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Background

e Reliable prediction of multi-
scale transport behavior )
needed to support: Wl =

Environmental remediation N =i

Engineered waste repositories ==

Geologic sequestration

Oil and gas production

Water resources management

e A critical need for all
application areas is reliable
estimation of model i K
parameters, particularly flow =
and transport properties
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Major Challenge |

e Rocks, soils and sediments are
naturally heterogeneous

¢ Known to control near-surface
and subsurface contaminant
distributions

¢ Knowledge of flow and
transport (energy, mass)
properties and how they vary in
space (and time) to:

B |Interpret current contaminant
distributions

m predict future contaminant
migration

m Manage soil and water resources
under changing climate

Typlcal Stratlflcatlon

Atypical Stratification
A



Particle Size Distribution Transcends all Scales
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Why Measure Particle Size Distributions?

e Particle size is a Grain size population of three normally
fundamental prope rty of any distributed subpopulations

sediment, soil or dust %999
deposit

m can provide important clues to
nature and provenance
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e It influences a variety of
other properties
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¢ Can be defined across a
hierarchy of scales
m Stratigraphic Architecture o.01 S
m Sedimentary Sequences 4 o 1 2 3 4
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Lithofacies Grain size (¢)
Small-scale heterogeneities



Particle Size Distributions

300 Area Fractions
18

e Properties estimated from o Tima
texture cannot explain P
transport behavior |
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e Measured PSDs mostly | ===
multi-modal ..

1000 10000

. . Particle Diameter (mm)
m Size fractions
m Gravel coatings
s Rarely log normal

e More realistic and unique
description using size
statistics
m mean diameter
m sorting coefficient
m must account for gravel
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Properties Dependent on Particle Size

Primary sediment properties are controlled by facies distributions, which in turn are
controlled by grain size distributions m the depositional environment
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Characterization of Primary Particles

Traditional characterization of *
size of “individual” particles by: |
s Sieving

m Sedimentation

Soil whose mineral phase is to
be characterized is

m Pretreated to remove organic
matter

m Treated to disperse aggregates

m Passed through series of sieves
with specified openings
(smallest is 0.05 mm)

m Sizes of remaining dispersed
separates characterized
indirectly by sedimentation
(based on Stokes’ Law)




Challenges in Estimating Properties

e Properties estimated from

traditional PSDs often do
not explain transport
behavior

m PSDs typically multi-modal
m Fractions NOT log normal

m Coatings that affect
sorption

Robust relationships
demands a higher level of
characterization

s whole sediments

m Size fractions

m coatings
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Paradigm Shift

Identifying such
relationships requires a
higher level of sediment
characterization

s Whole sediments

m Size fractions

Measure particle size
distributions

Measure Physico-chemical
properties
m CEC, SA, etc

Characterize mineralogy

Mass Fraction, x;, of

Heterogeneous Size class and Lithocomponents
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Conceptual Model for Polydiserse Materials

e Soils are linear systems that
obey the additivity principle

e For all linear systems F(x) =,
where x is a stimulus and y is
a response, the superposition
of stimuli yields a
superposition of the
respective responses:

F(Ox,+X,+...)=F(x)+F(x,)+..

e PSD of whole sample is
then calculated from the
distributions of, e.g., 2
components as:

f= Py f1+(1_ p1) fz




Challenges to Approach

e Particle Shape:

s Assumption of spherical shape

m Controls arrangement and
packing thus mass-volume
relationships

s Individual property as
fundamental as size

e Sample Size
m Need PSD of very small samples

m Requires precise determination
using a rapid and reliable
method with a high degree of
precision

¢ Mineralogy

m Affect geochemical properties

m Transported aggregates are
often polymineralic




Accounting for Mineralogy
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Figure 1.5: Mineralogy of Yukon River Sediment as a function of grain size for
(a) fine material, and (b) coarse material (after Matthews, 2007).



Solution to Most of My Problems

Horiba LA 950 Particle Size
Analyzer

m Widest Range Available: 0.01-
3000pm

m Fastest sample analysis
available

m 60 seconds sample-to-sample

m Rapid change from wet to dry
analysis

m Fully automated, modular
sampling systems

m Easy and cheap to repair even

when no technician available
provided Home Depot is open




Materials

e Coarse and fine fractions
m Silt loam
m Accusand (.84-.54 mm)
m Silica beads (4.95 mm)
m Pebbles (4-5.6 mm)

e Binary mixtures
m Triplicate samples
m 10% increasing fines
m Solution-Solid ratio 2:1

e Synthetic Groundwater
m pH=28.0
m [CO3]=1.05x% 103 mol L"!
= 100 ppb U(VI)




