

PARTICLE PROCESSING AND THE VALUE OF CHARACTERIZATION

DECEMBER 12,2018

PARTICLE PROCESSING SERVICES

TOLL MANUFACTURING

RESEARCH & DEVELOPMENT

INNOVATIVE SOLUTIONS

PRESENTED BY: WILLIE HENDRICKSON, CEO & FOUNDER

Presentation Outline

- Overview of AVEKA
- Reasons for Characterization
- Types of Characterization Methods to Consider
- Examples of Characterization Challenges and Some Solutions
- Conclusions

AVEKA Group Overview

- Particle technology company focused on contract manufacturing
- Spin-off of 3M in 1994
- Comprised of 5 separate companies
- ISO certifications / food-grade certifications
- Currently 290 employees

be the recognized leader in innovative manufacturing solutions for particle technology

AVEKA's Mission

be the leader in **particle processing** by providing our customers with custom solutions, quality manufacturing and **excellent customer service**

The AVEKA Group

AVEKA Inc

- 75 people
- Corporate Headquarters
- R&D, Manufacturing, Specialty Process Suites

AVEKA Manufacturing

- 96 people Fredericksburg, Iowa
- Large scale manufacturing
- Spray Drying, Hammer Milling, Fluid Bed Drying, Tumble Coating, Agglomeration

Cresco Food Technologies

- 50 people Cresco, Iowa
- Food Processing
- Spray Drying, Prilling, Drum Drying, Extraction, Wet Blending

AVEKA Nutra Processing

- 40 people Waukon Iowa
- Value Added Food Processing
- Spray Drying, Roll Drying, Microfiltration/Nanofiltration, Specialty Separations

AVEKA CCE Technologies

- 15 People Cottage Grove, Minnesota
- Industrial Materials, Abrasives, Ceramics, Minerals
- Jet Milling and Classification

Particle Characterization

Particle size analysis

- Particles 1 nm to 2+ mm
- Particle size distribution (PSD)
- Sonic sieving
- Rototap

Imaging

- Optical microscopy
- Scanning electron microscopy (SEM)

Surface area analysis

True density analysis

Helium pycnometry

Formulation analysis

- High performance liquid chromatography (HPLC)
- Thermogravimetric analysis (TGA)
- Spectrophotometer
- Differential scanning calorimetry (DSC)

Flow characteristics

- Freeman FT4
- Zeta potential analysis (ZP)
- Rheological analysis
- Moisture and solids analysis (MSA)
- Karl Fisher

Reasons for Characterization

- Scientific Curiosity
- IP Development and Protection
- Process Control/Understanding
- Product Control
- Quality Control
- Impurity Analysis

Characterization Methods

- Visual Inspection (color, flow, size, uniformity, etc.)
- Mass Balance Measurements
- Optical Microscopy
- Particle Size/Shape
- Particle Flow
- Chemical Characterization
- Surface Area
- Electrical Characteristics

Classification by Screening

Challenge: Rapid and efficient screening of powders less than 200 microns

Screening at 74 μm of encapsulated fragrance particles using a 30 inch Screener

Rate (lbs./hr.)	Ultrasonics	Overs (%)	Product (%)
163	no	56	44
159	yes	30	70

Ultrasonic Screening

Quality Control

Process:

- Crushing and ball milling ceramic blocks
- Followed by screening

Specifications (microns)

