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UCI & HORIBA Institute for EVs and Battery Testing

HIMaC? Laboratories

HIMaC? comprises the four following laboratories:
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1. Vehicle Evolution Laboratory (VEL)

2. Grid Evolution Laboratory (GEL)

3. Connected and Autonomous Mobility Laboratory (CAML)
4. Analytic Laboratory (AL)
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Elecirode Design: reduce Cost and increase Durability
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Combine ingredients Ball-milling or spraying

Catalyst ink

Mounting into fuel cell Decal hot press
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Bipolar plate
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catalyst
particles

Titanium PTL Anode catalyst  PEM (50- Cathode catalyst Carbon GDL

Anode catalyst
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UCI &5 .. Dynamic light scattering: nanoparticle size

Measurement of hydrodynamic radius of particles dispersed in a solution

Observed Intensity vs time graph and correlation!!]
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UCI &5 .. Dynamic light scattering: nanoparticle size

What ‘size’ is being measured?

Hydrodynamic radius of the particle Size of EDL affects measurement Colloidal particle with polymer chains
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UCI &5 .. Dynamic light scattering: nanoparticle size

Effects of chemical composition of the solution

Size distribution of carbolxylated latex beads PEM electrolyzer anode: IrO, catalyst particle size in solutions
in different background solutions!! with different ionomer loadings[z]
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UCI &y Dynamic light scattering: nanoparticle size

Size of particles measured by different techniques

DLS: particles moves with its EDL Electron microscopy: scattering from electron-dense region(!
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Electrophoretic light scattering: zeta potential

Measurement of zeta potential of nanoparticles in a colloidal dispersion

Doppler effect: change in
frequency due to relative
motion between source and
the observer
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[1] Dixit et al, Journal of Electrochem. Soc, 2018 11/18

Interaction energy: Derjaguin-Landau-
Verwe-Overbeek (DLVO)[!
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UCI &sq .. Electrophoretic light scattering: zeta potential

Determining catalyst ink stability from zeta potential

Catalyst ink stability: choice of Catalyst ink stability: visual analysis!?!
dispersing medium (no ionomer)!!! dispersion with low zeta sediments faster
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Different dispersion media _ _ D- isopropanol
Choice based on zeta potential

analysis: Isopropanol 12/18 [1] Xu et al, Carbon 2007 [2] Shukla et al, Journal of Electrochem. Soc, 2017



UCI &sq .. Electrophoretic light scattering: zeta potential

Zeta potential and ink stability in catalyst inks in presence of ionomer

Effect of ionomer on ink stability (Vulcan XC 72R)I1l  Effect of ionomer on ink stability (IrO,)!
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Electrophoretic light scattering: zeta potential

Zeta potential and its variation with chemical composition

Charging at a solid-electrolyte interface
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When no potential is applied on
solid, charging occurs due to
adsorption and desorption of ions
present in the electrolyte. In
aqueous solution, H* and OH" are
principal charge determining ions

Electroneutrality in EDL. <
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Site-binding equilibrialll
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Analytical prediction and experimental results
applied to polycrystalline Au-electrolytel?!
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[2] Saha et al, Journal of Electrochem. Soc, 2021 (under review)
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Electrokinetics techniques: zeta potential

Zeta potential measured by various techniques

Electrophoretic light scattering
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U Experimental technique flexible for different geometries
O For conductive samples, streaming current is convenient
U Flexible across choice of electrolytes

0 Can apply potential on the sample and study charging behavior
15/18 [1] Werner et al, Journal of Colloid & Interfac. Sci., 1998
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Modified Helmholtz-Smoluchowski Eqn!!]
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Equivalence between DLS and streaming current/potential

[unpublished]
For Vulcan XC 72ZRHunptoishe For polycrystalline Aul!l
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Equivalence between DLS and streaming current/potential established for the first time

16/18 [2] Saha et al, Journal of Electrochem. Soc, 2021 (under review)
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Outlook: zeta potential in ionic liquid

Interaction at solid-ionic liquid interface

is not very well understood Limitations of light scattering technique

80 . T e Pl P N o= 20mME.CI1+80mM EMIMCI
| i

~—20mMKCH+80mM HMIMC| L Measures effective size of the particle, not actual

60 - —=— 20mMK.CI+80mM OMIMCI
=== 100mM OMINM CI
i 404 — T omm B O Principle limitation is the concentration of
B 2. N— electrolyte. Light scattering technique works
5 only with dilute electrolytes
2 %
S 20 [ Electrophoresis requires using an electrolyte
) 40 which has almost same mobilities (diffusion
constant) for the cation and the anion. This
60 |

pH poses restrictions on the choice of electrolytes
zeta vs pH of kaolinite in ionic liquid!!!
O Can’t apply potential and measure zeta potential
O Imidazolium cations get adsorbed on the solid
makes zeta potential positive

O May have significant consequences for fuel cells
[1] Markiewicz et al, Chemosphere, 2013 17/18
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Size measurement Zeta potential measurement

U DLS enables measurement of nanoparticle 0 Zeta potential of nanoparticles in a dispersion
agglomerates in a colloidal dispersion reveals surface charge of the particles

0 Shows how agglomeration phenomena O Dispersion with a higher values of zeta potential
are related to the particle-solvent interaction implies higher stability. Implies higher shelf life

catalyst inks.
L Works well in dilute solutions
U DLVO theory can successfully explain the stability.
U Gives an estimate of hydrodynamic size Problems arises when ionomers are present.
Several extended DLVO models have been proposed
U Size includes the particle + EDL. Other size
determination techniques like electron U An optimum ionomer coverage reveals high zeta
microscopy produces different results potential and higher stability

L Adsorption of ionic liquid on nanoparticles can be

studied by zeta potential measurement 18/18
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