

Measure and Modify Colloidal Stability Featuring the SZ-100 Nanoparticle Analyzer

© 2012 HORIBA, Ltd. All rights reserved

Colloids Definition

Two phases:
Dispersed phase (particles)
Continuous phase (dispersion medium, solvent)
May be solid, liquid, or gaseous
Size range 1 nm - 1 micron
High surface area creates unique properties

		Dispersed Medium			
		Gas	Liquid	Solid	
	Gas	NONE (All gases are mutually miscible)	Liquid Aerosol Examples: fog, mist, clouds	Solid Aerosol Examples: smoke, air particulates	
Continuous Medium	Liquid	Foam Examples: whipped cream	Emulsion Examples: milk, mayonnaise, hand cream	Sol (suspension) Examples: paint, pigmented ink	
	Solid	Solid Foam Examples: aerogel, styrofoam, pumice	Gel Examples: gelatin, jelly, cheese, opal	Solid Sol Examples: cranberry glass, ruby glass	

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

conductor | Scientific

Colloid or Nanoparticle?

- Colloid: 1 nm 1 µm
- Nanoparticle: 1 100 nm
- So a suspension of 50 nm gold particles in water: colloid or nanoparticle?
- Both, mostly terminology
- Also hear "nanocolloid, nanoparticle colloid…" (<100 nm)</p>

MESOG	OLD® - NANOPARTIC	LE COLLOIDAL GOLD Price: Availability: Model: Average Rating:
	MEOGOLD	Qty: 1 ADD TO
plore the future	Automotive Test	Systems Process & Environmental Medical Sen
2012 HORIBA, Ltd. All rights	reserved.	

Nanoparticle or Not?

D from SEM ~50 nm D from SSA ~60-70 nm D from DLS ~250 nm So: is this a nanoparticle?

Used ultrasound to disperse to primary particles or use weak acid to break bonds D from DLS ~50 nm

Stability

- Want stable dispersion
- Either suspensions or emulsions
- Suspensions sediment & flocculate
- Emulsions phase separate, creaming or coalescence

Measuring Stability

Stabilization

- Steric stabilization: coat surface with polymers
- Particles can't touch so they don't interact

Electrostatic stabilization: alter surface chemistry to put charge on particle surface

Repel like magnets

Zeta Potential

- If surface has + charge, then - ions attracted to surface
- + ions attracted to ions, builds electric double layer
- Slipping plane: distance from particle surface where ions move with particle
- ZP = potential (mV) at slipping plane

Zeta Potential

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Stability Theory

Electrostatic Stability (DVLO)

- Approaching particles undergo two forces
 - Van der Waals attraction (Vvdw)
 - Electrostatic repulsion (Ver)
- Total energy = balance of two
 - Vtotal = Vvdw + Ver

Steric Stability

- Approaching particles undergo two forces
 - Van der Waals attraction (Vvdw)
 - Forces from adsorbed polymers (Vster)
- Total energy = balance of two
 - Vtotal = Vvdw + Vster

Total Interaction Energy Curve: DVLO

Important parameters:

- 1/K Debye Length, double layer thickness: depends on concentration
- a particle size
- ζ surface charge
- A Hamaker constant, nature of particle

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Zeta Potential: Measurement

- Apply electric field
- Measure particle motion
- Direction tells + or
 - + particles move to -
 - particles move to +
- Speed tells amplitude
 - Get speed from frequency shift from motion of particles

© 2012 HORIBA, Ltd. All rights reserved

Zeta Potential Measurement

Particle motion causes Doppler shift Frequency → mobility Mobility → zeta potential Mobility

$$U = \frac{\lambda \Delta v_d}{2En\sin(\theta/2)}$$

Zeta potential

$$\zeta = \frac{3U \cdot \eta}{2\varepsilon \cdot f(ka)}$$

© 2012 HORIBA, Ltd. All rights reserved

Measurement Results HORIBA

•Polystyrene Polymer Micro spheres: 500nm (100ppm)

Average value of zeta potential from three times measurements

	1
SZ-100 /	Other
-41.1 mV	-39.5 mV

- First measure conductivity
- Then decide applied electric field
 - Auto or manually
- Reverse electric field to avoid polarization & electroosmosis
- To avoid electroosmotic effect near cell walls
 - "Uzgiris" type cells avoid this problem

