Fluid Bed Best Practices For Multiparticulate (MP) Formulations

The Importance of Computational Design and Process Analytical Technology

Chuck Vesey
Formulation Technologies, Colorcon
cvesey@colorcon.com
Intended Outcomes and Importance to Quality

• Accelerate formulation development by reducing traditional iterative trial and testing practices in development

• Support robust formulation development using computational design tools and PAT technology

• Reduce formulation and process risk throughout product lifecycles
Multiparticulate (MP) Dosage Forms Offer Formulation and Process Opportunities

- **Taste Mask Coatings**
 - pH-Independent Coating
 - pH-Dependent Coating

- **Controlled Release Coating**
 - Diffusion Controlled

- **pH-Trigger Release Coatings**
 - Enteric / pH-Dependent Coating

- **Fixed Dose Combination Products**
 - IR Formulation / MR Formulation

Note: Image Adapted from "An Introduction to Multiparticulates," M. Shaffer, July 2018.
Best Practices for Multiparticulate Success

Substrate (Core)
- Particle Morphology
- Size
- Friability
- Sphericity
- SA/FT Ratio (MDD)
- Drug Layering
- API Morphology
- Binder Selection

Equipment
- Maintenance / Parts
- Static / Grounding
- Process Air Conditioning
- Filter Selection (Exhaust)
- Bottom Plate and Retention Screen Selection
- Spray Nozzle Set-up

Coating
- SA/FT Ratio
- Fluidization (Product Flow)
- Temperature (Tg)
- Agglomeration
- Droplet Size (air volume)
- Spray Nozzle Performance
- Optimization (DoE / Risk Analysis)

Process
- Static
- Fluidization (Product Flow)
- Agglomeration
- Process Tracking
- Scale-up
- Δ P
- Partition Height (Product Flow)
An ‘Inside Out’ Approach to Consistency Starts with the Core

- Robust formulations start at the core
- Consistency of coating layers depends on the consistency of the starting core
- Uniform size and shape of the stating core allows a more uniform application of coating layers
What are the Critical Quality Attributes

- Particle Size Distribution
- Sphericity
- Friability
Drug Release Primarily by Diffusion Through the Semipermeable Membrane

- Rate of drug release is modified by:
 - Increasing or decreasing the amount of polymer applied (film thickness)
 - Altering the permeability of the polymer barrier membrane coating

Fick’s 1st law of diffusion:

$$J = \frac{dM}{dt} = \frac{DSK(C_d - C_r)}{h}$$

- \(S\) = surface area (cm\(^2\))
- \(C\) = concentration
- \(D\) = diffusion coefficient
- \(K\) = partition coefficient
- \(h\) = thickness of barrier
- \(J\) = Flux

![Graph of SA/FT versus Time 50% Release](image)
Drug Release Primarily by Diffusion Through the Semipermeable Membrane

- Rate of drug release is modified by:
 - Increasing or decreasing the amount of polymer applied (film thickness)
 - Altering the permeability of the polymer barrier membrane coating

Fick’s 1st law of diffusion:

\[
J = \frac{dM}{dt} = \frac{DSK(C_d - C_r)}{h}
\]

- \(S \) = surface area (cm\(^2\))
- \(D \) = diffusion coefficient
- \(K \) = partition coefficient
- \(h \) = thickness of barrier
- \(J \) = Flux

Design and Process Tools for MPs

- **My Dosage Design™ Tool (Colorcon)**
 - Calculator for the development of MP Dosage Forms
 - Estimates important product characteristics
 - Compare multiple formulation scenarios
 - Incorporate known information where possible

- **Dynamic Image Analysis**
 - Lab based instrument for offline measurement
 - Inline fluid bed measurements

Images courtesy of Horiba and Innopharma Technology.
Computational Design Using My Dosage Design™
Observed Consistent Process Control and Film Thickness Growth Throughout Coating

- Film thickness (um) as a factor of predicted weight gain percentage
- Observable, consistent growth between sample points
- Steady process trend and no process interruptions.
Innopharma Technology & the Eyecon\textsubscript{2} Particle Analyser

Chris O’Callaghan
Innopharma Technology & the Eyecon\textsubscript{2} Particle Analyser

- Chris O’Callaghan
- Head of Engineering, Innopharma Technology Ltd.

