

© 2012 HORIBA, Ltd. All rights reserved

Size and Zeta Potential of Colloidal Gold Particles


Colloid Definition

Two phases:
Dispersed phase (particles)
Continuous phase (dispersion medium, solvent)
May be solid, liquid, or gaseous
Size range 1 nm – 1 micron
High surface area creates unique properties

		Dispersed Medium			
		Gas	Liquid	Solid	
	Gas	NONE (All gases are mutually miscible)	Liquid Aerosol Examples: fog, mist, clouds	Solid Aerosol Examples: smoke, air particulates	
Continuous Medium	Liquid	Foam Examples: whipped cream	Emulsion Examples: milk, mayonnaise, hand cream	Sol (suspension) Examples: paint, pigmented ink	
	Solid	Solid Foam Examples: aerogel, styrofoam, pumice	Gel Examples: gelatin, jelly, cheese, opal	Solid Sol Examples: cranberry glass, ruby glass	

Nanoparticle Definition

Nanoparticle: size below 100 nm

D from SEM ~50 nm D from SSA ~60-70 nm D from DLS ~250 nm So: is this a nanoparticle?

Used ultrasound to disperse to primary particles or use weak acid to break bonds D from DLS ~50 nm

SZ-100: Nanoparticle Analyzer

Size: .3 nm - 8 µm

• 90° and 173°

Zeta potential: -200 - +200 mV

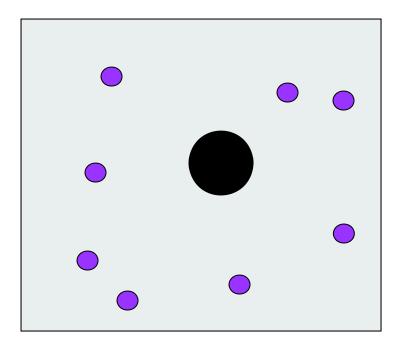
Patented carbon coated electrodes

Molecular weight: 1x10³ - 2x10⁷ g/mol

Optional titrator

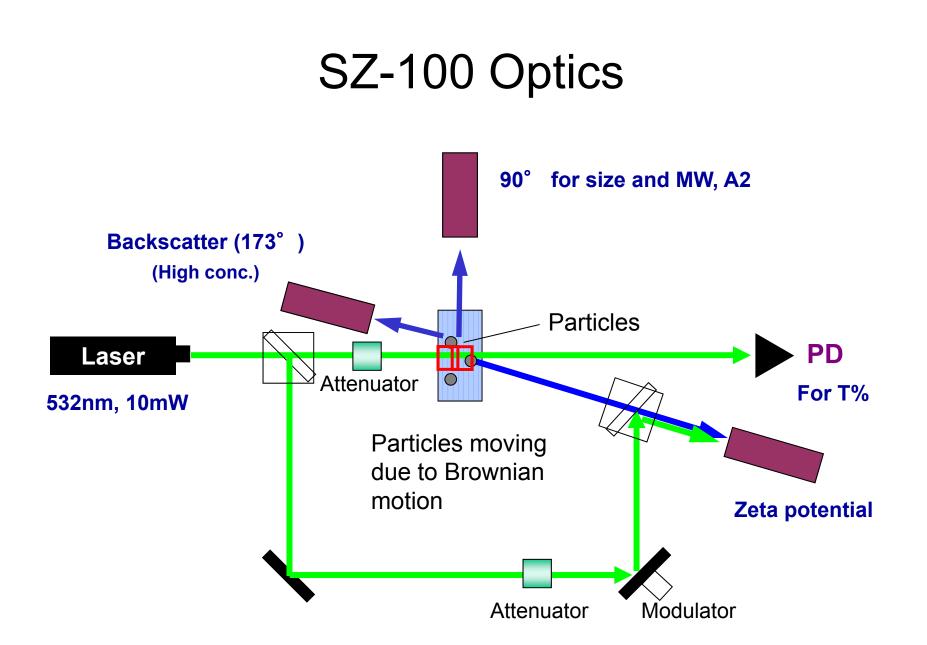
- Nanoparticles
- •Colloids
- Proteins
- •Emulsions
- Disperison stability