Uranium Sorption Experiments

e Design Orbital shaker (116 rpm)
m Contact times: 0.083, 0.167, --

0.33,0.5, 1,2, 4,8, 16, 32, 64, e
128, 256 hrs &

m Supernatant separation using
15 minute centrifugation —

= Supernatant filtered (0.25 pm) S
and analyzed for U and pH %ﬂi

' Flne End Member
e Kinetics __

s 9% Silt + 91% Marbles —

m 51%Silt + 49% Marbles a

m Pebble and Silt end members Coarse End Member

e Sorption on Binary Mixtures —1
m Accusand, Marbles, Silt, Pebbles i

m Contact times: 24 hrs, 5 days

Pebble End Member




Analytical Methods

e Solid Phase

s Continuous particle size
distribution by laser

diffraction
m Surface area measu red Quantachrome
by N, gas adsorption Autosorb 6B

Surface Area and

m Surface area calculated Pore Size Analyzer

by geometric method:

ns

S _N_GiB -~ o
Poro éwipidi i=n§r1‘//ipi|i

Horiba LA-950
laser diffraction
analyzer

m Surface topography and
chemical composition by
optical and scanning
electron microscopy




Percent Passing

Laboratory Studies with Model Mixtures
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How Do we Use these Data?



To Describe Particle Size Statistics

Folk and Ward (1957) introduced the Graphic Method to
estimate the various statistical parameters describing a grain
size distribution using only percentiles taken from cumulative

frequency

Median Md = ¢50
Mean M = D5 + P50 + Pus
3
Standard deviation o = Pos — Pis n Pos — Ps
4 6.6
Skewness Sk — Doy + Ps — 205 + Pos + Ps — 205,
2(¢84 o ¢16 ) 2(¢95 o ¢5)
Kurtosis ¢95 — ¢5

} 2-44(¢75 o ¢25)
I——m



Example Calculation of the Mean

M = ¢16+¢5o +¢84 o ——
3 90.9
888

Cumulative Frequency (%)
SBEEBSZ B & B

10}
5
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o.01L

Grain Size (¢)



Texture and Mean Diameter
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To Understand Depositional Environments

e Samples collected from
rivers and beaches (lake +2.50
and ocean) £2.00

e Skewness plotted against ~ *+1.50
Sorting Coefficient +1.00

b}

e Beach sands better sorted 2 3(3 ]
and with more common g 0.50
coarse tail skewness than 2 Z 100
river sands 150
= Reflects difference in- 2,00

processes acting on rivers

and beaches -2.50
m Rivers carry wider range -3.00

of sizes: large particles -3.50

move in contact with bed;

large volume of fine
particles in suspension

Poorly sorted; rich in fine
particles (+ve skewness).

® Beach sand (ocean)
= Beach sand (lake)

® River sand

040 0.60 080 1.00
Sorting Coefficient ()

0.20

0 1.20




Particle Size and Water-Storage in Alluvium
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Particle Size and Porosity

e Typical sediment made up of
Spheres of different sizes

s Small spheres can fill in pore
throats formed by larger spheres

m Result is a lower porosity
n=0.255(1+ 0.83°)
c s
le
® The porosity, ¢, of a

multicomponent mixture may
then be calculated as:

¢ =T (X, Xy Xd 0dysedy 6, 6ss...0,)

where X; is the fractional solid volume of the it
component.




Porosity Predicted from Particle Size Distributions
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Particle Size and Permeability

Equation Reference
K=C(d,)’ Hazen (1911)
K = (9.66 E — 04 )( 760 dgz )EXP (_1 31 Uq) Krumbein and Monk (1942)
7 0g d2¢3 Kozeny-Carman (in Bear, 1972)
i )180(1—¢)’
T g ¢53 Kozeny-Carman (in de Marsily, 1986)
H CO'sz (l T ¢)2
4’ Kozeny Equation, modified by Collins
K = Pg
= — (1961)
u ( TT(SS‘G)
Co = factor reflecting pore shape and packing in the Kozeny-Carmen eqn. [-]
Cr = factor reflecting pore shape and packing in Kozeny eqgn, mod. By Collins [-]
C = factor in the Hazen equation [T/L]
dio = grain diameter for which 10% of particles are smaller [L]
dg = geometric mean grain diameter [L]
d = representative grain diameter [L]
g = gravitational acceleration [L/T?]
K = hydraulic conductivity [L/T]
¢ = total porosity, accounting for compaction [-]
1 = dynamic viscosity [M/LT]
P = density [M/L’]
Og = geometric mean standard deviation [L]
S.a = surface area exposed to fluid per unit volume of solid medium [1/L]
T = tortuosity [-]




Hydraulic Properties From Particle Size Distributions

e Microstructure Characterization

m grain parameters controlling particle
arrangement and packing

Gravel Supported Matrix Supported

>
>

A

<
<
O

e Pore Structure

m ldentify individual particles and
arrangement

m Simulate packing

e Feasibility established with simple
case of binary mixture (coarse +

Porosity

fine)

m Extend binary fractional packing 0 Fines Content by Volume (%) 100
concept to the n fractions of the Water Rentention Curve with Unimodal PSD
Udden-Wentworth particle-size scale 100000 4 —

s Robust approach for upscaling basic . \ .

parameters derived from grain size ™ =

distributions .
m Allows correction for sizes > 2000 '
m i C ro n ' 0 0‘.1 O‘.Z 0‘.3 O‘.4 05

Theta




Hydraulic Properties and Texture

©c o <
SRR NSRYC )

Fredle Index

©
o

Fi =29.5618 k 0-4805
R%2=0.96

0, = 0.2766 F170:0893

Permeability (mm?)

