Fluid Bed Best Practices For Multiparticulate (MP) Formulations

The Importance of Computational Design and Process Analytical Technology

Chuck Vesey Formulation Technologies, Colorcon cvesey@colorcon.com

Intended Outcomes and Importance to Quality

- Accelerate formulation development by reducing traditional iterative trial and testing practices in development
- Support robust formulation development using computational design tools and PAT technology
- Reduce formulation and process risk
 throughout product lifecycles

Multiparticulate (MP) Dosage Forms Offer Formulation and Process Opportunities

Note: Image Adapted from An Introduction to Multiparticulates, M. Shaffer, July 2018.

Best Practices for Multiparticulate Success

An 'Inside Out' Approach to Consistency Starts with the Core

- Robust formulations start at the core
- Consistency of coating layers depends on the consistency of the starting core
- Uniform size and shape of the stating core allows a more uniform application of coating layers

What are the Critical Quality Attributes

Drug Release Primarily by Diffusion Through the Semipermeable Membrane

- Rate of drug release is modified by:
 - Increasing or decreasing the amount of polymer applied (film thickness)
 - Altering the permeability of the polymer barrier membrane coating

Drug Release Primarily by Diffusion Through the Semipermeable Membrane

- Rate of drug release is modified by:
 - Increasing or decreasing the amount of polymer applied (film thickness)
 - Altering the permeability of the polymer barrier membrane coating

Reference: Lijuan Tang, Joseph B. Schwartz, Stuart C. Porter, Roger L. Schnaare & Rodney J. Wigent (2000) Drug Release from Film-Coated Chlorpheniramine Maleate Nonpareil Beads: Effect of Water-Soluble Polymer, Coating Level, and Soluble Core Material, *Pharmaceutical Development and Technology*, 5:3, 383-390, DOI: 10.1081/PDT-100100554

The information contained in this presentation is proprietary to Colorcon and may not be used or disseminated inappropriately.

Design and Process Tools for MPs

- My Dosage Design[™] Tool (Colorcon)
 - Calculator for the development of MP Dosage Forms
 - Estimates important product characteristics
 - Compare multiple formulation scenarios
 - Incorporate known information where possible
- Dynamic Image Analysis
 - Lab based instrument for offline measurement
 - Inline fluid bed measurements

Computational Design Using My Dosage Design™

The information contained in this presentation is proprietary to Colorcon and may not be used or disseminated inappropriately

Observed Consistent Process Control and Film Thickness Growth Throughout Coating

Dynamic Image Analysis Calculated versus Measured Film Thickness

- Film thickness (um) as a factor of predicted weight gain percentage
- Observable, consistent growth between sample points
- Steady process trend and no process interruptions.

Innopharma Technology & the Eyecon₂ Particle Analyser

Chris O'Callaghan

Innopharma Technology & the Eyecon₂ Particle Analyser

- Chris O'Callaghan
- Head of Engineering, Innopharma Technology Ltd.
- Section Overview
- About Innopharma & our products
- The importance of PAT
- The Eyecon₂
 - Applications
 - Tech Specs
 - Direct Imaging Method of Operation

Innopharma Technology Company Background

- Founded in 2009
- Three divisions:
 - Education & Upskilling
 - Technology to Enable Advanced Manufacturing / Process Analytical Technology
 - Technical Services
- Currently ~75 employees experienced in STEM, Pharma development and manufacturing operations, IT & Software Development

The information contained in this presentation is proprietary to Colorcon and may not be used or disseminated inappropriately.

Innopharma Technology - Our Products

Direct Imaging Particle Analyser

- · Particle analyser for powders and bulk solids
- Detect Fluid bed Pellet (Wurster) Coating Thickness.
- Determine why a process is failing or reducing yield in-line
- Capture manufacturing consistency automatically
- Particle size and shape analysis software EyePASS™ included

Multi-point NIR Spectrometer

- Near infrared spectrophotometer for measuring changes in process in real-time, in-line
- Highly effective in monitoring moisture content from 0 to $27 \pm 0.8\%$.
- Analyse component concentrations and material density
- User Friendly chemometrics package included
 Quanta Model Developer™

Vertically integrated platform for Smart Process development and Manufacture

- Functional insight and control
- Integration and storage of all process
- Analytical data in a single, easy access view
- Pre-configuration of experimental and DoE
- Higher resolution of in-process data
- Understanding of design space
- Scale up control to commercial manufacturing

Journey of PAT, Sensors & Advanced Manufacturing Platforms

PAT, Sensors and Platforms for Advanced Manufacturing

		2	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Sensors	eyecon ₂	multiey	e ₂											
Developmen	t of sensors for solids pro	ocessing												
Eyecon in-lin	ne real time PSD				_						-			
Eyecon ₂ sec	ond generation PSD													
Multieye in-li	ne real time NIR											•		
Multieye2 se	cond generation NIR										_			
Advanced	Manufacturing - Phar	ma 4.0		Sma	art>	<								
R&D IIOT pla	atform for dev & manufac	cturing								_				
SmartX for fl	uid bed granulation / coa	ating												
SmartX for c	rystallisation												_	
SmartX for tw	win screw granulation													-
	Started													
	➡Ongoing													
	Completed													

The Importance of PAT

- Improving productivity and product quality is one of the biggest challenges Pharmaceutical companies are facing
- PAT tools are used to enable better understanding of the processes by providing valuable data from the process in real-time
- Better process understanding leads to more robust reliable processes with optimal control which is key to assuring final product quality and maximum yield for pharmaceutical products
- Optimizing the processes by reducing the cycle/process time and increasing the yield can have bigger impact on the final price of the product and it's accessibility to the patients