nano **partica** SZ-100 series

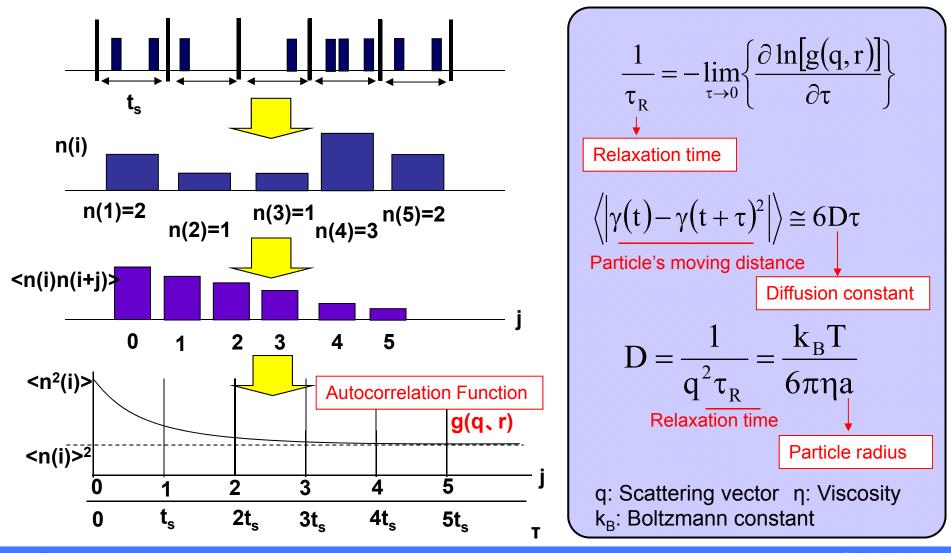


HORIBA

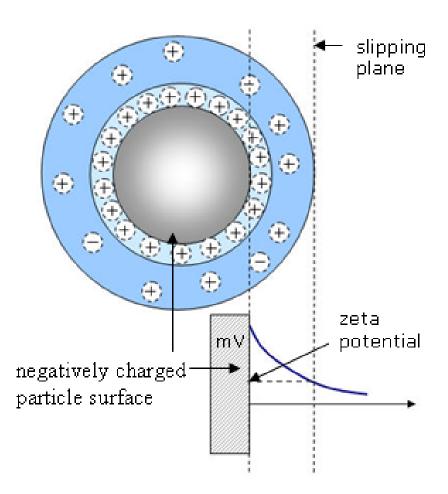
Explore the future © 2012 HORIBA, Ltd. All rights reserved


Dynamic Light Scattering

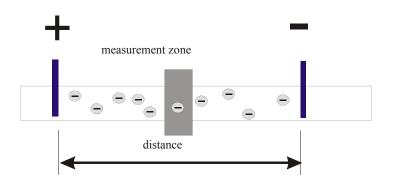
Particles in suspension undergo Brownian motion due to solvent molecule bombardment in random thermal motion. $\sim 1 \text{ nm}$ to $1 \mu \text{m}$



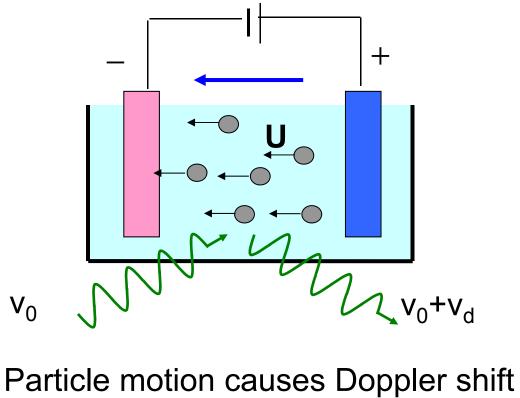
Particle moves due to interaction with liquid molecules Small – faster Large - slower


SZ100 Measurement Principle

Explore the future © 2012 HORIBA, Ltd. All rights reserved


Zeta Potential

- If surface has + charge, then - ions attracted to surface
- + ions attracted to ions, builds electric double layer
- Slipping plane: distance from particle surface where ions move with particle
- ZP = potential (mV) at slipping plane

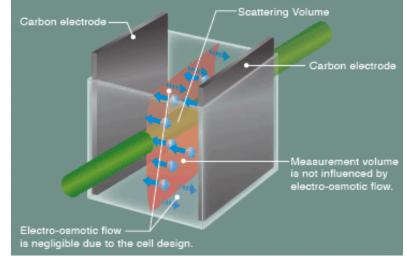

Zeta Potential: Measurement

- Apply electric field
- Measure particle motion
- Direction tells + or
 - + particles move to -
 - particles move to +
- Speed tells amplitude
 - Get speed from frequency shift from motion of particles