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Zeta Potential Cells

Gold coated electrodes (ruined)

Carbon coated electrodes

IEP 3.4 nm protein

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Explore the future

Thin vs. Thick Double Layer HORIBA

© 2012 HORIBA, Ltd. All rights reserved

SZ-100 Software

- Default is Smoluchowski
- Selection for Huckel
- Or enter manually for other model

ect dispersion medium, material and other sample propertiesParticle:mono-polystyreneSample ListDispersion Medium:WaterDispersion Medium ListRefractive Index of the Dispersion Medium:1.3331.333Viscosity of the Dispersion Medium: $\eta = (2.6325758 \times 10^{-8})T^4 \cdot (3.6103169 \times 10^{-6})T^3$ + (1.8631000 $\times 10^{-2})T^2 - 4.2933532T$ + (3.7362098 $\times 10^2$)Temperature: °CDielectric Constant: $er = (-1.410000 \times 10^{-6})T^3 + (2.095200 \times 10^{-3})T^2$ - 1.229100T + (2.958800 $\times 10^2$)Henry CoefficientMaxwel75	omal	atic !
Particle:mono-polystyreneSample ListDispersion Medium:WaterDispersion Medium ListRefractive Index of the Dispersion Medium:1.3331.333Viscosity of the Dispersion Medium: $\eta = (2.6325758 \times 10^{-8})T^4 - (3.6103169 \times 10^{-5})T^3$ + (1.8631000 $\times 10^{-2})T^2 - 4.2933532T$ + (3.7362098 $\times 10^2$)Temperature:*CDielectric Constant: $e_T = (-1.410000 \times 10^{-6})T^3 + (2.095200 \times 10^{-3})T^2$ - 1.229100T + (2.958800 $\times 10^2$)		
Dispersion Medium : Water Dispersion Medium List Refractive Index of the : 1.333 Dispersion Medium Viscosity of the Dispersion Medium : $\eta = (2.6325758 \times 10^{-8})T^4 - (3.6103169 \times 10^{-5})T^3 + (1.8631000 \times 10^{-2})T^2 - 4.2933532T + (3.7362098 \times 10^{-2})T^2 - 4.2933532T + (3.7362098 \times 10^{2}) Temperature : *C Dielectric Constant : e_T = (-1.410000 \times 10^{-6})T^3 + (2.095200 \times 10^{-3})T^2 - 1.229100T + (2.958800 \times 10^{2}) Henry Coefficient Maxwell = 75 $		1
Dispersion Medium : Water Dispersion Medium List Refractive Index of the Dispersion Medium : 1.333 1.333 Viscosity of the Dispersion Medium : $\eta = (2.6325758 \times 10^{-8})T^4 - (3.6103169 \times 10^{-5})T^3 + (1.8631000 \times 10^{-2})T^2 - 4.2933532T + (3.7362098 \times 10^2)$ Temperature : ···· °C Dielectric Constant : ɛr = (-1.410000 \times 10^{-6})T^3 + (2.095200 \times 10^{-3})T^2 - 1.229100T + (2.958800 \times 10^2)		-
Refractive Index of the Dispersion Medium : 1.333 Viscosity of the Dispersion Medium : $\eta = (2.6325758 \times 10^{-8})T^4 \cdot (3.6103169 \times 10^{-5})T^3 + (1.8631000 \times 10^{-2})T^2 \cdot 4.2933532T + (3.7362098 \times 10^2)$ Temperature : °C Dielectric Constant : $e_T = (-1.410000 \times 10^{-6})T^3 + (2.095200 \times 10^{-3})T^2 - 1.229100T + (2.958800 \times 10^2)$ Henry Coefficient Maxual	List	
Viscosity of the Dispersion : $\eta = (2.6325758 \times 10^{-8})T^4 - (3.6103169 \times 10^{-5})T^3$ Medium : $+ (1.8631000 \times 10^{-2})T^2 - 4.2933532T$ + (3.7362098 \times 10^2) Temperature : $ C$ Dielectric Constant : $e_r = (-1.410000 \times 10^{-6})T^3 + (2.095200 \times 10^{-3})T^2$ - 1.229100T + (2.958800 \times 10^2) Henry Coefficient		
Temperature : °C Dielectric Constant : $e_f = (-1.410000 \times 10^{-6})T^3 + (2.095200 \times 10^{-3})T^2$ - 1.229100T + (2.958800 \times 10^2) Henry Coefficient Maxwell		
Dielectric Constant : $\epsilon_{\rm f} = (-1.410000 \times 10^{-6}) T^3 + (2.095200 \times 10^{-3}) T^2$ - 1.229100T + (2.958800 × 10 ²) Henry Coefficient		
Henry Coefficient		

Zeta Potential Predicts Stability

Different guidelines

Sample Dependency

- Oil/water emulsions > 10 mV
- Polymer latices > 15 mV
- Oxides > 30 mV
- Metal sols > 40 mV

© 2012 HORIBA, Ltd. All rights reserved

Zeta Potential: Emulsion Isoelectric Point (IEP)

Automate IEP studies with auto titrator

HORIBA

Emulsion IEP Study: Stability

© 2012 HORIBA, Ltd. All rights reserved.

IEP of Some Materials

- Another use of IEP is to characterize the surface of complex particles
 TiO2 coated with
 - alumina will have the IEP of alumina

alpha aluminium oxide Al2O3	8-9
alpha iron (III) oxide (hematite) Fe_2O_3	8.4-8.5
antimony(V) oxide Sb ₂ O ₅	<0.4 to 1.9
cerium(IV) oxide (ceria) CeO ₂	6.7-8.6
chromium(III) oxide (chromia) Cr_2O_3	6.2-8.1
copper(II) oxide CuO	9.5
delta-MnO2 1.5, beta-MnO2	7.3[5]
gamma aluminium oxide Al2O3	7-8
gamma iron (III) oxide (maghemite) Fe_2O_3	3.3-6.7
iron (II, III) oxide (magnetite) Fe ₃ O ₄	6.5-6.8
lanthanum(III) oxide La2O3	10
lead(II) oxide PbO	10.7-11.6
magnesium oxide (magnesia) MgO	9.8-12.7
manganese(IV) oxide MnO2	4-5
nickel(II) oxide NiO	9.9-11.3
silicon carbide (alpha) SiC	2-3.5
silicon dioxide (silica) SiO ₂	1.7-3.5
silicon nitride Si3N4	6-7
silicon nitride Si ₃ N ₄	9
tantalum(V) oxide, Ta_2O_5	2.7-3.0
thallium(I) oxide TI ₂ O:	8
tin(IV) oxide SnO ₂	4-5.5
titanium(IV) oxide (rutile or anatase) TiO_2	3.9-8.2
tungsten(VI) oxide WO ₃	0.2-0.5
vanadium(V) oxide (vanadia) V_2O_5	1 to 2
yttrium(III) oxide (yttria) Y ₂ O ₃	7.2-8.9
zinc oxide ZnO	8.7-10.3
zirconium(IV) oxide (zirconia) ZrO ₂	4-11

Explore the future

Salt Concentration Effect

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Surfactant Concentration Effects

Alter the surface chemistry – alter the zeta potential

De-stabilization

- Can also use zeta potential to study how to cause instability
- Example: water treatment
- Add chemicals to IEP
- Particles flocculate
- Easier to filter

Applications: Colloidal Gold

- Stable base particle
- Used in drug delivery
- Attach proteins, DNA, etc. to surface

Colloidal Gold: Drug Delivery

Particle size and zeta potential for colloidal gold base particles (average size 51 nm prior to modification) after immobilizing a prodrug activating enzyme onto the surface at different concentrations.

		Molar ratio of enzyme to gold colloid				
		90:1	180:1	270:1	360:1	450:1
His-NfnB- gold colloid	Size (nm)	53.5	57.5	82.6	69.7	75.4
	Zeta-potential (mV)	-43	-31.7	-30.7	-33.3	-30.4
Cys-NfnB- gold colloid	Size (nm)	56.3	59.8	61.1	69.8	69.7
	Zeta-potential (mV)	-23.4	-25.3	-26.0	-27.7	-34.2
		-				

Data generated on SZ-100

HORIBA

Colloidal Gold Modified with a Genetically Engineered Nitroreductase: Toward a Novel Enzyme Delivery System for Cancer Prodrug Therapy

Vanessa V. Gwenin, Chris D. Gwenin, and Maher Kalaji Langmuir, **2011**, *27* (23), pp 14300–14307

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

NIST Colloidal Gold

NIST Certificates

Technique	Size nm
Atomic Force Microscopy	8.5 ± 0.3
Scanning Electron Microscopy	9.9 ± 0.1
Transmission Electron Microscopy	8.9 ± 0.1
Differential Mobility Analysis	11.3 ± 0.1
Dynamic Light Scattering	13.5 ± 0.1
Small-Angle X-ray Scattering	9.1 ± 1.8

Technique	Size nm
Atomic Force Microscopy	24.9 ± 1.1
Scanning Electron Microscopy	26.9 ± 0.1
Transmission Electron Microscopy	27.6 ± 2.1
Differential Mobility Analysis	28.4 ± 1.1
Dynamic Light Scattering	
173º scattering angle	28.6 ± 0.9
90° scattering angle	26.5 ± 3.6
Small-Angle X-ray Scattering	24.9 ± 1.2

Technique	Size nm
Atomic Force Microscopy	55.4 ± 0.3
Scanning Electron Microscopy	54.9 ± 0.4
Transmission Electron Microscopy	56.0 ± 0.5
Differential Mobility Analysis	56.3 ± 1.5
Dynamic Light Scattering	
173° scattering angle	56.6 ± 1.4
90° scattering angle	55.3 ± 8.3
Small-Angle X-ray Scattering	53.2 ± 5.3

8011		
HORIBA	Average	St dev
Sample 1	13.4 nm	1,8
Sample 2	12.6nm	1,9
ASTM	Zave	st dev
Combined	15.8 nm	4,2

SZ-100 Results

8012		
HORIBA	Average	St dev
Sample 1	31.5nm	3,9
Sample 2	32.4 nm	5,9
ASTM	Zave	st dev
Combined	31.2 nm	3,6

8013		
HORIBA	Average	St dev
Sample 1	57.6 nm	3,5
Sample 2	58.4 nm	3,9
ASTM	Z ave	st dev
Combined	59.8 nm	5,0

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved.

Other Colloidal Metals

Colloidal silver

10

Diameter (nm)

palladium

100

1000

nickel

platinum

germanium

_			I make		
-v	ninr	-	in a		1200
		•			

40-

30

20-

10-

0-

Frequency (%)

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved

Colloidal Silica

- Possible reference material for both size and zeta potential
- Ludox TM size analyzed on both SZ-100 and LA-950
- Ludox zeta potential can be used to verify zeta potential
- IRMM has issued silica colloidal reference materials ERM-FD100 (20 nm) & ERM-FD304 (40 nm) w/zeta values

© 2012 HORIBA, Ltd. All rights reserved

ISO/CD 13099-1 Methods for zeta potential determination — part 1: General Principle

- ISO/CD 13099-2 Methods for zeta potential determination — part 2: Optical Methods
- ISO/NWI 13099-3 Methods for zeta potential determination — part 3: Acoustic Methods

- Try to avoid dilution
- Don't dilute with DI water
 - •No ions, changes surface chemistry & ZP
- Best: equilibrium dilution with same liquid as sample, but with no particles
 - Us supernatant after sedimentation or centrifugation
- Otherwise, dilute with 0.01 M KCL solution

- No accepted standards, each vendor supplies reference samples
- Measure three times, mean value within 10% of published electrophoretic mobility value
- Repeatability; CV <10%</p>
- Note: expect most customers to use zeta potential values
- If system is within 12%, don't lose sleep

Summary

- Particle size, zeta potential, chemistry all related for colloidal suspensions
- Use zeta potential as a predictive tool for stability
- Alter surface chemistry, does zeta potential improve?
 - pH, salt, surfactant, etc.
- IEP useful for both stability and surface definition

Resources: www.horiba.com/particle

For More Details

Visit <u>www.horiba.com/particle</u>

Contact us directly at labinfo@horiba.com

Visit the **Download Center** to find this recorded presentation and many more on other topics

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

© 2012 HORIBA, Ltd. All rights reserved