Ceramic Particle Size Distribution

HORIBA LA-930 for Windows (TM) [WET(LA-930)] Ver.3.45 LA-930 system for Windows Filename :Filename : D# :200604170736086 Sample Name :Before Screening						Pau 20 Wo	Aveka Characterization Lab Paul Yerbanac, Lab Manager 2045 Wooddale Drive Woodbury, MN 55125 Phone: (651)730-1729				
Material		Fine Cordie	rite	Circul	lation Spee	d io					
Source	•			Ultra		OFF					
Lot Number Form of Distribution :Stan Distribution Base :Volu Sampling Times() 5.P. Area : 16460(cm ² / Median : 8.8305(µm) Median : 8.8305(µm) Mode : 12.3755(µm) Mode : 2.1483	me :10			R.R.I Varia S.D. CV	T% Level :30 ndex :116 nce : 5 : 7 : 75 Mean : 6	9.740(µm .7292(µm 5.9723	%) *))				
% on Diameter (1)5.000 (%)- 0.9042(µ (2)10.00 (%)- 1.5711(µ (3)50.00 (%)- 8.8305(µ (4)90.00 (%)- 20.5467(µ (5)99.00 (%)- 34.3657(µ	n) n) m)			:350.0 176.0 88.00 44.00	eter on ⁴ (µm)- 100 (µm)- 100 (µm)- 100 (µm)- 99 (µm)- 92),000(%)),000(%)),000(%) ,803(%)	5,500 (ζum)-	60.751(9 32.749(9 12.877(9	6	
8.000										100.	0
O Frequency (%)						<u></u>				0 Undersize (%)	
	.100	1.000	1	0.00		100.	0		2	000	
				Dia	meter	(µm)					
No. Diameter Freq.	% Under % No.	Diameter Fred	. % Under %	5 No.	Diameter I	Freq. % L	Jnder %	No.	Diameter F	req. % U	Inder %
1 0.022 0.0			.354 0.90		6.720	4.386		64	116.210		100.000
2 0.026 0.0 3 0.029 0.0			.449 1.354		7.697	5.139		65	133.103		100.000
3 0.029 0.0			.541 1.89 .618 2.513		8.816 10.097	5.875 6.476		66 67	152.453 174.616	0.000 0.000	
5 0.039 0.0			.685 3.19		11.565	6.903		68	200.000	0.000	
6 0.044 0.0			.752 3.95		13.246	7,235		69	229.075	0.000	
			.838 4.78	8 49	15.172	6,889	77,422	70	262.376	0.000	
	00 0.000 28										100.00
8 0.058 0.0	00 0.000 29	1.005 0	.952 5.74	0 50	17.377	6.360	83.782	71	300.518	0.000	100.00
	00 0.000 29 00 0.000 30	1.005 0 1.151 1		0 50 9 51			83.782 89.030			0.000	100.00 100.00

