

Blending: It is Never as Easy as it First Apprears

September 23, 2021

Particle Processing Services

Toll Manufacturing

Research & Development

Innovative Solutions

PRESENTED BY: WILLIE HENDRICKSON, CEO & FOUNDER

Presentation Outline

- Overview of AVEKA
- Particle Processing 101 The Big 6
- Brazil Nuts and Powdered Sugar Doughnuts
- Blending Methods
- Derek Geldart and powder flow/fluidization
- Examples
- Opportunities
- Conclusions

AVEKA Group Overview

- Particle technology company focused on contract manufacturing
- Spin-off of 3M in 1994
- Comprised of 5 separate companies
- ISO certifications / food-grade certifications
- Currently 290 employees

Particle Processing

The Big Six:

- Characterization
- Flow/Blending
- Size Reduction
- Drying
- Agglomeration
- Particle Coating

Brazil Nuts and Powdered Sugar Doughnuts

What Conditions Should You Use?

Muzzio and Shinbrot IFPRI Final Report Powder Mixing and Segregation 2001

Double Cone Blender 1.6 mm dark beads; 3.7 mm white beads High Rotational Speed

Blending Whys and Challenges

- To improve final product uniformity
- Create new product with multiple components
- Enhance reactions
- Improve powder flow

- Uniformity
- Segregation
- Particle breakage
- Agglomeration
- Micro growth

Blending Methods

- Ribbon Blender
- Forsberg Blender
- Plough Blender
- V-Blender
- Paddle Mixer
- Fluid Bed Dryer

Blending Methods (part II)

Acoustic Mixing Tumble Mixing Centrifugal Mixing Spray Drying Magnetically Assisted Mixing Funnel Mixing

Which Blender is the Correct Blender?

MAXIMUM DENSITY OF MATERIAL

MATERIAL CHARACTERISTICS ON HIGHEST CAPACITY

Ribbon Blender	75 lbs/ft ³	Bulk Density	Lower
Paddle Blender	75 lbs/ft ³	Particle Size	Small
Nauta Mixer (cone)	200 lbs/ft ³	Particle Shape	Spheres
Double Cone	500 lbs/ft ³	Angle of Repose	Low
V- Blender	500 lbs/ft ³	Cohesive/Adhesive	Cohesive
		Moisture	Low/High

From Jeff Hoffmann, Paul O. Abbe

Processing Dilemmas

- Available equipment dilemma
- Volume/Scalability dilemma
- Powder flow dilemma
- Functionality dilemma

Geldart Particle Classification

Group A	Aeratable
Group B	Sand-Like
Group C	Cohesive
Group D	Spoutable

The Examples.... Finally

Standard Blending

- Food materials ribbon
- Industrial chemicals forsberg
- Minerals v-blender

Blending Gone Bad

Liquid addition and mixing

Clever and Unique Solutions

- Triturations
- Funnel flow
- Magnetic assisted mixing
 - Solids
 - Liquids and solids

Statement of need

- How we approached the problem
- Why we chose a particular blending method

Blending Using Ribbon Blenders

Statement of challenge

- Food Powder Blending
 - Yeasts, starches, dry flavoring
 - Particles about the same size
 - No special requirements

The Result – straightforward and reliable

- Nothing
 - This is standard process for food materials at AVEKA

THE REALITY

- Only real issues can be
 - Bag dumping
 - Formulation

Blending Using High Shear Mixing

Statement of challenge

- Continuous highvolume mixing
- Some liquid addition
- Post drying required

Results

- Blending up to 5000 lbs. per hour
- Small footprint
- Agglomeration minimized/maximized by controlling liquid feed rate
- Continuous post drying and screening may be needed

• Nothing

THE REALITY

- Process in production
- When mixing and agglomerating – yields can be 60%. Recirculation needed

Blending Using V-Blenders

Statement of challenge

- Industrial ceramic material
- Up to 300 lbs/ft³
- Scalable
- Liquid addition possible

The Material

- Cross Contamination
- Premature Dumping
- Blending straight forward and consistent

THE SOLUTION

- Protocol
- Training, maintenance, training

Blending Gone Bad

Statement of challenge

- Uniformly add water to dry food product
 - % moisture <1% to 5%
 - Ribbon blender and spray atomization

The Result

 PSD changed slightly due to water absorption and particle swelling

- Nothing –blending was straight forward
- Everything incredible micro growth

THE REALITY

 Water was not uniformly distributed - wet spots allowed bacterial growth

Blending of Micro Ingredients

Statement of challenge

- Uniform blend of inert ingredient with micro amount of functional ingredient
- Work done by Alice Wilkinson from Watson
- Trituration

The Solution

- Nothing
- Brilliant solution to blending uniformity

THE REALITY

• Process used by Watson to sidestep mixing challenge

Blending of Large Particles with Small Particles

Statement of challenge

- Fumed silica
- Improvement of powder flow
- Continuous process
- Stable composite particle

The Solution

- Magnetically Assisted Impact Coating (MAIC)
- Measurement of process on flow
- Mechanistic Analysis

Mixing Methods

Smaller particles

Larger particles

Magnets and screens

Magnetic coils

Coated particles

Measurement Methods

Results

- Nothing
- Very consistent results

THE REALITY

 Process in production for 25 years

Blending of Liquids with Small Particles

Statement of challenge

- Submicron powders
- < 1% liquid addition</p>
- Develop continuous process
- Uniform Blend

The Solution

Magnetically Assisted Impact Coating (MAIC)

Mixing Methods

Smaller particles

Larger particles

Magnets and screens

Magnetic coils

Coated particles

Measurement Methods

- Nothing
- Very consistent results

THE REALITY

• Process in production for 17 years

Mixing Using Funnel Flow

Statement of challenge

- Mix segregated materials during mass transfer
- No moving parts

The Result

https://www.youtube.com/watch?v=MUr3H-M-nRk

 I never knew about this until this week

THE REALITY

 Need to try this mixing method in a plant

So... What Did I Leave Out?

AVEKA

Major Uses Of Mixing

- Pharmaceuticals
- Friable powders (cereals)
- Color control
- Pastes and slurries

Equipment Variations

- Batch vs. continuous mixing
- Scale up of lab systems

Fluid Bed Processing Thoughts

Resources

Ideas For The Future

International Fine Particle Research Institute (IFPRI) <u>www.ifpri.net</u>

Paul Mort Purdue University (pmort@purdue.edu)

Karl Jacob University of Michigan (kvjacob@umich.edu)

Jeff Hoffmann Paul O. Abbe (jeffhoffmann@pauloabbe.com)

Back to the Future

• Funnel Mixing

Summary

- Blending can be straight forward but:
 - > Uniformity
 - > Micro ingredients
 - Segregation
- Process conditions and materials are critical
- Be prepared to be surprised even with simple systems

Contact Information

- Willie Hendrickson
- whendrickson@aveka.com
- 651-730-1729

