Nanoparticles for Drug Delivery

Why Care about Particle Size?

Tablets

- Size of active ingredient effects dissolution & content uniformity
- Size influences tablet hardness
- Size and shape effects packing
- Size and shape effect powder flow

Suspensions

- Same dissolution & content uniformity issues
- Ability to stay in suspensions
- Mouth feel

HORIBA

Scientific

Particle Size and Dissolution

XS is the mass of solid drug (mg), t is time (minutes), D is the drug diffusivity (cm2/min), X0 is the initial drug mass (mg), r is the drug density (mg/mL), h is the diffusion layer thickness (cm), **r**₀ is the initial particle radius (cm), CS is the drug solubility (mg/mL), Xd is the mass of dissolved drug (mg), V is the volume of dissolution media (mL).

FIGURE 4

Ondansetron Dissolution as a Function of Particle Size Fractions at pH 6.8. Data are From Model Predictions (Solid Lines) and Data Collected in Dissolution Experiments (Data Points).

David R. Friend, PhD; Gregory E. Parry, PhD; T. Francis, PhD; Gary Kupperblatt, PhD; Suggy S. Chrai, PhD; and Gerald Slack, Mathematical Modeling of a Novel Controlled-Release Dosage Form

Drug Delivery Technology, Scientific

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Effect of API Particle Size on Content Uniformity

RECALLS AND FIELD CORRECTIONS: DRUGS -- CLASS II ========

PRODUCT	Xactdose Phenytoin Oral Suspension, USP, 100 mg/4 ml unit dose cups, anticonvulsant.
CODE	Recall #D-21/-6. Lot numbers: 508608 and 508613 FXP 2/97
MANUFACTURER	Doo nambero. Oosoos ana oosoro Enr 2,5,7,
RECALLED BY	
	(repacker), by letter dated July 16, 1996. Firm-initiated recall ongoing.
DISTRIBUTION	Nationwide.
QUANTITY	1,947 cases were distributed; firm estimated that 10-15% of the product remained on the market at time of recall initiation.
REASON	Due to large particle size, some of the unit doses may not meet potency specifications.
Scientific	

PRODUCI	of folic acid: (a) 5 mg; (b) 25 mg. Recall #D-088/089-7.
CODE	Lot numbers: 6B107, 6H428, 6S162.
MANUFACTURER	
RECALLED BY	by
	letter dated January 2, 1997. Firm-initiated recall ongoing.
DISTRIBUTION	Nationwide.
QUANTITY	(a) 2,614 unit cartons: (b) 180 unit cartons were distributed; firm estimated that 40% of the 5 mg and 75% of the 25 mg product remained on market at time of recall initiation.
REASON	The particle size range of the bulk active ingredient is outside the normal range and could cause the product to fail the content uniformity test.

SC	ıer	וזו	TIC	

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Size Scale

Figure 1. Sizes of organic molecules and biological macromolecules (left) in relation to silica nanoparticles (right).

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Size, Technique, Samples

Particle Size by DLS: SZ-100

Laser Diffraction

Particle size 0.01 - 3000 µm

- •Quick, repeatable
- •Powders and suspensions
- Most common technique

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Why Nanoparticles?

- Greater surface area/volume ratio = more exposed surface = faster dissolution
- Greater bio-availability, small drug doses and less toxicity
- Small enough to avoid removal by MPS
- Large enough to avois rapid renal filtration
- Can cross cell membranes
- Interact on cell surface (receptors)

• Targeting

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Making Nanoparticles

Top Down

Make particles smaller

Bottom Up

 Build from atomic or molecular level up

Self assembly of micelles

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

API Processing Elan NanoCrystal® Technology

Explore the future

Top Down: Elan NanoMill

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Size Reduction Measured on LA-950

NanoMill-10 Particle Size vs. Mill Residence Time

API Processing Microfluidizer*

Liposomes

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Liposome: Before, After Microfluidizer

Size Reduction Measured on LA-950*

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

PLA Nanoparticles for Drug Delivery

Targeting ligand provides recognition, enabling targeted nanoparticles to identify and bind to their intended target site. **Surface functionalization** shields targeted nanoparticles from the immune system.

