HORIBA Explore the future

HORIBA Scientific Particle Characterization

Dr. Anderson Bonon

Key Points to Achieving Successful Laser Diffraction Method Development

September 26, 2018

HORIB/

Method Development

Goal: Reproducible method that tracks product performance

- Choose measurement approach (dry vs. suspension)
- Establish the parameters for the measurement
- Vary measurement settings that can influence result
 - Dry: measurement duration, concentration, air pressure
 - Wet: sampler selection, dispersion, duration,

concentration, sample preparation (mixing + ultrasound)

- Test method reproducibility
 - Meet ISO, USP or internal guidelines

Method Development

Repeatability and Reproducibility

- Repeatability: prepare sample, add to wet sampler, re-circulate, measure same multiple times (suspensions only)
- Reproducibility: prepare sample, measure, drain, repeat (suspensions + dry)

Coefficient of variance	When D50) >10 µm	When D50) <10 µm	
(CoV)	ISO 13320	USP 429	ISO 13320	USP 429	
At median (D50)	3%	10%	<mark>6</mark> %	20%	
At D10 and D90	5%	15%	10%	30%	

Measurement Range of the Main Techniques for Particle Characterization

© 2018 HORIBA, Ltd. All rights reserved

Double Beam Laser Diffraction Instrument Schematic

Different Measurement Options

HORIBA Scientific

Instrument Validation/Verification

Polystyrene Standards for Particle Size Calibration (Flow, Fraction and Paste Cell)

© 2018 HORIBA, Ltd. All rights reserved.

Method Development – Dry Dispersion

 First get sampling right & determine
 Refractive Index

- Measure at 3 different pressures (low, medium, high)
- Determine optimum pressure based on good dispersion while not breaking particles
- You can also compare dry vs. wet measurements
- Adjust other settings to optimize sample concentration & duration
- Ideally measure all of powder placed into the sampler
 (Segregation can occur on vibrating tray, constant mass flow rate important for stable concentration during measurement)
- Once settings chosen, test reproducibility

Pressure Effect on Sample Dispersion

© 2018 HORIBA, Ltd. All rights reserved

Sample Concentration

- Sample information Calcul	ation Measu	urement Pre	ferences	Sample handling
Auto ON/OFF setting				
Auto OFF after measurement	Vacuum	Air 🗸	✓ Feeder	
Auto ON with auto blank measurement	Current	Vacuum	🔽 Air	
- Sampling setting				
T% for sampling	Yes	C No		
	Max T% 98.8 M	in T% 95		
Start trigger	C Yes	• No		
	Intensity level 200	Sensor No 64 Delay 1	imes to start 0	
Stop trigger	Yes	C No		
	Setting T% 99.5	Stop immediately	Stop after waiting	
Actuator setting				
Feeder speed	Speed: 100	Initial coefficient: 1		
	 Automatic 	C Fixed		
	Response time : Mediu	m 💌 Target T%: 97		
Air	Pressure: 0.03	✓ MPa		
			Const	

Dynamic Image Analysis

Dynamic Image Analysis

Stainless Steel Powder for 3D Printers

Laser Diffraction (LD)

Dynamic Image Analysis (DIA)

Method Development - Wet Dispersion

- First determine RI
- Choose solvent (water, surfactants, hexane, etc.)
- Sampler selection: sample volume
- Pump & stirrer settings
- Concentration
- Measurement duration
- Does the sample need ultrasound?
- Document size-time plot
- Disperse sample, but don't break particles
- Check for reproducibility

HORIBA Scientific

Alumina in Different Dispersants

Alumina in Different Dispersants

CoV 3.96% 2.89% 6.76%

© 2018 HORIBA, Ltd. All rights reserved.

Alumina – Via Orthogonal Techniques

Case of Study

Unknown sample of fertilizer

What is know?

Emulsion containing CuO

CuO Refractive Index: 2.63

Ultrasound

The use of the Mie Theory requires the knowledge of sample optical properties (Complex Refractive Index)

1.67-0.10i Refractive Index (Real valor) Imaginary Index (absorption) • For transparent particles use 0 for the

imaginary component

- For slightly opaque materials use 0.01 or 0.1
- For opaque materials use 1.0 or higher

Refractive Index Effect

Most pronounced when:

- Particles are spherical
- Particles are transparent
- RI of particle is close to RI of fluid
- When particles are smaller than ~35-40 µm

Least pronounced when:

- Particles are not spherical
- Particles are opaque
- RI of particle is larger than RI of the fluid
- When particles are larger than ~35-40 µm

Intensity Graph

HORIBA

Intensity Graph – Good Correlation

Refracting Index – Real Valor

Refracting Index – Imaginary Valor

Final Results

© 2018 HORIBA, Ltd. All rights reserved.

Data Treatment – Bimodal Distribution

Coffee – Multimodal Report

Different Targets in the Same Sample

Dispersion in Water

Dispersion in *iso*-propanol

Sample	6	listribution	Distribu	uti	on 1	Distribu	it	ion 2
Displa	ij		P Displa	iy		Displa	iy	
D50	1	61.81 (µm)	D50	÷.	3,38 (µm)	D50	-	65,83 (µm)
D10	ł	18.89 (µm)	D10	ž	(mu) 99.0	D10	÷	26.52 (µm)
D90	1	157.20 (µm)	D90	Ξ	11.56 (µm)	D90	3	163.85 (µm)
Average	ł	76,40 (µm)	Average	:	5.36 (µm)	Average	÷	84.67 (µm)
Mode	ŝ	72.07 (µm)	Mode	÷,	3.19 (µm)	Mode	ż	63.19 (µm)
St. Dev.	ł	58.14 (µm)	St. Dev.	ŝ	6.60 (µm)	St. Dev.	-	68,46 (µm)
Span	÷	2.24 (µm)	Span	ŝ	3.13 (µm)	Span	-	2.09 (µm)
							-	

© 2018 HORIBA, Ltd. All rights reserved.

Conclusions

- Must have representative sample
- Powders: select air pressure
- Suspensions: wet, disperse
- Check accuracy w/microscope
- Investigate system settings: concentration,

agitation, ultrasound

- Design for maximum precision
- Follow guidelines in standards

in Anderson Bonon, PhD andbonon@gmail.com

HORIBA Scientific

> labinfo@horiba.com 1-800-446-7422

www.horiba.com/particle