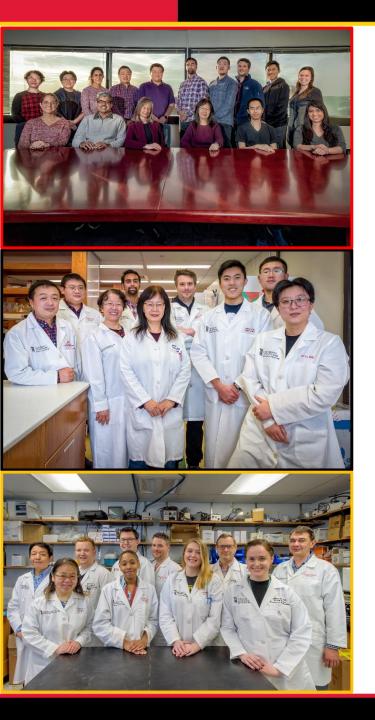
EVs isolated from plasma require higher energy wavelengths for accurate analysis

ViewSizer 3000 Comparison with NanoSight LM10

Laser wavelength can significantly affect particle count and size distribution

Future Potential of NTA in EV Research

Biggest Advantages


Accurate counting and sizing of individual nanoparticles Fluorescence NTA may help distinguish real EVs from contaminants

Current Limitations

Conventional NTA requires a clean EV isolation procedure Minimum size detected for biologics – 50nm?

Future Directions

What design features can be added to improve lower detection limit? Can instruments be designed for multiplex phenotyping like flow cytometry?

A. JAMES CLARK SCHOOL OF ENGINEERING

<u>Mentor Team</u> Alan Faden, M.D. Junfang Wu, M.D., Ph.D. Steven Jay, Ph.D. ...and the rest of the lab!

Funding Sources

RF1 NS110637-01 (JW/SJ) R01 NS094527-03 (JW) R01 2NR013601-07 (JW/AIF) R01 NS110635-01 (JW/AIF) R01 NS110567-01 (JW)

Acknowledgements

Bill Travers, Ph.D. Sean Travers, Ph.D. Jeff Bodycomb, Ph.D. Julie Chen Nguyen, Ph.D. Kuba Tatarkiewicz, Ph.D.

Resources to learn more about EVs/exosomes

• Latest MISEV guidelines (2018)

https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1535750

• Original ISEV position statement (MISEV 2014)

https://www.tandfonline.com/doi/full/10.3402/jev.v3.26913

• Coursera Course "Basics on Extracellular Vesicles"

https://www.coursera.org/learn/extracellular-vesicles#about

• Extracellular Vesicle Club for latest advances in research https://www.youtube.com/channel/UC0nhdTaTEUqp08anXZqRdkQ