

Additive Manufacturing: Effective Control of Metal Powder Quality

Dr. Anderson Bonon & Dr. Matthieu Chausseau

3D Printing – History

- 1980: First patent by Japanese Dr. Kodama Rapid
 prototyping (photosensitive resin was polymerized
 by an UV light)
- 1986: The first patent by 3D system corporation
- 1988: First SLA-1 machine
- 1990: First EOS Stereos system
- 1997: The first commercial EBM platform by Arcam
- 2000s: The beginning 3D printings of popularization
- 2000: a 3D printed working kidney is created (transplanted in 2013)

The SLA 1

© 2021 HORIBA, Ltd. All rights reserved.

Additive Manufacturing – Applications

- Automotive
- Aerospace
- Defense
- Medical & Dental
- Implants
- Complex Industrial components
- Prototypes
- Consumer goods

• Missing items for your action figures

General Instrument Schematic

Additive Manufactory - Steps

Heat Source – DMLS Vs EBM

Direct Metal Laser Sintering (DMLS)

Advantages:

- A broad range of metal materials (>14).
- Finer layer thickness (typically 20–40 μm).
- Better accuracy as a result typically DMLS produces a smoother surface finish than EBM.
- Print under nitrogen or argon atmosphere

Disadvantages:

structures

HORIBA

- Print under nitrogen or argon atmosphere
- Longer printing times
- The objected is more attached to the support block

Electron Beam Melting (EBM)

Advantages:

- Faster than DMLS
- Low level of internal defects.
- Good material properties, in particular fatigue properties.
- No limitations in chemical composition.
- Minimal residual stresses due to high process temperature
- Little waste material: virtually all excess powder can be recycled.

Disadvantages:

- Print under vacuum at high temperatures (650° 1000° C)
- Thicker layer (50–70 µm for EBM).
- Longer cooling time
- Raw DMLS parts have a surface finish comparable to fine investment cast parts.

© 2021 HORIBA, Ltd. All rights reserved.

Quality control test methods (2014)

Designation: F3049 – 14

Standard Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes¹

B215 Practices for Sampling Metal Powders

B213 Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel

B822 Test Method for Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering

E1447 Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method

E539 Test Method for Analysis of Titanium Alloys by X-Ray Fluorescence Spectrometry

Powder contamination & Impact

- Storage
- Oxidation
- Mixing of powders
- Foreign particulate

No benchmark for reuse Impact on final product not well known

How to assess elemental contamination?

X-Ray Fluorescence

HORIBA Scientific

MESA-50 – Operation

Inorganic elemental analyzers – C/S, O/N & H

*Optional for EMIA-Pro, Standard for EMIA-Expert

EMIA Series – Operation

EMIA Series – Unique cleaning mechanism

200 analysis without maintenance

- Patented new cleaning technology & Innovative furnace design
- High stability due to dustless furnace

Dual loading & temperature control

0sec

EMGA Series – Operation

Putting the sample in place

AIMg10Si

Element	Specification Mass %	Result Mass %	A
AI	Approx. 87-91 (Balance)	84	
Si	9.0-11.0	15.0	
Mg	0.25-0.45	0.79	
Fe	<0.25	0.50	
Ν	<0.20	<0.0002	
Ο	<0.20	0.11	

Element	Result Mass ppm	SD	
С	100	3	
S	244	11	
н	38.3	1.0	

Scientific © 2021 HORIBA, Ltd. All rights reserved.

Ti6AI4V

Element	Specification Mass %	Result Mass %
Ti	Approx. 88-91 (Balance)	90
AI	5.50-6.50	5.50
v	3.50-4.50	4.48
С	<0.08	0.0123
Ο	<0.13	0.125
Ν	<0.05	0.0134
н	<0.012	0.0034
HORIBA		

© 2021 HORIBA, Ltd. All rights reserved.

Scientific

Run	Mass (g)	O% (m/m)	N% (m/m)	
1	0.1155	0.125	0.0134	
2	0.1153	0.128	0.0135	
3	0.1027	0.122	0.0135	
Average		0.125	0.0134	
SD		0.003	0.0001	
RSD%		2%	0.4%	
			Run	N
			1	(
			2	
			3	(
Run	Mass (g)	H% (m/m)	3 Average	(
Run 1	Mass (g) 0.1986	<mark>H% (m/m)</mark> 0.0035	3 Average SD	(
Run 1 2	Mass (g) 0.1986 0.2106	H% (m/m) 0.0035 0.0033	3 Average SD RSD%	(
Run 1 2 3	Mass (g) 0.1986 0.2106 0.2022	H% (m/m) 0.0035 0.0033 0.0034	3 Average SD RSD%	(
Run123Average	Mass (g) 0.1986 0.2106 0.2022	H% (m/m)0.00350.00330.00340.0034	3 Average SD RSD%	(
Run123AverageSD	Mass (g) 0.1986 0.2106 0.2022	H% (m/m)0.00350.00330.00340.00340.0001	3 Average SD RSD%	(

Run	Mass (g)	C% (m/m)
1	0.1999	0.0123
2	0.2019	0.0124
3	0.1816	0.0122
Average		0.0123
SD		0.0001
RSD%		0.8%

316L S.S.