AVEKA

11.214 54 13.135 55

15.214 56

17.434 57

19.783 58

22.195 59

27.596 61

24.771 60

30.798 62 63

34.520

29.907 34.255

39.234

44.938

51.471

58.953

67.523

77.339

88,583

101.460

1.879

1.039

0.573

0.288

0.000

0.000 100.000

97.947 75

79

98.986 76

99,559 77

99.847 78

100.000

0.153 100.000

0.000 100.000

0.000 100.000

0.000 100.000

517,200

592.387

678,504

777.141

890.116

80 1019.515

81 1167,725

82 1337,481

83 1531.914 84 1754.613

0.000 100.000

0.000 100.000

0.000 100.000

0.000 100.000

0.000 100.000

0.000 100.000

0.000 100.000

0.000 100.000

0.000 100.000

0.000 100.000

0.100

0.115

0.131

0.150

0.172

0.197

0.226

0.259

0.296

0.339

12 13

14

15 16 17

18

19 20 21

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.121

0.174

0.000 33

0.000 34

0.000 35

0.000 36 0.000 37

0.000 38

0.000 39

0.121 40

0.295 0.552 41 42 1.729 1.981

2,269

2.599

2.976

3,409

3.905

4,472

5.122

5.867

1.717

1.921

2.079

2.219

2.349

2.412

2.576

2,826

3.202

3.722

Ceramic Particle Size Distribution After Screening

HORUBA LAA LA-930 system for Windows Filename ID# Sample Name Material Source Lot Number Form of Distribution :Standar Distribution Base :Volume Sampling Times() S.P. Area : 16657(mt ² /cmt ² Median : 8.7399(m) Median : 8.7399(m) Median : 10.0772(pm) Mode : 12.3672(pm) Span : 2.1515 % on Diameter :(1)5.000 (%) - 0.3871(pm) (2)10.00 (%) - 0.5545(pm) (2)50.00 (%) - 1.5545(pm) (2)50.00 (%) - 1.5545(pm) (2)50.00 (%) - 0.338(pm)	FinesAfter :200604190818167 :After Screening :Ball Milled Fine Cordierite :Corning :M06409 d :10	Var.3.45 Aveka Characterization Lab Paul Verbanac, Lab Manager 2045 Wooddale Drive Woodbury, NN 55125 Phone: (651)730-1729 Circulation Speed :3 Ultra sonic :OFF Laser T% :43.1(%) Lamp T96 :41.9(%) Calc. Level :20 :R.Index: Ilfa6000i Variance : 58.865(µm²) S.D. : 7.4723(µm) CV : 7.61258 Geo, Mean: : 6.8788(µm) Chi-2 : 0.03883 Diameter on % : :030.0 (µm): 100.000(%) :030.0 (µm): : 100.000(%) : 88.00 (µm): : 0.39.807(%)
(\$) \$34.1810(µm) 8.000 (%) \$4.1810(µm) 8.000 (%) \$4.1810(µm) 8.000 (%) \$4.1810(µm) 8.000 (%) \$4.1810(µm) 9.000 (%) \$4.1810(µm) 9.000(µm) 9.0	00 1.000 1	22.00 (µm): 92.334(%) 100.0 (%) 100.0 0.0 0.0
No. Diameter Freq. %	1	Diameter (µm) No. Diameter Freq. % Under % No. Diameter Freq. % Under %
$\begin{array}{ccccccc} 2 & 0.026 & 0.000 \\ 3 & 0.029 & 0.000 \\ 4 & 0.034 & 0.000 \\ 5 & 0.039 & 0.000 \\ 6 & 0.044 & 0.000 \\ 7 & 0.051 & 0.000 \\ 9 & 0.067 & 0.000 \\ 10 & 0.076 & 0.000 \\ 11 & 0.087 & 0.000 \\ 12 & 0.100 & 0.000 \\ 13 & 0.115 & 0.000 \\ 13 & 0.115 & 0.000 \\ 14 & 0.131 & 0.000 \\ 15 & 0.172 & 0.000 \\ 16 & 0.172 & 0.000 \\ 17 & 0.197 & 0.000 \\ 18 & 0.226 & 0.000 \\ 19 & 0.259 & 0.125 \\ 20 & 0.296 & 0.180 \\ 21 & 0.339 & 0.266 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8.816 5.940 50.423 66 152.453 0.000 100.000 1 46 10.097 6.524 56.947 67 174.616 0.000 100.000 1 47 11.555 6.925 63.871 68 200.000 0.000 100.000 1 43 13.246 7.223 71.094 69 223.075 0.000 100.000 1 43 13.246 7.223 71.094 69 226.376 0.000 100.000 1 43 15.172 6.840 72 344.206 0.000 100.000 51 19.304 51.45 89.357 72 344.206 0.000 100.000 52 27.97 4.035 93.327 73 344.206 0.000 100.000 52 25.97 1.614 98.014 75 51.200 0.000 100.000 55 34.255 1.002 99.507 77 678.504

Results of Screening

Size Distributions Exactly the Same

- Some product was usable
- Some product was not usable

Why?