Particle Size Analyser: Eyecon₂

- Real-time particle size distribution and shape
 - Use in:
 - Research & development (QbD/DoE/CPP/CQA)
 - Scale up
 - Tech transfer
 - Manufacturing
 - Batch
 - Continuous
 - Use in:
 - Fluidised bed coating, granulation, drying
 - Twin screw granulation
 - Roller compaction / milling
 - Extrusion spheronisation

Eyecon₂ Technical Specifications

Size Range 50 to 5500 µm

Casing materials 304 Stainless Steel, Glass, Silicon (gaskets)

Imaging Area 11.25 x 11.25 mm

Output PDF session report. CSV, full PSD from D5-D95, JPEG (images)

Instrument RatingsGMP Compliant Design
EyePASS is both 21 CFR part 11 & GAMP5
Compliant
CE Marking
ATEX zones 2/22, IP65.ConfigurationsIn-line and at/off-line

Communication Ethernet and USB OPC UA, OPC DA 3.0

©2020, Innopharma Technology Ltd

Method of Operation: Image Capture

- A flash-imaging technique is used with an extremely short light-pulse to illuminate moving particles for image capture
- Red, Green and Blue LEDs illuminating the sample from different angles for accurate detection of particle boundaries

Method of Operation: Image Analysis

- Each particle initially identified
- Best-fit ellipse calculated
- Major & minor diameters computed
- PSD/D-values determined

Particle Size

- The D-values are computed from the group of ellipses estimated from the particles
- D50 value, also known as mass-mediandiameter (MMD) is the diameter which divides the particles into two groups with equivalent weight / mass.
- Similarly, the mass of particles with diameters smaller than D10, D50, D90 equals to 10%, 50%, 90% of the total mass

Case Study: Particle Size Growth Measurement MP Coating

Use of Dynamic Image Analysis Tools

Formulation / Equipment / Process

BCS Class I Freely Soluble API (133 mg g⁻¹)

Suglets[®] (Sugar Sphere, NF) 850-1000 µm

Glatt GPCG2 (7" Wurster)

GPCG 2, Image courtesy of Glatt Air Techniques.

SI	R	EI	E	A	SE	۹° ۱
ETHYL	CELLUL	OSE DI	SPERSIC	N T	PE B N	ØF

OPADRY® EC

Ethylcellulose Organic Coating System

_	Batch Size (kg)	Inlet Air Temp (°C)	Product Temp (°C)	Spray Rate (g min ⁻¹)	Air Volume (m³ hr⁻¹)	Atm Air (bar)	Orifice Plate	Partition Ht. (mm)	
	2	70-75	44-46	15-20	100 – 110	1.6	В	30	

Overview of Study Response Variables

Image courtesy of Colorcon and Innopharma Technology.

- In-process particle size analysis
 - Eyecon₂ (in-line)
 - Camsizer (at-line)
- Particle morphology
- Film thickness
- Assay
- Dissolution testing
- Relationship between dissolution & PSD

Particle Size Distribution and Substrate Flow in a Wurster Column

- Bias toward coating larger particles
 - cross-sectional area
 - particle mass
 - fluidization pattern
- Larger particles gain more coating
- Impact of agglomerates
- Starting substrate of narrow particle size distribution (Suglets[®]) minimizes effect

Consistent Film Thickness Growth Observed Throughout Coating

- Film thickness (um) as a factor of predicted weight gain percentage
- Observable, consistent growth between sample points
- Steady process trend and no process deviations.

Dissolution Results

- Dissolution curves at 5%, 10%, 15%, and 20% weight gain or 5 – 35 micron film thickness.
- Two additional curves illustrate impact of a post-coating thermal treatment or curing step.
- Slight decrease in release was observed for the cured samples
- Dissolution results in agreement with the observed particle size growth between sample points and steady process trend during coating.

Relationship Between Dissolution & Film Thickness

Film Thickness versus Dissolution

 $y = -0.0235x^2 - 0.2502x + 101.83$ Dissolution % $R^2 = 0.9987$ Film Thickness (um)

• Film Thickness vs Dissolution @120 minutes

...... Poly. (Film Thickness vs Dissolution @120 minutes)

Relationship Between Dissolution & Film Thickness

...... Poly. (Film Thickness vs Dissolution @15 minutes)

····· Poly. (Film Thickness vs Dissolution @30 minutes)

Dissolution: Predicted versus Actual

Predicted Dissolution with Analytical Results Overlaid

Best Practices

- ✓ MP Dosage forms offer formulation flexibility and patient friendly features.
- \checkmark Robust formulations start with the core.
- Computational design and PAT (Eyecon₂) offer enhanced formulation and process insight.
- Opportunities to improve outcomes, speed development, and helps ensure product robustness.

Designing your multiparticulate product and manufacturing process with a set of **Best Practices** in mind, will expedite the development process and help ensure a trouble-free lifecycle.

Jason Hansell Senior Area Technical Manager, Colorcon

Industry Collaboration to Meet Formulators Needs

My Dosage Design Tool Predicts, Process Analytical Technology Confirms Film Thickness of Fully Formulated Aqueous and Organic Ethylcellulose Coating (reference: <u>Colorcon AAPS Poster</u>, 2017)

- Piyush Patel, Formulation Technology at Colorcon
- Ed Godek, Process Technology at Glatt Air Techniques
- Chris O'Callaghan, Head Of Engineering at Innopharma Technology
- Jeff Bodycomb, Product Manager at Horiba Scientific

The information contained in this presentation is proprietary to Colorcon and may not be used or disseminated inappropriately.

A Best Practice Approach Offers Opportunities to Improve Development Outcomes.

Connect with Colorcon®

Fluid Bed Best Practices for Multiparticulate Formulations