- Section Overview
- About Innopharma & our products
- The importance of PAT
- The Eyecon\textsubscript{2}
 - Applications
 - Tech Specs
 - Direct Imaging – Method of Operation
Innopharma Technology Company Background

• Founded in 2009
• Three divisions:
 • Education & Upskilling
 • Technology to Enable Advanced Manufacturing / Process Analytical Technology
 • Technical Services
• Currently ~75 employees experienced in STEM, Pharma development and manufacturing operations, IT & Software Development
Innopharma Technology - Our Products

Direct Imaging Particle Analyser
- Particle analyser for powders and bulk solids
- Detect Fluid bed Pellet (Wurster) Coating Thickness.
- Determine why a process is failing or reducing yield in-line
- Capture manufacturing consistency automatically
- Particle size and shape analysis software EyePASS™ included

Multi-point NIR Spectrometer
- Near infrared spectrophotometer for measuring changes in process in real-time, in-line
- Highly effective in monitoring moisture content from 0 to 27 ± 0.8%.
- Analyse component concentrations and material density
- User Friendly chemometrics package included – Quanta Model Developer™

Vertically integrated platform for Smart Process development and Manufacture
- Functional insight and control
- Integration and storage of all process
- Analytical data in a single, easy access view
- Pre-configuration of experimental and DoE
- Higher resolution of in-process data
- Understanding of design space
- Scale up control to commercial manufacturing

The information contained in this presentation is proprietary to Colorcon and may not be used or disseminated inappropriately.
Journey of PAT, Sensors & Advanced Manufacturing Platforms

PAT, Sensors and Platforms for Advanced Manufacturing

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>eyecon₂</td>
<td>multieye₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of sensors for solids processing</td>
<td></td>
</tr>
<tr>
<td>Eyecon in-line real time PSD</td>
<td></td>
</tr>
<tr>
<td>Eyecon₂ second generation PSD</td>
<td></td>
</tr>
<tr>
<td>Multieye in-line real time NIR</td>
<td></td>
</tr>
<tr>
<td>Multieye2 second generation NIR</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Manufacturing - Pharma 4.0

<table>
<thead>
<tr>
<th>R&D IIOT platform for dev & manufacturing</th>
<th>Started</th>
<th>Ongoing</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartX for fluid bed granulation / coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmartX for crystallisation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmartX for twin screw granulation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Importance of PAT

- Improving productivity and product quality is one of the biggest challenges Pharmaceutical companies are facing.
- PAT tools are used to enable better understanding of the processes by providing valuable data from the process in real-time.
- Better process understanding leads to more robust reliable processes with optimal control which is key to assuring final product quality and maximum yield for pharmaceutical products.
- Optimizing the processes by reducing the cycle/process time and increasing the yield can have bigger impact on the final price of the product and it’s accessibility to the patients.
Particle Size Analyser: Eyecon$_2$

- Real-time particle size distribution and shape
- Use in:
 - Research & development (QbD/DoE/CPP/CQA)
 - Scale up
 - Tech transfer
 - Manufacturing
 - Batch
 - Continuous
- Use in:
 - Fluidised bed coating, granulation, drying
 - Twin screw granulation
 - Roller compaction / milling
 - Extrusion - spheronisation
EyePASS – Particle Analysis Software

Material: Gran_171001_R2
Sublot: 1
Starting operator: admin
Elapsed time: 06:01:22.06

Batch Number: attempt2
Configuration: Config_170022_Gran
Time started: 2017-10-24 14:35:13
Integration Period: 120s

Size Distribution

Volumetric:
- Dv10: 597.10
- Dv50: 1016.25
- Dv90: 1534.09

Eccentricity:
- AVG: 0.4607
- RSD: 0.4529

% of Total

100.0% 95.0% 80.0% 60.0% 40.0% 20.0% 0.0%

Particle size

The information contained in this presentation is proprietary to Colorcon and may not be used or disseminated inappropriately.
Eyecon\textsubscript{2} Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Range</td>
<td>50 to 5500 µm</td>
</tr>
<tr>
<td>Casing materials</td>
<td>304 Stainless Steel, Glass, Silicon (gaskets)</td>
</tr>
<tr>
<td>Imaging Area</td>
<td>11.25 x 11.25 mm</td>
</tr>
<tr>
<td>Output</td>
<td>PDF session report. CSV, full PSD from D5-D95, JPEG (images)</td>
</tr>
<tr>
<td>Instrument Ratings</td>
<td>GMP Compliant Design</td>
</tr>
<tr>
<td></td>
<td>EyePASS is both 21 CFR part 11 & GAMP5 Compliant</td>
</tr>
<tr>
<td></td>
<td>CE Marking</td>
</tr>
<tr>
<td></td>
<td>ATEX zones 2/22, IP65.</td>
</tr>
<tr>
<td>Configurations</td>
<td>In-line and at/off-line</td>
</tr>
<tr>
<td>Communication</td>
<td>Ethernet and USB</td>
</tr>
<tr>
<td></td>
<td>OPC UA, OPC DA 3.0</td>
</tr>
</tbody>
</table>

©2020, Innopharma Technology Ltd
Method of Operation: Image Capture

- A flash-imaging technique is used with an extremely short light-pulse to illuminate moving particles for image capture.

- Red, Green and Blue LEDs illuminating the sample from different angles for accurate detection of particle boundaries.
Method of Operation: Image Analysis

- Each particle initially identified
- Best-fit ellipse calculated
- Major & minor diameters computed
- PSD/D-values determined
Particle Size

- The D-values are computed from the group of ellipses estimated from the particles.

- D50 value, also known as mass-median-diameter (MMD) is the diameter which divides the particles into two groups with equivalent weight / mass.

- Similarly, the mass of particles with diameters smaller than D10, D50, D90 equals to 10%, 50%, 90% of the total mass.
Case Study: Particle Size Growth Measurement MP Coating
Use of Dynamic Image Analysis Tools
Formulation / Equipment / Process

- BCS Class I Freely Soluble API (133 mg g\(^{-1}\))
- Suglets\(^\circledR\) (Sugar Sphere, NF) 850-1000 µm
- Glatt GPCG2 (7” Wurster)

<table>
<thead>
<tr>
<th>Batch Size (kg)</th>
<th>Inlet Air Temp (°C)</th>
<th>Product Temp (°C)</th>
<th>Spray Rate (g min(^{-1}))</th>
<th>Air Volume (m(^3) hr(^{-1}))</th>
<th>Atm Air (bar)</th>
<th>Orifice Plate</th>
<th>Partition Ht. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>70-75</td>
<td>44-46</td>
<td>15-20</td>
<td>100 – 110</td>
<td>1.6</td>
<td>B</td>
<td>30</td>
</tr>
</tbody>
</table>

GPCG 2, Image courtesy of Glatt Air Techniques.
Overview of Study Response Variables

- In-process particle size analysis
 - Eyecon\textsubscript{2} (in-line)
 - Camsizer (at-line)
- Particle morphology
- Film thickness
- Assay
- Dissolution testing
- Relationship between dissolution & PSD

Image courtesy of Colorcon and Innopharma Technology.
Particle Size Distribution and Substrate Flow in a Wurster Column

- Bias toward coating larger particles
 - cross-sectional area
 - particle mass
 - fluidization pattern
- Larger particles gain more coating
- Impact of agglomerates
- Starting substrate of narrow particle size distribution (Suglets®) minimizes effect
Consistent Film Thickness Growth Observed Throughout Coating

- Film thickness (um) as a factor of predicted weight gain percentage
- Observable, consistent growth between sample points
- Steady process trend and no process deviations.
Dissolution Results

- Dissolution curves at 5%, 10%, 15%, and 20% weight gain or 5 – 35 micron film thickness.
- Two additional curves illustrate impact of a post-coating thermal treatment or curing step.
- Slight decrease in release was observed for the cured samples
- Dissolution results in agreement with the observed particle size growth between sample points and steady process trend during coating.
Relationship Between Dissolution & Film Thickness

Film Thickness versus Dissolution

\[y = -0.0235x^2 - 0.2502x + 101.83 \]
\[R^2 = 0.9987 \]

- Film Thickness vs Dissolution @120 minutes
- Poly. (Film Thickness vs Dissolution @120 minutes)
Relationship Between Dissolution & Film Thickness

Film Thickness vs. Dissolution

- Film Thickness vs Dissolution @15 minutes
- Film Thickness vs Dissolution @60 minutes
- Film Thickness vs Dissolution @240 minutes
- Film Thickness vs Dissolution @600 minutes
- Poly. (Film Thickness vs Dissolution @15 minutes)

- Film Thickness vs Dissolution @30 minutes
- Film Thickness vs Dissolution @120 minutes
- Film Thickness vs Dissolution @480 minutes
- Film Thickness vs Dissolution @720 minutes
- Poly. (Film Thickness vs Dissolution @30 minutes)

The information contained in this presentation is proprietary to Colorcon and may not be used or disseminated inappropriately.
Dissolution: Predicted versus Actual

Predicted Dissolution with Analytical Results Overlaid
Best Practices

- MP Dosage forms offer formulation flexibility and patient friendly features.
- Robust formulations start with the core.
- Computational design and PAT (Eyecon2) offer enhanced formulation and process insight.
- Opportunities to improve outcomes, speed development, and helps ensure product robustness.
Designing your multiparticulate product and manufacturing process with a set of Best Practices in mind, will expedite the development process and help ensure a trouble-free lifecycle.

Jason Hansell
Senior Area Technical Manager, Colorcon
Industry Collaboration to Meet Formulators Needs

- Piyush Patel, Formulation Technology at Colorcon
- Ed Godek, Process Technology at Glatt Air Techniques
- Chris O’Callaghan, Head Of Engineering at Innopharma Technology
- Jeff Bodycomb, Product Manager at Horiba Scientific

A Best Practice Approach Offers Opportunities to Improve Development Outcomes.

Fluid Bed Best Practices for Multiparticulate Formulations