

© 2007 HORIBA, Ltd. All rights reserved.

Method Development

Creating the Perfect Standard Operating Procedure (SOP)

Method Development

- Goal: Reproducible method that tracks product performance
- Choose measurement approach (dry vs. suspension)
- Lock down RI
- Vary measurement settings that can influence result
 - Dry: measurement duration, concentration, air pressure
 - Wet: sampler selection, dispersion, duration, concentration, energy (mixing + ultrasound)
- Test method (reproducibility)
 - Meet ISO, USP or internal guidelines
 - Check COV at d10, d50, d90

Goals

- Reproducible method that tracks product performance
- You might have other goals
 - Accuracy: tricky subject, is it the "real" particle size
 - Repeatability: liquid suspension re-circulating in sampler
 - Reproducibility: prepare, measure, empty, repeat
 - Resolution: optimize to find second populations
 - Match historic data (sieves), but quicker, easier technique
- Use structured approach for any decision/choice that may influence result
- Have data to support selections made
- Document process so others (in future) understand the decisions

Accuracy vs. Precision

■(A) Low accuracy, low precision measurements form a diffuse, off-center cluster;
(B) Low accuracy, high precision measurements form a tight off-center cluster;
(C) High accuracy, low precision measurements form a cluster that is evenly distributed but distant from the center of the target;
(D) High Accuracy, high precision measurements are clustered in the center of the target.

Accuracy

- Is it the "real particle size"?
- Comparison to referee technique
- Microscope (image analysis) is referee technique for particle characterization
- Two kinds of image analysis:
 - Dynamic image analysis; particles flowing
 - Static image analysis; particles sit on slide on automated stage

Image Analysis: Two Approaches

Dynamic: particles flow past camera

Static: particles fixed on slide, stage moves slide

Proposed Pharmaceutical Guidelines

Scheme for outlining particle evaluation for preclinical studies.

Decision tree outlining particle evaluation for Phase I clinical studies

Proposed Pharmaceutical Guidelines

Scheme for outlining particle evaluation for Phase III clinical studies

Repeatability, Reproducibility

- Repeatability: prepare sample, add to wet sampler, re-circulate, measure same multiple times (suspensions only)
- Reproducibility: prepare sample, measure, drain, repeat (suspensions + dry)

Precision (Repeatability)

Reproducibility

- Reproducibility: prepare, measure, empty, repeat
- What would be good reproducibility?
 - Look at accepted standards
 - Measure 3 times, calculated COV at d₁₀, d₅₀, d₉₀
 - COV (RSD) = st dev/mean * 100
 - ISO13320
 - -COV < 3% at median d_{50}
 - -COV < 5% at d₁₀ & d₉₀
 - USP<429>
 - -COV < 10% at median d ₅₀
 - -COV < 15% at d₁₀ & d₉₀

Note: double all limits When $d_{50} < 10 \mu m$

Resolution

- Ability to measure small differences in particle size
- Small differences between successive samples (different production lots) are most important
- Detection limit of small amount of material outside of main size distribution
- Best defined by user's real-world requirements

Resolution: High or Low Technique?

- Resolve size difference between two materials of similar size
- 552nm and 600nm PSL
- Measured separately: high resolution
- Measure together: low resolution, would blend peaks
- Laser diffraction is a "resolution limited" technique

Resolution Limits

Resolution of multiple modes in a single sample Next peak 2x of previous size

Resolution Limits

100μm,200μm,400μm glass beads

Next peak 2x of previous size

Resolution is independent of where you are on size scale

Resolution: Finding Second Peak

0.1 micron silica

2% by weight of quartz standard

Original slide

HORIBA Explore the future

Resolution: Recent LA-950 Data*

Top left: LUDOXTM-50 PSD, Lower left: 0.1wt% Geltech 1.5 PSD Top right: 0.05wt% Geltech 1.5 in LUDOX Result shows both oversize particle detection & very good accuracy for both components.

*See AN179 CMP SLURRY MEASUREMENT USING LASER DIFFRACTION

Method Development: Dry

- First get sampling right & determine RI
- Measure at 3 different pressures (low, medium, high)
- Determine optimum pressure based on good dispersion while not breaking particles
- Can also compare dry vs. wet measurements
- Adjust other settings to optimize sample concentration & duration
- Ideally measure all of powder placed into the sampler
 - Segregation can occur on vibrating tray
 - Constant mass flow rate important for stable concentration during measurement
- Once settings chosen, test reproducibility

Size vs. Energy - theoretical vs. actual

Higher air pressure or longer ultrasound duration

Why is this so?