0 5e-005 0.0001 0.00015

0.2 0.4 0.6
Fredle Index

Agc = 0.9015 FJ 0-3863
R?=0.96

Wae = 7.0550 FI 04897
R*=0.94

0.0 0.2 0.4 0.6

Fredle Index

0.2 0.4 0.6
Fredle Index

N
o
1

-
o
1

CEC (meqg/100g)

CEC = 2.3521 F| 03542
R%2=10.94

— e —

0.0 0.2 0.4 0.6

Fredle Index

o

0.2 0.4 0.6
Fredle Index




Facies Identifcation Particle Size Distributions

¢ Identification of Lithofacies

m Th/K expresses relative K enrichment as indicator of clay
mineral species and useful for distinguishing architectural
elements (e.g. Coarse vs. fine) grain parameters controlling
particle arrangement and packing

45%
40% | y=0.0368x-0.0661 °
35% R2=0.9432
30%
X 25%
B 20%
15%
10%
5%
0%
0 5 10 15



Multi-scale Heterogeneity
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Transect A-A’ Clay Content

Clay Fraction
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Sorption of Marbles — Accusand

0.020
e Accusand and marbles are 0.018 -

primarily silica 0.016 -

_ 0.014 -
m No sorption expected 0,012 |

0.010 -
0.008 -
0.006 -

e Low but non-zero sorption
with standard high SE

U sorbed ug/g

: 0.004 . PP S S

= no change for fines < 40% ooz | , - % i
I o) 0.000 * ‘ ‘ . .

= Nonlinear after 40% o 02 o4 o o8 10

Mass Fraction of Fines

e Higher sorption in accusand

due to: ad R
m rough surfaces

s metal-oxide coatings
m Organic matter

1

.*"’fﬁ}
L
Y ¢

'). ,§




Sorption of Pebbles - Silt Loam

e Large amount of U(VI) sorbed
by pebbles

e Initial decrease in sorption on
the addition of silt loam

m Likely blocks access to
fractures on pebbles

e Classic v-shaped curve
indicative of incomplete mixing

e Pebbles sorption inconsistent
with current conceptual models

s negligible surface area
m ho contribution to sorption

m gravel correction based on
linear dilution (zero mixing)

0.20
0.18 -
0.16 -
0.14 -

g'; 012 -
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Sorbed Species

Partial Mixing Model

| S ted Matrix S ted
« Gravel Supporte < atrix Supported

Fines Content by Volume (%) 100




Surface Area vs. Size Statistics

e Surface area measurements in

25
1 (@)
mixtures show: o o o
= nonmonotonic decrease with E T o 00 °
increasing Dq, 5 Toe
m decrease with geometric mean
diameter, d, ; 10 100 1000
Median Diameter, Dgq (Lm)
s Well-behaved decrease as D, )
(measure of fines) increases L
= Increase with sorting coefficient ® . ° o 0
E .0
Geometric method assumes 5 0 ’
. . 5
smooth spherical particles and E
not applicable to natural : B et B0
materials - .-
20 oo 0 oy
<E 10% Ooo o <E 10% °o o
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Effects of Surface Roughness

Measured

o A plot of SA(d,") should be )
linear £
m intercept = internal SA, £
SAint
= Slope dependent on o,
roughness, i.e., A..a/p Geometric Method

¢ Non-zero Intercept
m indicates SA, >0

m inconsistent with the
smooth, nhonporous
spherical particle % um)

SAgexr (m?/g)

assumption

e Nonlinear relationship

s Suggest that SA,,, and 4,
both dependent on d,

SAca(m?/g)

0 0.05 0.1 0.15




Comparison of PSD-based SA Methods

Geometric Method

Component Additivity Method
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Conclusions

Primary properties of sedimentary structures are
largely controlled by the distribution of facies,
which is in turn controlled by the depositional
environment and grain size distributions

Particle size is a fundamental property of any
sediment, soil or dust deposit

Shape and mineralogy can be assumed fixed for a
depositional environment

High resolution particle size distributions of <
3000 micron sediments and application of the
principle of superposition allows accurate
estimation of critical properties

Data most easily obtained with the Horiba LA-950
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