Polymer matrix encapsulates payload molecules in a matrix of biodegradable polymers .

Therapeutic payloads include small molecules, peptides, proteins, etc.

50 - 200 nm

HORIBA Scientific

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Nanoparticles for Drug Delivery

PLA Nanoparticle A: DLS & Diffraction

Laser diffraction by LA-950

DLS on SZ-100

Calculation Results Peak No. S.P.Area Ratio Mean S. D. Mode Median Size : 0.07944(µm) 1.00 98.2 nm 1 29.6 nm 87.6 nm 2 --- nm ---- nm --- nm Mean Size : 0.08295(µm) 3 ------- nm --- nm --- nm 1.00 Total 98.2 nm 29.6 nm 87.6 nm 0.0798(µm) Mode Size - : **Cumulant Operations Z-Average** : 90.1 nm 27 : -100 25 -90 -80 20--70 -60 15 -50 d(%) -40 10 -30 5 -20 -10 * * * * * * * * * * * 1 * 1 * 1 * 1 * 1 * 1 * 1 ***** <u>~~~t~d~d~t+ti</u>_-77 0.010 0.100 1.000 10.00 100 1000 10000 10

HORIBA Scientific

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Diameter(µm)

PLA Nanoparticle B: DLS & Diffraction

DLS on SZ-100

Laser diffraction by LA-950

HORIBA Scientific

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Intensity vs. Volume Results

Mean by DLS 117 to 95 nm

Peak No.	S.P.Area Rati		Mean	S. D.	Mode	
1	1.00		94.7 nm	23.8 nm	78.7 nm	
2			NPD	nm	nm	
3			nm	nm	nm	
Total	1.00		94.7 nm	23.8 nm	78.7 nm	
-			4.5			

Median Size	:	0.08186(µm)
Mean Size	:	0.08605(µm)
Mode Size	:	0.0806(µm)

HORIBA Scientific

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Laser Diffraction vs. DLS

- Both laser diffraction and DLS can measure 30 1000 nm
- Which to use?
- Sample volume
- Published data for sample type
- Beware volume vs. intensity distributions
- Also need zeta potential? Then DLS

Fenofibrate nanosuspensions*

	SLS					
	Mean	D10	D50	D90	Z average	PDI
NS 120 nm	123±4	72±1	3±3	188±7	219±2	0.204 ± 0.005
NS 140 nm	138 ± 2	79±1	130 ± 2	210 ± 4	215 ± 4	0.184±0.013
NS 160 nm	156 ± 12	80±2	138 ± 5	237±13	280 ± 5	0.189 ± 0.024
NS 180 nm	184 ± 5	92±2	168 ± 5	293±9	296 ± 3	0.183 ± 0.021
NS 270 nm	266 ± 3	97±I	193 ± 3	501±10	381 ± 10	0.265 ± 0.041
NS 650 nm	645 ± 79	142±29	365±89	49 ± 00	618 ± 25	0.207 ± 0.036
NS 800 nm	797±109	155 ± 64	647±214	1630 ± 53	714 ± 79	0.566 ± 0.444
NS 1070 nm	1068 ± 44	247 ± 40	918±42	2099 ± 73	-	-

Flavor emulsions **

	D ₅₀ (vol. basis) LA-950	D ₅₀ (vol. basis) SZ-100	Z-avg. Diam. SZ-100
E-1	129.8	146.6	118.3
E-2	149.8	170.5	138.7
E-3	110.0	100.2	112.7
E-4	49.4	45.5	32.4

HORIBA

* Anhalt et. al,. Development of a New Method to Assess Nanocrystal Dissolution Based on Light Scattering, Pharm Res (2012) 29:2887–2901

**AN203 DLS vs. Diffraction of Flavor Emulsions

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Explore the future

PLA Nanoparticles

Laser diffraction or dynamic light scattering?