Small quantity of unmeasured large particles

Solution

• Wet screening and microscopic evaluation

Jet Milling vs. Ball Milling of Zirconia Sand

Ball Milling Jet Milling Differential Volume Differential Volume **—** 12443-1.1 4.5 5.5-5-3.5 4.5-4 3. 3.5 Volume (%) (%) 2.5 (%) 2.5 3 2.5 2-1.5 1.5-1-0.5 ₽ 20 6 30 -5 9 10 20 30 Ŕ Particle Diameter (µm) Particle Diameter (µm)

Objective: Minimization of Fines

Ball Milling	<10%	<25%	<50%	<75%	<90%
	1.796 µm	3.191 µm	6.317 µm	10.25 μm	13.66 µm
Jet Milling	2.449 µm	4.120 µm	6.671 µm	9.133 µm	10.75 µm

Jet Milling vs. Ball Milling of Zirconia Sand

Glass Bead Classifications and Yields

Glass Beads Starting Material

Glass Bead Classification (2 Versions)

Objective: Increase yield after classification

Glass Bead Classification and Yields

Jet Milling and Classification of Polymer

Jet Milling and Classification of Polymer

ting material

Jet Milling and Separation of Starch and Protein

Jet Milling and Air Separation of Starch & Protein

Spheroidizing

Particle size

• remains the same

Processing Rate

up to 20 kg/hour

Atomization Air Temp

• up to 650°C

Industrial materials

Ideal Materials

Thermoplastics, pigments

Spheroidizing

MAIC: Magnetically Assisted Impact Coating

Particle Surface Treatment:

- Add flow agents (silica)
- Coat with solids (TiO2, ZnO)
- Distribute liquids (silanes)
 - US Patent 5,962,082
- Can be used for many applications and industries
 - Agriculture materials, cosmetics, pigments, catalysts

Experimental Parameters

Materials:

- Citric acid monohydrate jet milled to 5 μm or Corn Starch
- Aerosil 200 Pharma, untreated fumed silica with 12 nm primary particle size

Samples:

	В	С	D	E	А	G	F
% silica	0.00	0.00	0.05	0.50	2.00	0.50	2.00
Processing	None	MAIC	MAIC	MAIC	MAIC	V-blended	V-blended

Sample Preparations:

Citric acid or corn starch blended with o-2 wt. % fumed silica in V-blender

Passed through MAIC or Set Aside

Flow Measurement Results for Citric Acid

- Clear decreases in BFE with increasing % silica
- Marked decrease between the raw and MAIC treated sample (o% (w/w) silica)

- At equal silica loadings, MAIC samples show lower BFE
- o.5% MAIC and 2.0% V-blend near equal

Comparing MAIC to V-Blending

Citric Acid – Short Term

- MAIC processing initially yields a lower BFE in all cases
- Silica addition via v-blending does not improve BFE
- The mean difference between v-blending and MAIC for each silica loading level is significant at p < .0001.

Citric Acid – Long Term

- MAIC-applied silica on citric acid maintains lower BFE than corresponding v-blend
- Addition of more silica does show improvement for MAIC samples (p < .0001, r² = .64)
- Divergent behavior observed for MAIC-processed citric acid without silica
- The mean difference between v-blending and MAIC for each silica loading level is significant at p < .0001, except for 0% silica (p = .170).

Cornstarch SEM Images

Cornstarch, 5% silica (MAIC), fresh

Cornstarch, 5% silica (MAIC), 1 year later

OCT 08 2018 14:15 37f 5pctSi Corn

Cornstarch – Short Term

- Like citric acid, MAIC-processing initially yields a lower BFE in all cases
- The addition of small amounts of silica does not lower BFE
- The mean difference between v-blending and MAIC for each silica loading level is significant at p < .05

Cornstarch – Long Term

- After 9 months, the differences between MAIC and v-blending cannot be observed
- Processing effects appear to have worn off,
- Addition of silica does not appear to lower BFE except for the highest loading levels (5%)

Spray Drying of Materials with Waters of Hydration

Interested in Hydrated Inorganic and Polymer Precursors for Novel Material Production

 $Al_{2}(SO_{4})_{3}$ •18 $H_{2}O$

For alumina based ceramics

Na₂Succinate•6H₂O
 For polyester type polymers

Typical drying conditions of 95 °C

Particle Size Distribution (PSD):

Spray Dried Aluminum Sulfate NX326-13-01

Remarks 1 : IPA Mean Size Median Size Std.Dev. Mode Size S.P.A rea io Diameter on Cumulative %	: 6.94950(µm) : 5.62878(µm) : 4.7652(µm) : 5.4795(µm) : 13926(cm²/cm³) : (1)5.000 (%) - 1.6910(µm) : (2)10.00 (%) - 2.2327(µm) : (3)50.00 (%) - 5.6288(µm) : (4)90.00 (%) - 13.6195(µm) : (5)98.00 (%) - 19.9238(µm))		Cumulati∨e % on Di	: (3)50.00 (µm : (4)75.00 (µm : (5)100.0 (µm)- 99.466(%))- 100.000(%))- 100.000(%))- 100.000(%))- 100.000(%)
9.5						
8.0						
7.0-			$ \land $			
6.0			/ \			
(%) 5.0 b 4 0		/		\backslash		
⁶ 4.0-		/				
3.0-						
2.0						
1.0- 0.0-						
0.010	0.100	1.000	10	.00	100.0	1000
		Dia	ameter(µi	n)		
	D ₁₀ = 2.23 μm	D ₅₀ = 5.6	53 µm	D ₉₀ = 13.	6 µm	

Spray Dried Anhydrous Aluminum Sulfate

10,000 X

10,000 X

Spray Dried Anhydrous Na Succinate

Ambient Aged Spray Dried Materials

Anhydrous Sodium Succinate

Hydrated Sodium Succinate

Interior of Spray Dried Anhydrous and Hydrated Na Succinate

Anhydrous Na Succinate

Rehydrated Na Succinate

Corn Bran Overview

Corn Bran Composition

 Starch 	1-10%
• Protein	1-8%
• Oils	0-2%
• Ash	1-6%
• Water	1-10%

Lignin
-
25-30%
60-70%
1-6%

Material Characteristics

Material Characteristics

Lignin

- Cross-linked aromatic polymer —
- Soluble in caustic
- Highly colored

Fiber Structure

Cellulose Images

Compostional Analysis

TGA

- Heat at constant rate
- Use high resolution option to measure weight changes
- Heat to 800 °C

Chemical Dissolution

- Wash with detergent and water (water solubles)
- Wash with dilute sulfuric acid (hemicellulose)
- Wash with conc. sulfuric acid (cellulose)
- Ash at 500 °C (lignin)
- Remainder after ashing (ash)

TGA of Cellulose and Hemicellulose

TGA of Corn Bran and Purified Cellulose

TGA Results

Sample	% Cellulose	Cellulose Decomp Temp
Cellulose	100	299.37
20/80 (H/C)	80	309.83
40/60 (H/C)	60	316.89
50/50 (H/C)	50	321.66
65/35 (H/C)	35	327.99
80/20 (H/C)	20	339.65
20/80 (S/C)	80	300.75
40/60 (S/C)	60	305.8
50/50 (S/C)	50	306.80
65/35 (S/C)	35	311.79
80/20 (S/C)	20	316.34

TGA Results

Hemicellulose Added to Cellulose

Starch Added to Cellulose

Impurity Characterization

Optical Image of Impurity

Background Information

- Found by customer in product
- Potential for recall
- Process analysis done and potential contaminant Determined to be
 - Zip tie from equipment
 - Adhesive from customer's bag
- Characterization critical for understanding

Impurity Characterization

TGA Comparison

DSC Comparison

Impurity Characterization

Summary

- Characterization is critical to meet product and customer needs
- Multiple methods should be considered for most complete understanding
- It is hard to analyze too much
- Contact Information:
 - Willie Hendrickson
 - whendrickson@aveka.com
 - 651-730-1729