Element	Specification Mass %	Result Mass %
Fe	Approx. 61-72 (Balance)	63
Cr	16.00-18.00	17.10
Ni	10.00-14.00	13.05
Мо	2.00-3.00	2.67
Mn	<2.00	1.27
Si	<1.00	0.76
N	<0.10	0.09
Ο	<0.10	0.03
С	<0.03	0.02
S	<0.03	0.003

Run	Mass (g)	0% (m/m)	N% (m/m)
1	0.3007	0.0300	0.0928
2	0.3000	0.0306	0.0932
3	0.2743	0.0301	0.0932
Average		0.0302	0.0931
SD		0.0003	0.0002
RSD%		1.1%	0.2%

Run	Mass (g)	C% (m/m)	S% (m/m)
1	0.1992	0.0199	0.0029
2	0.1815	0.0200	0.0031
3	0.1870	0.0201	0.0030
Average		0.0200	0.0030
SD		0.0001	0.0001
RSD%		0.5%	3.3%

Run	Mass (g)	🖊 H ppm 🔪
1	0.1950	7.16
2	0.2097	7.19
3	0.2020	7.16
Average		7.17
SD		0.02
RSD%		0.2%

Scientific

Hastelloy C276 – Monitoring of recycled powder3

Cycle	С	S	0	Ν	Н
Cycle	ppm	ppm	ppm	ppm	ppm
0	24	11	290	51	<5
9	24	11	206	64	<5
13	35	13	243	68	<5
15	26	9	253	64	<5

Oxygen

Size vs Functionality

Properties related to Particle Sizer

Scale

Measurement Range of the Main Techniques for Particle Characterization

Laser Diffraction (Static Light Scattering)

Measurement Range:

- Dry dispersion: 0.1 μm 5 mm
- Wet dispersion: 10 nm 3.5 mm

Sample:

• Powders, suspensions and emulsions

Double Beam Laser Diffraction Instrument Schematic

Double Beam Laser Diffraction Instrument Schematic

Different Measurement Options

Scientific

Fresh sample – Particle size distribution

HORIBA Scientific

Distribution shift due to recycling

Results Evaluation

Cycles	D50	CoV	D10	CoV	D90	CoV	Span	CoV
	μm	%	μm	%	μm	%		%
Fresh	22.4	2.1	13.8	2.6	31.1	3.8	0.772	6.7
9 cycles	33.9	1.9	19.0	4.7	49.5	4.3	0.901	6.0
13 cvcles	37.3	3.5	25.7	3.5	53.2	5.2	0.737	3.9
15 cycles	39.7	2.5	30.2	1.3	52.6	4.9	0.565	10.7

Results Evaluation

Shape Analysis – Roundness*

15 Cycles

*Roundness = closer to 1 more spherical is the particle

30 µm

Conclusion

Additive Manufacturing Process

- Quality of final product related to the quality of fresh powders and its recycles as recommended by ASTM F3049
- Elemental composition impact mechanical properties
- Particle size affects process and final product properties
- Recycling of powders implies higher risk of contamination and evolution of powder characteristics

Elemental Analysis

- XRF and inorganic elemental analyzers are appropriate for additive manufacturing raw material and process control and can provide results within minutes
- Both techniques involve minimal to no sample preparation and can be used for R&D purposes as well as for industrial lab/QC in factories
- Efficiency and quality can be ensured and improved thanks to appropriate quality control of powders
- ROE and benchmark on reuse of powders and its effect on the final product can ultimately be established

Particle Size Analysis

- The particle size and shape analysis are essential to evaluate the size distribution of fresh and recycles powders.
- The quality of the final product is drastically impacted by the powder particle size.

HORIBA Scientific

Irvine, CA Piscataway, NJ

in Dr. Anderson Bonon anderson.bonon@horiba.com Western Regional Manager for Particle Size in Dr. Matthieu Chausseau matthieu.chausseau@horiba.com Elemental Analysis & Thin Films Product Manager

> labinfo@horiba.com 1-800-446-7422 www.horiba.com/particle