Good batch

Sample Name I	D(v,0.1)	D(v,0.5)	D(v.0.9)
50928-6-1	0.06541(µm)	0.09222(µm)	0.13789(µm)
50928-6-1	0.06541(µm)	0.09222(µm)	0.13788(µm)
50928-6-1	0.06540(µm)	0.09221(µm)	0.13787(µm)

Spiked with large particles

HORIBA

Sample Name	D(v,0.1)	D(v,0.5)	D(v.0.9)
50928-6-2	0.07348(µm)	0.13085(µm)	1.21951(µm)
50928-6-2	0.07345(µm)	0.13065(µm)	1.20702(µm)
50928-6-2	0.07360(µm)	0.13155(µm)	1.25225(µm)

DLS found second peak, but not >10 µm particles

Colloidal Gold: Drug Delivery*

- Cancer therapy delivers drug to all rapidly dividing cells
- Prodrugs delivered in inactive form
- Once delivered, metabolized in vivo into active metabolite
- Study: Immobilize prodrug activating enzyme onto colloidal gold particles
- Enzymes: genetically modified nitroreductase from E. coli;NfnB and Cys-NfnB

Colloidal Gold Modified with a Genetically Engineered Nitroreductase: Toward a Novel Enzyme Delivery System for SCancer Prodrug Therapy, Vanessa V. Gwenin, Chris D. Gwenin, and Maher Kalaji Langmuir, 2011, 27 (23), pp 14300–14307

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Colloidal Gold: Drug Delivery*

- Start with 50nm gold particles
- Incubate with varying molar equivalents (90:1, 180:1, 270:1,360:1, and 450:1) of purified recombinant Cys-NfnB or His-NfnB overnight at 4C
- Analyzed on SZ-100 for particle size and zeta potential

Colloidal Gold Modified with a Genetically Engineered Nitroreductase: Toward a Novel Enzyme Delivery System for Cancer Prodrug Therapy, Vanessa V. Gwenin, Chris D. Gwenin, and Maher Kalaji *Langmuir*, **2011**, *27* (23), pp 14300–14307 Scientific

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Colloidal Gold: Drug Delivery*

>99% active towards prodrug

- Base particle Size 51 nm Zeta potential - 52 mV
- NfnB ~ 5 nm
- Combined ~ 60 nm

Modified NTR	
÷	

gold colloid

		Molar ratio of enzyme to gold colloid					
		90:1	180:1	270:1	360:1	450:1	
His-NfnB- gold colloid	Size (nm)	53.5	57.5	82.6	69.7	75.4	less
	Zeta-potential (mV)	-43	-31.7	-30.7	-33.3	-30.4	
Cys-NfnB- gold colloid	Size (nm)	56.3	59.8	61.1	69.8	69.7	more
	Zeta-potential (mV)	-23.4	-25.3	-26.0	-27.7	-34.2	

less ordered

more ordered

Colloidal Gold Modified with a Genetically Engineered Nitroreductase: Toward a Novel Enzyme Delivery System for S Ganger Prodrug Therapy, Vanessa V. Gwenin, Chris D. Gwenin, and Maher Kalaji Langmuir, **2011**, 27 (23), pp 14300–14307

HORIBA

Zeta Potential: Dispersion Stability, IEP

HORIBA Scientific

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Zeta Potential Cells

Gold coated electrodes (ruined)

Carbon coated electrodes

HORIBA

HORIBA Scientific IEP 3.4 nm protein

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Zeta Potential: Study Surfaces*

FePt-nanoparticle/PDDA/silica composite particles concentrations of PDDA aqueous solutions, (A) 1 wt%, (B) 5 wt% and (C) 7 wt%

"modification of negatively charged silica template particles with a cationic polymer resulted in the zeta potential of the silica template particles changing from negative to positive. The adsorption of PDDA molecules on the surface of silica particles was confirmed by measuring their zeta potentials."

*Fuchigami et. al., Size-tunable drug-delivery capsules composed of a magnetic nanoshell, Biomatter 2:4, 313–320; October/November/December 2012

HORIBA Scientific

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Summary

- Both DLS and laser diffraction successfully used for size of nanoparticles for drug delivery
- DLS for smallest sizes, sample volume, concentration
 - Also zeta potential
- Laser diffraction when also need to detect large particles

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Resources: www.horiba.com/particle

© 2013 HORIBA. Ltd. All rights reserved

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific