Advanced Ceramics: Particle Size and the Challenge of Determining Suitable Refractive Indices

Matt Creedon, Ph.D.

MC²Consulting

Buffalo, New York

Overview

- Ceramic Formulations
- Importance of particle size
- Problems in particle sizing
- Approaches to index determination
- Examples
 - + Fuel cell electrode
 - + Dielectric formulation

Ceramic Formulations

- Mixtures of two or more materials
 - Electronic Ceramics
 - Raw material mixtures
 - Oxides and carbonates of most of the Periodic Chart!
 - Doped BaTiO₃
 - Dopants containing >5 different materials
 - Solid Oxide Fuel Cell Materials
 - Raw material mixtures
 - $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$
 - Y_2O_3 -Zr O_2
 - Gd_2O_3 -CeO₂
 - Ni-Y-ZrO₂

- MLCC's
 - >100 in a cell phone
 - ~0.5 mm

0.5 microns

~1.5 µm laye

- 10 to >200 layers of ceramic
- $-1-10 \ \mu m$ thick
- Thinner layer = Higher capacitance

nmm^c

CERAMIC

DIELECTRIC

INTERNAL ELECTROD (Ag/Pd, Ni

4

TERMINATION

NICKEL

(BARRIER LAYER) (Ag, Cu)

TIN

- Size Effect in BaTiO₃
 Ceramics
 - K decreases below ~ 300 nm

Freyet al.: Ferroelectrics, 206-207 337 (1998).

Solid Oxide Fuel Cell

- Each cell ~ 1 volt
- 3 layers/cell
- Thin electrolyte better
 - 10 to 40 μm
- Flat plate and tube designs

Solid Oxide Fuel Cell Structure

• Cathode $-\sim 50\%$ porosity $-La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$

Electrolyte

 Fully dense
 Y-ZrO₂, Gd₂O₃-CeO₂

Anode

 -~40% porosity
 -NiO/Y-ZrO₂

Problem

Background

- Laser scattering instruments are based on Mie theory for interaction of light with particles.
- Requires knowledge of the complex refractive index of the particles.
 - $n^*=n'+\kappa i$

• Problem

Determining a *suitable refractive index* for accurate particle size determination of mixtures by laser scattering.

Index Determination

Approaches

- Guess
 - OK for process control
 - When relative value is adequate
- Mixture Rule
 - Usually suggested
 - Doesn't help with imaginary component
- Software based
 - Statistical comparisons
 - Measured vs. calculated intensities

 $n_{mixture} =$ refractive index of mixture

 V_i = volume fraction of *i*thcomponent of mixture

$$p_i = refractive index of$$

*i*th
component of mixture

Ζ

Software Approach

- Horiba LA-950
- Software Ver. 3.56
- Creation of new refractive index kernels
- Measured vs. Calculated Scattered Intensities
- Goodness of fit parameters:
 - Degree of similarity between distribution calculated using the input optical properties and distribution of actual scattering data.
 - Chi Square (χ²)
 - R Parameter

Goodness of Fit Parameter χ^2

- χ²
 - $y_i = actual scattering measurement$
 - $y(x_i)$ = theoretical scattering measurement
 - $\parallel \sigma_i = \text{standard dev. of scattering data}$

Intensity Data

Software Output:

Intensity vs.Channel

 $\parallel \chi^2$

- Measured
- Theoretical
- Residual (Actual Theo.)

Software Based Approach

- Step 1: Make a representative measurement with best guess at R.I. (i.e. Mixture rule)
- Step 2: Vary imaginary component to minimize χ²
- Step 3: Vary real component to minimize χ^2
- Step 4: Verify via image analysis

Image Analysis

- Deposit powder
- Collect images
- Process
 - ImageJ 1.38x
 Software (NIH)
- Data analysis

Examples

• Fuel Cell Cathode Mixture

Dielectric Formulation

Fuel Cell Cathode

• Unreacted mixture of raw materials

- $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$
 - La_2O_3 , n = 2.51
 - $SrCO_3$, n = 1.61
 - CoO, n = 1.84
 - Fe_2O_3 , n = 2.90

- Surface Area ~ $5 \text{ m}^2/\text{g}$

•Mixture Rule

 $-n_{mixture} = 2.29$

Lanthanum Oxide

Strontium Carbonate

Iron Oxide

Cobalt Oxi

Fuel Cell Cathode (cont'd)

- 1. Make Representative Measurement
- 2. Vary Imaginary component
 - 1. 0.0i to 1.0i
 - 2. Take i at min χ^2
- 3. Vary real component
- 4. Verify via SEM
- 5. Min χ^2 at $n_{mixture} = 3.0-0.20i$
- 6. Better match at $n_{mixture} = 2.0-0.20i$

Fuel Cell Cathode (cont'd)

Index	Mean	Median
SEM	0.49	0.36
3.0-0.20i	0.47	0.37
2.0-0.20i	0.49	0.42
2.29-0.20i	0.50	0.42

Dielectric Formulation

Dielectric formulation
BaTiO₃, n = 2.39
Dopant mixture, n ≅ 1.5
Surface Area ~ 5 m²/g

• Mixture Rule $- n_{mixture} = 2.32$

Dielectric Formulation (cont'd)

- 1. Make Representative Measurement
- 2. Vary Imaginary component
 - 1. 0.0i to 0.10i
 - 2. Take i at min χ^2
- 3. Vary real component using 0.01i
- 4. Verify via SEM
- 5. No match adjust Index
- 6. New imaginary 0.10, vary Real component
- 7. $n_{mixture} = 3.0-0.1i$

Dielectric Formulation (cont'd)

Index	Mean	Median
SEM	0.28	0.18
4.4-0.01i	0.51	0.47
3.0-0.10i	0.28	0.22
2.32-0.10i	0.09	0.08

Summary

- Knowledge of a R.I. that provides a correct particle size is critical
- χ² is a good guide to find "correct" complex refractive index for a mixture
- Mixture rule calculation gives good starting point
- Must be realistic
- Still no substitute for actually looking at particles

Additional Reading

- Mie, Gustave, BeitragezurOptiktruberModien, specielKollaidalerMetallosungen, AnnalenderPhysik, Vol. 25, No. 3, pp. 377-445, 1908
- 2) Algorithm Iterations, TN149, Horiba Instruments Technical Note
- 3) Guide to Selecting Refractive Index, TN118, Horiba Instruments Technical Note
- 4) NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, November, 2007.
- 5) <u>http://www.webmineral.com/help/Gladstone-Dale.shtml</u>
- 6) Larsen, E.S., Berman, H., The Microscopic Determination of the Non-Opaque Minerals, Second Edition, United States Department of the Interior, Geological Survey Bulletin 848, 1934, US Government Printing Office, Washington, DC.
- 7) Mandarino, J. A., The Gladstone-Dale Relationship: Part III: Some General Applications, Dept. Mineral. Geol., Royal Ontario Mus., Toronto, ON, Can.

THANKS!

Matt Creedon, Ph.D.

MC²Consulting

Buffalo, New York matt@mc-squaredsonsilting.com

716-239-0299

Expertise in ceramic formulation and processing, new product development, and characterization,