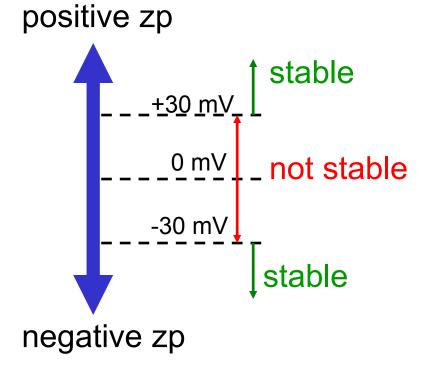
Zeta Potential Measurement

Frequency → mobility Mobility → zeta potential Mobility $U = \frac{\lambda \Delta v_d}{2En\sin(\theta/2)}$

Zeta potential


$$\zeta = \frac{3U \cdot \eta}{2\varepsilon \cdot f(ka)}$$

Measurement Details


First measure conductivity

- Then decide applied electric field
 - Auto or manually
- Reverse electric field to avoid polarization & electroosmosis
- To avoid electroosmotic effect near cell walls
 - "Uzgiris" type cells avoid this problem

Zeta Potential Predicts Stability

Different guidelines

Sample Dependency

- Oil/water emulsions > 10 mV
- Polymer latices > 15 mV
- Oxides > 30 mV
- Metal sols > 40 mV

Colloidal Gold: Not so New

- Lycurgus cup 4th century AD
 Faraday experiments in 1857 "Experimental relations of gold (and other metals) to light"
- Mie in 1908 "Contributions on the optics of turbid media, particularly colloidal metal solutions"

Applications: Colloidal Gold

60nn -80nm

750

Some properties change with size* 1.2 -20nn 1 - 30nn Density

0.2

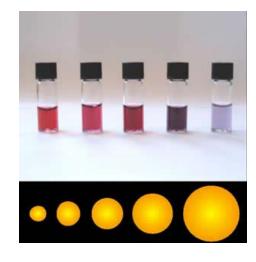
0 400

450

500

550

600

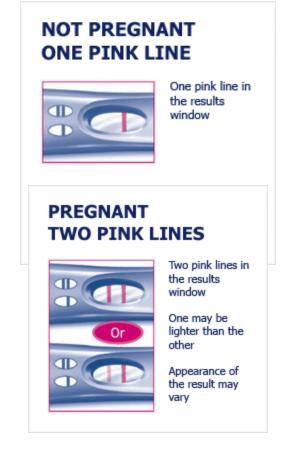

Wavelength

650

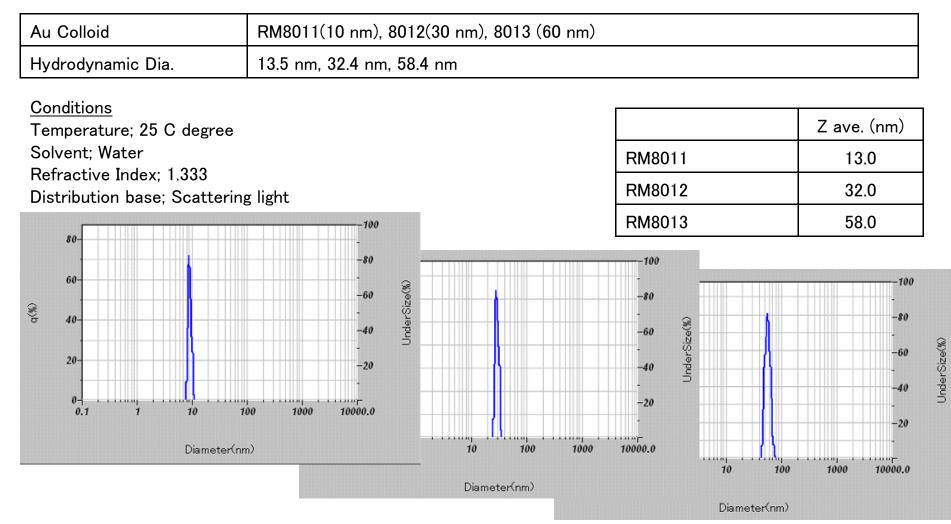
700

- Electronics
- Sensors
- Probes
- Diagnostics
- Drug Delivery
- Catalysis

*graph from to Cytodiagnostics.com



Gold Nanoparticles In Use


- Pregnant women have excess of hormone HcG*
- HcG binds to complementary DNA base pair sequence
- That lock for HcG key is attached to gold nanoparticles
- Those gold nanoparticles reflect light of specific color
- If HcG detected: line reflects red