Dispersion and milling can be parallel rather than sequential processes

Pressure Titration

Dry Method Development Case Studies

Effect of Air Pressure – Mg Stearate

Effect of Air Pressure – Mg Stearate

Reproducibility – Mg Stearate dry, 3 bar

Reproducibility – Mg Stearate dry, 2 bar

Reproducibility – Mg Stearate dry, 1 bar

Effect of Air Pressure - MCC

Effect of Air Pressure - MCC

Reproducibility – MCC dry, 3 bar

Calculation Automation

From LA-950 Software

MCC Wet vs. Dry

Method Development -Wet

- First determine RI
- Choose solvent (water, surfactants, hexane, etc.)
- Sampler selection: sample volume
- Pump & stirrer settings
- Concentration
- Measurement duration
- Does the sample need ultrasound?
 - Document size-time plot
 - Disperse sample, but don't break particles
 - Check for reproducibility

Determine RI

- Real component via literature or web search, Becke line, etc.
- Measure sample, vary imaginary component to see if/how results change
- Recalculate using different imaginary components, choose value that minimizes R parameter error calculation

RI Software Automation

Sampler Selection

- Larger, broad distributions require larger sample volume
- Lower volume samplers for precious materials or solvents

7		
	portico	
		НОПІЗА І
		2

LA-950 Sample Handlers	Dispersing Volume (mL)
Aqua/SolvoFlow	180 - 330
MiniFlow	35 - 50
Fraction Cell	15
Small Volume Fraction Cell	10

Note: Fraction cell has only magnetic stir bar, not for large or heavy particles

Bio polymer

Colloidal silica

Magnesium stearate

Pump & Stirrer Settings

- Must be high enough to suspend& circulate heavy particles
- Not so high that bubbles are introduced
- Adding energy can disperse loose agglomerates
- Measure at several settings & select optimum
- Can be automated in software (see right)

Exp#	Agitation	Circulation	D _{mean (nm)}	D ₁₀ (nm)	D ₉₀ (nm)
1	1	1	187.03	137.5	245.7
2	1	3	184.23	135.9	242.1
3	3	1	187.28	137.8	245.8
4	3	3	184.61	136.1	242.5
5	1	1	185.32	136.3	243.7
6	1	3	184.04	135.8	241.8
7	3	1	184.13	135.8	241.9
8	3	3	184.98	136.4	242.9
Parameters Selected: Agitation: 2 Circulation: 2					

Concentration

- High enough for good S/N ratio
- Low enough to avoid multiple scattering
- Typically 95 80 %T
- Measure at different T%, look at Chi Square calculation

Measurement Duration

- Long enough for reproducibility
- Typically 5 sec, up to several minutes
- Longer time for large, broad distributions
- Can be automated in software
- Could be used for robustness testing during method validation

Ultrasound

- Adding energy to break up agglomerates disperse to primary particles, without breaking particles
- Similar to changing air pressure on dry powder feeder
- Typically set to 100% energy, vary time (sec) on
- Investigate tails of distribution
 - High end to see if agglomerates removed
 - Small end to see if new, smaller particles appear (breakage)
- Test reproducibility, consider robustness
- Note:
 - Do not use on emulsions
 - Can cause thermal mixing trouble w/solvents wait
 - Use external probe if t> 2-5 minutes

Software Automation

- Level (power)
- Time on
- Iterations
- Delay
- Generate result graphs

Wet Method Development Case Study

Microcrystalline Cellulose

Effect of Ultrasound - MCC

Effect of Ultrasound - MCC

© 2007 HORIBA, Ltd. All rights reserved.

Reproducibility – MCC wet

- ISO13320
 - COV < 3% at median d_{50}
 - COV < 5% at d₁₀ & d₉₀

- USP<429>
 - COV < 10% at median d $_{50}$
 - COV < 15% at d₁₀ & d₉₀

Reproducibility*

- 58 methods
- Image analysis for morphology
- Laser diffraction for PSD
- If RSD for d50 < 20%, then acceptable for QC environment
- Note: RSD increases with decreasing size

^{*}Barber, Keuter, and Kravig, A Logical Stepwise Approach to Laser Diffraction Particle Size Distribution Analysis Methods Development and Validation Pharmaceutical Development and Technology, 3(2), 153-161 (1998)

Sampler Selection

Remove points from not acceptable region using Fraction Cell

^{*}Barber, Keuter, and Kravig, A Logical Stepwise Approach to Laser Diffraction Particle Size Distribution Analysis Methods Development and Validation Pharmaceutical Development and Technology, 3(2), 153-161 (1998)

Conclusions

- Must have representative sample
- Powders: select air pressure
- Suspensions: wet, disperse
- Check accuracy w/microscope
- Investigate system settings: concentration, agitation, ultrasound
- Design for maximum precision
- Follow guidelines in standards

www.horibalab.com

