

Particle Characterization of Pigments

Mark Bumiller Mark.bumiller@horiba.com

Explore the future © 2012 HORIBA, Ltd. All rights reserved

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Outline

- Why is particle size important?
- Organic pigments using laser diffraction
- Inorganic pigments using laser diffraction
- Ink pigments
- TiO₂ study using laser diffraction
- TiO₂ particle size and zeta potential using dynamic light scattering
- Conclusions

Pigments

A pigment is a material that changes the color of reflected or transmitted light as the result of wavelength-selective absorption

Properties Dependent on Particle Size

- Hue/Tint Strength
- Hiding/Transparency
- Gloss/Flatting and Film Appearance
- Flocculation
- Viscosity
- Stability
- Weather resistance

 20 >1 μ m 10

Gloss vs. % > 1 μ m

Explore the future

Organic Pigments

- Commonly powder form
- Dry milling procedures monitored by dry laser diffraction method
- Particle size effects dispersibility of pigment in application media
- Wet laser diffraction method to monitor dispersion of organic pigments in low viscosity liquid media

HORIBA

Organic Pigments Study

Samples*:

•2583 Diarylide Yellow 83
•1274 Hansa Yellow 74
•2574 Hansa Yellow 74
•5576 Phthalo Blue 15:3

- 1. Select the small, high-dispersion nozzle for the fine particle sizes expected.
- 2. Set the automatic measurement conditions to proper testing range (96-94%T for the laser).
- 3. Set dispersion air pressure to Low.
- 4. To prevent nozzle clogging, remove large agglomerates from sample using 1mm sieve
- 5. Load enough filtered sample onto feeder chute to perform multiple measurements.
- 6. Take 3 consecutive measurements using the Auto Measurement function.

*Thank-you to Lansco Colors, Warwick, RI for supplying the samples for this study. www.pigments.com

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Dry Organic Pigment Results

		5.5 -					/	= 100
1274 Hansa	Yellow 74	5.0						-90
Sample ID	Results	4.0				/V		-80
Run 1	50.125	7.0	1274 Hansa Yel	low 74				-70 -60 %
Run 2	50.096	(%)b						50 25
Run 3	50.442	2.0						40 pun
Mean	50.220	1.0						-30
COV %	0.38							-10
		0.0 - 0.010	0.100	1.000	10.00	100.0	1000	≓-0 3000

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Diameter(µm)

Dry Organic Pigment Results

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Inorganic: Iron Oxide, LA-950 Wet

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved.

Inorganic: Chromium Oxide Green

 Example data

 Median:
 1.51 μm

 Mean:
 1.73 μm

 D(10%):
 0.89 μm

 D(90%):
 2.87 μm

- Micro 90 surfactant to wet powder
- 0.1% sodium pyrophosphate

Inorganic: Alumina Al₂O₃

© 2012 HORIBA, Ltd. All rights reserved

Ink Pigment

 Data Name
 Graph Type Sample Name
 Median Size
 Std.Dev.

 200511011226001
 COLOR WONDER SPRAY INK
 0.10583(μm)
 0.0120(μm)

 200511011227002
 COLOR WONDER SPRAY INK
 0.10583(μm)
 0.0120(μm)

 200511011227003
 COLOR WONDER SPRAY INK
 0.10574(μm)
 0.0120(μm)

Explore the future

TiO₂ Commercial Data Sheet

Crystal structure of Anatase titanium dioxide

Crystal structure of Rutile titanium dioxide

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Explore the future

TiO₂ : Effect of Size

Relative scattering power rutile TiO₂ vs. size

Opacity of TiO_{2} mean 0.25 and 10 μm

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved.

- Step 1: Buy a HORIBA LA-950
- Decide wet or dry analysis
- Wet: disperse sample using surfactant and ultrasound
- Method development using Method Expert
 - •RI, concentration, ultrasound
- Dry: Use smallest nozzle and highest air pressure

TiO₂: Effect of Refractive Index

Measure sample once Fix real RI, vary imaginary Minimize R parameter (error calculation)

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

TiO₂ for Cosmetics

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

TiO₂: Wet vs. Dry

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

TiO₂: Dry Analysis of 2 Samples

HORIBA

Nano TiO₂*

* PREPARATION AND UV CHARACTERIZATION OF TiO₂ NANOPARTICLES SYNTHESIZED BY SANSS

Ching-Song Jwo¹, Der-Chi Tien², Tun-Ping Teng³, Ho Chang⁴, Tsing-Tshih Tsung⁴, Chih-Yu Liao⁵ and Chi-Hsiang Lin¹

Rev.Adv.Mater.Sci. 10 (2005) 283-288

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

© 2012 HORIBA, Ltd. All rights reserved

TiO₂ Size & Zeta Potential on SZ-100

Size, note: Intensity distribution

Measurement Results									
	Date			ŝ	jeudi 23 février 2012 10:50:08				
	Measure	ement Type		ŝ	Zeta Potential				
L	Sample	Name		ŝ	TiO2 pH 7				
	Tempera	ature of the	holder	÷	25.0 °C				
L	Viscosit	y of the dis	persion medium	ŝ	0.895 mPa·s				
L	Conduct	tivity		ŝ	0.105 mS/cm				
L	Electrod	le Voltage		ŝ	3.4 V				
	Calcul	ation Re	sults						
	Peak No.	Zeta Potential	Electrophoretic Mobility						
L	1	-48.4 mV	-0.000375 cm2/Vs						
L	2	mV	cm2/Vs	1					
L	3	mV	cm2/Vs						
L	Zeta Pot	ential (Mea	n)	2	-48.4 mV				
	Electrop	horetic Mo	bility mean	÷	-0.000375 cm ² /Vs				
L									

Zeta potential @ pH = 7

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

- Particle size important physical parameter requiring analysis for control
- Laser diffraction excellent tool down to 30 nm
- Dynamic light scattering for sub micron particle size + zeta potential
- HORIBA has products and support for your application requirements

To Learn More: www.horiba.com/particle