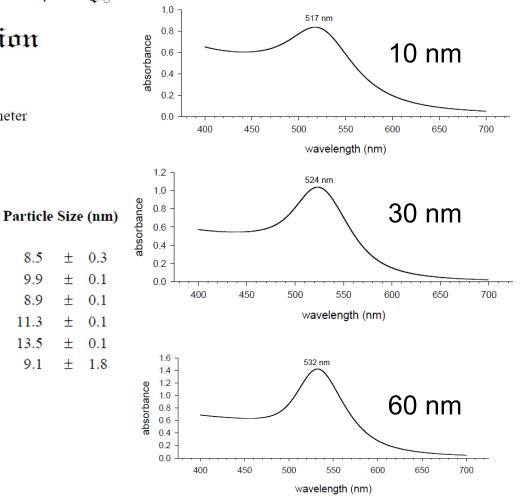
*human gonadotropic hormone

Gold Nanoparticle Standards

Nano-materials; Gold colloid

© 2012 HORIBA, Ltd. All rights reserved.

NIST Gold Nanoparticle RMs


Technique

National Institute of Standards & Technology

Report of Investigation

Reference Material 8011

Gold Nanoparticles, Nominal 10 nm Diameter

Atomic Force Microscopy Scanning Electron Microscopy Transmission Electron Microscopy Differential Mobility Analysis Dynamic Light Scattering Small-Angle X-ray Scattering

Analyte Form

dry, deposited on substrate dry, deposited on substrate dry, deposited on substrate dry, aerosol liquid suspension liquid suspension

8.5 ± 0.3 9.9 ± 0.18.9 ± 0.1± 11.3 0.113.5 ± 0.1

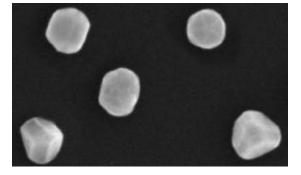
+

1.8

9.1

Explore the future © 2012 HORIBA, Ltd. All rights reserved.

ASTM Interlaboratory Study RM 8011


Material	Average ¹	Standard Deviation of the lab averages	Repeatability Standard Deviation	Reproducibility Standard Deviation	Repeatability Limit	Reproducibility Limit	Number of Reporting Laboratories
	x	sī	Sr	SR	r	R	n
Sample A- combined	15.8	4.2	2.0	4.7	5.7	13.1	13
Sample B- combined	31.2	3.6	2.0	4.1	5.7	11.5	13
Sample C- combined	59.8	5.0	5.0	6.8	13.9	19.2	13
Sample D- combined	8.0	2.4	0.9	2.6	2.6	7.2	12
Sample E- combined	6.7	1.8	0.9	2.0	2.6	5.6	12

NIST Colloidal Gold

Technique	Size nm
Atomic Force Microscopy	8.5 ± 0.3
Scanning Electron Microscopy	9.9 ± 0.1
Transmission Electron Microscopy	8.9 ± 0.1
Differential Mobility Analysis	11.3 ± 0.1
Dynamic Light Scattering	13.5 ± 0.1
Small-Angle X-ray Scattering	9.1 ± 1.8

Technique	Size nm
Atomic Force Microscopy	24.9 ± 1.1
Scanning Electron Microscopy	$26.9~\pm~0.1$
Transmission Electron Microscopy	27.6 ± 2.1
Differential Mobility Analysis	28.4 ± 1.1
Dynamic Light Scattering	
173° scattering angle	28.6 ± 0.9
90° scattering angle	26.5 ± 3.6
Small-Angle X-ray Scattering	24.9 ± 1.2

Technique	Size nm
Atomic Force Microscopy	55.4 ± 0.3
Scanning Electron Microscopy	$54.9~\pm~0.4$
Transmission Electron Microscopy	56.0 ± 0.5
Differential Mobility Analysis	56.3 ± 1.5
Dynamic Light Scattering	
173° scattering angle	56.6 ± 1.4
90° scattering angle	55.3 ± 8.3
Small-Angle X-ray Scattering	53.2 ± 5.3

8011		
HORIBA	Average	St dev
Sample 1	13.4 nm	1,8
Sample 2	12.6nm	1,9
ASTM	Z ave	st de v
Combined	15.8 nm	4,2

SZ-100 Results

8012		
HORIBA	Average	St dev
Sample 1	31.5nm	3,9
Sample 2	32.4 nm	5,9
ASTM	Z ave	st dev
Combined	31.2 nm	3,6

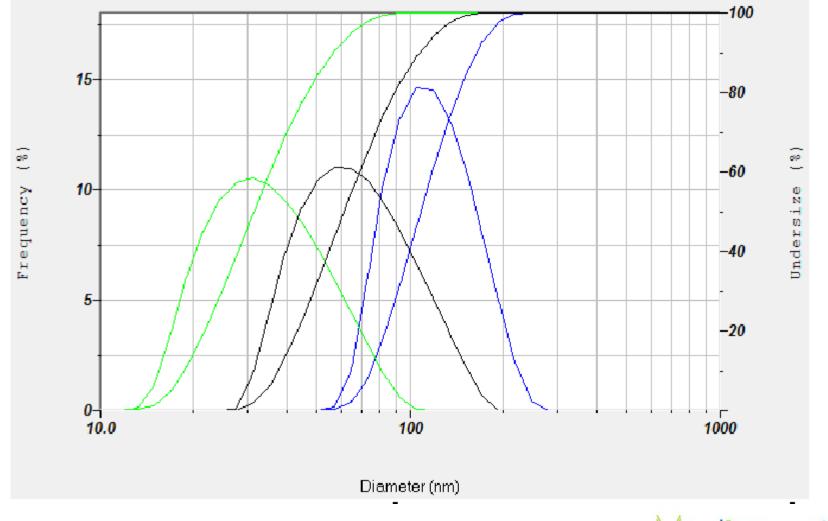
8013		
HORIBA	Average	St dev
Sample 1	57.6 nm	3,5
Sample 2	58.4 nm	3,9
ASTM	Z ave	st dev
Combined	59.8 nm	5,0

Explore the future © 2012 HORIBA, Ltd. All rights reserved.

Colloidal Gold, Real World Data*

Summary Table (Three Measurements of Each Sample)

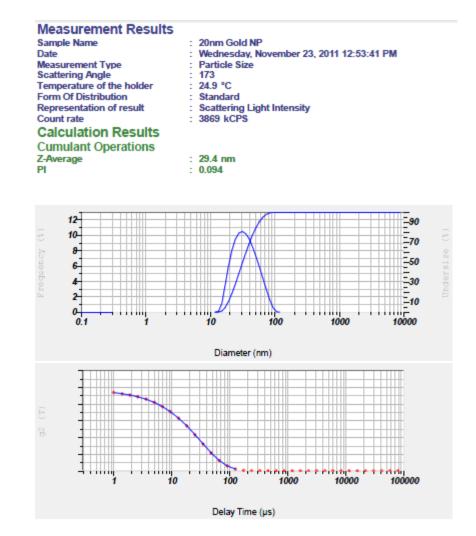
	Sample ID	Zeta Potential, mV		Z-Average Diameter, nm	
	Sample ID	Avg. of 3 repeats	S.D.	Avg. of 3 repeats	S.D.
Sample 1	20 nm Gold NP	-54.4	0.1	29.5	0.1
Sample 2	50 nm Gold NP	-39.1	0.3	57.9	0.2
Sample 3	100 nm Gold NP	-59.5	2.7	106.2	0.5


*thank-you to Cytodiagnostics, www. cytodiagnostics.com

HORIBA

Explore the future © 2012 HORIBA, Ltd. All rights reserved.

Colloidal Gold, Real World Data*

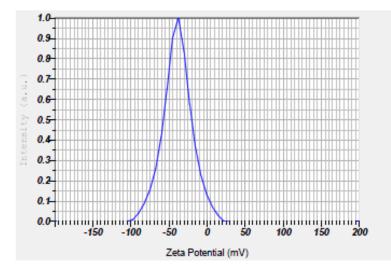

*thank-you to Cytodiagnostics, www. cytodiagnostics.com

HORIBA

Explore the future © 2012 HORIBA, Ltd. All rights reserved.

Colloidal Gold, Real World Data *

*thank-you to Cytodiagnostics, www. cytodiagnostics.com



Explore the future © 2012 HORIBA, Ltd. All rights reserved.

Colloidal Gold Real World Data* Zeta Potential

Measurement Results

Sample Name	: 50nm Gold NP
Date	: Wednesday, November 23, 2011 2:51:34 PM
Measurement Type	: Zeta Potential
Temperature of the holder	: 25.0 °C
Electrode Voltage	: 3.4 V
Calculation Results	
Zeta Potential (Mean)	: -38.9 mV
Electrophoretic Mobility mean	: -0.000302 cm ² /Vs

*thank-you to Cytodiagnostics, www. cytodiagnostics.com

Explore the future © 2012 HORIBA, Ltd. All rights reserved.

Colloidal Gold for Sale

Price (USD) Quantity

🛒 ADD TO CART 🚯

H 1

* 1

		LOGIN REGISTER CHANGE COUNTRY
	SUPPORT ~	Search Q
		ORDER CENTER ADVANCED SEARCH
USA Home > 742031 - Gold nanoparticles		
742031 ALDRICH GOLD AD NODE OF INTERCED 100 nm diameter, OD 1, stabilized suspension in citrate buffer • DOWNLOAD MSDS (PDF) Synonym: AU NP, Gold Colloid Linear Formula Au Molecular Weight 196.97 EC Number 231-791-2 MDL number MFCD00003436 POPULAR DOCUMENTS: SPECIFICATION SHEET (PDF)		Au 。
Purchase Safety & Documentation Protocols & References 7 Ratings & Review	ws	

Properties

Price and Availability Related Categories 79: Au, Materials Science, Nanomaterials, SKU-Pack Size Availability Nanopowders and Nanoparticle Dispersions, New Products for Materials Research and Engineering 742031-25ML Ships on 08/07/12 - FROM More... ~3.8E+9 particles/mL Ships on 08/07/12 - FROM concentration 742031-100ML 1 Bulk orders? 100 nm <0.2 UV absorption λmax 564-574 nm

Description

OD

diameter

M_w/M_n

Application

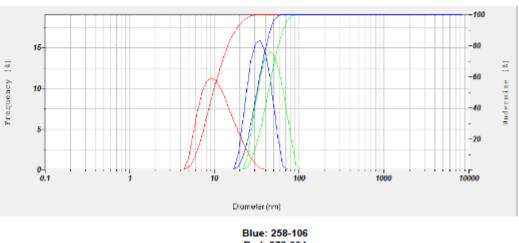
This material is highly monodisperse (<12% variability in size and shape), and provides significantly improved surface reactivity. Applications include Surface Enhanced Raman Lables¹, Sensing/Detection², Biological Targeting³, Plasmonics⁴ and Electronics⁵.

Packaging

25, 100 mL in glass bottle

Legal Information

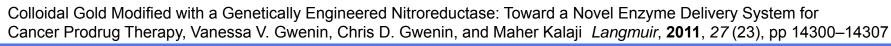
Product of CytoDiagnostics, Inc.

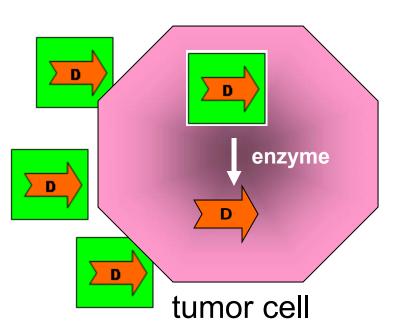


Colloidal Gold, Real World Data *

		Z-Average Diameter, nm	
	Sample ID	Avg. of 3 repeats	S.D.
Sample 1	258-106	27.1	0.1
Sample 2	272-004	10.9	0.6
Sample 3	272-008	37.7	0.1

Summary Table (Three Measurements of Each Sample)


Overlay of 3 Samples


Blue: 258-106 Red: 272-004 Green: 282-008

* Un-named customer at their request

Colloidal Gold: Drug Delivery*

- Cancer therapy delivers drug to all rapidly dividing cells
- Prodrugs delivered in inactive form
- Once delivered, metabolized in vivo into active metabolite
- Study: Immobilize prodrug activating enzyme onto colloidal gold particles
- Enzymes: genetically modified nitroreductase from E. coli;NfnB and Cys-NfnB

Explore the future © 2012 HORIBA, Ltd. All rights reserved

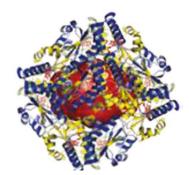
Colloidal Gold: Drug Delivery*

Start with 50nm gold particles

Incubate with varying molar equivalents (90:1, 180:1, 270:1,360:1, and 450:1) of purified recombinant Cys-NfnB or His-NfnB overnight at 4C

Analyzed on SZ-100 for particle size and zeta potential

Colloidal Gold Modified with a Genetically Engineered Nitroreductase: Toward a Novel Enzyme Delivery System for Cancer Prodrug Therapy, Vanessa V. Gwenin, Chris D. Gwenin, and Maher Kalaji *Langmuir*, **2011**, *27* (23), pp 14300–14307


Colloidal Gold: Drug Delivery*

>99% active towards prodrug

- Base particle
 Size 51 nm
 Zeta potential 52 mV
 NfnB ~ 5 nm
- Combined ~ 60 nm

Modified NTR	
+	
	ao

gold colloid

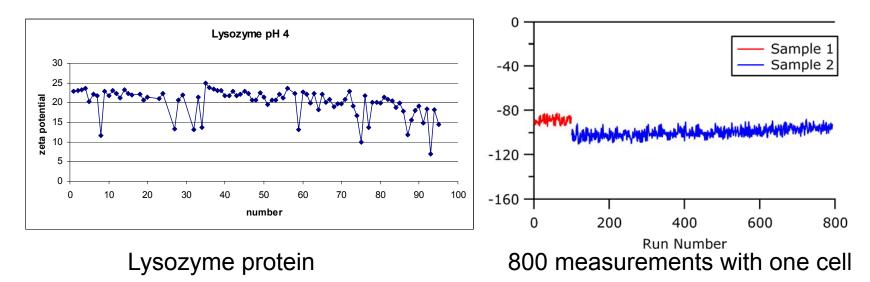
		Molar ratio of enzyme to gold colloid					
		90:1	180:1	270:1	360:1	450:1	
His-NfnB- gold colloid	Size (nm)	53.5	57.5	82.6	69.7	75.4	less
	Zeta-potential (mV)	-43	-31.7	-30.7	-33.3	-30.4	
Cys-NfnB- gold colloid	Size (nm)	56.3	59.8	61.1	69.8	69.7	mor
	Zeta-potential (mV)	-23.4	-25.3	-26.0	-27.7	-34.2	

less ordered

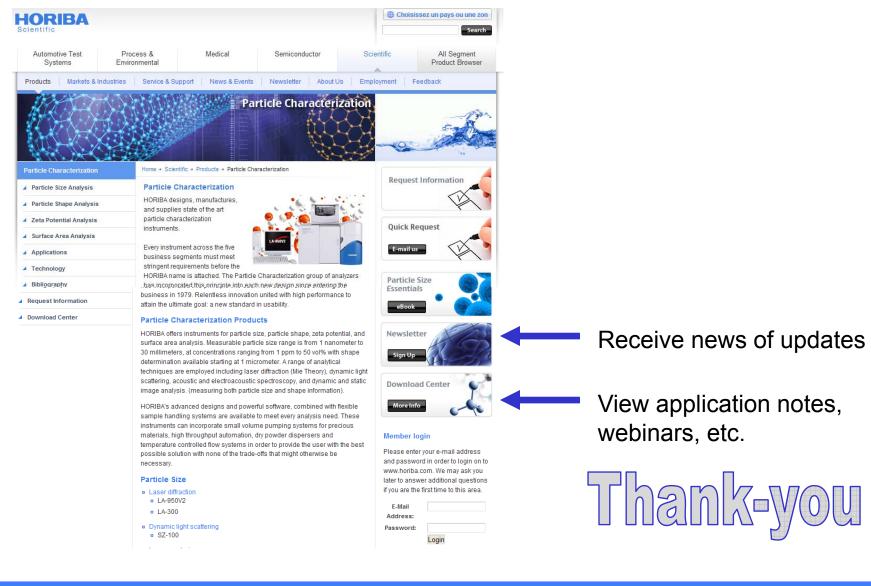
more ordered

Colloidal Gold Modified with a Genetically Engineered Nitroreductase: Toward a Novel Enzyme Delivery System for Cancer Prodrug Therapy, Vanessa V. Gwenin, Chris D. Gwenin, and Maher Kalaji *Langmuir*, **2011**, *27* (23), pp 14300–14307

© 2012 HORIBA, Ltd. All rights reserved.


Zeta Potential Cells

Gold coated electrodes (ruined)



Carbon coated electrodes

Explore the future © 2012 HORIBA, Ltd. All rights reserved.

Resources: www.horiba.com/particle

Explore the future