

Better Nanoparticle Characterization

Improved Visualization, Counting and Sizing of Polydisperse Nanoparticle Colloids using ViewSizer[®] 3000

Jan "Kuba" Tatarkiewicz, PhD

VP Engineering

MANTA Instruments, Inc.

- Flow Cytometry (FC)
- Transmission Electron Microscopy (TEM)
- Static Light Scattering (SLS)
- Dynamic Light Scattering (DLS)
- conventional Nanoparticle Tracking Analysis (cNTA)

- Accurate & reproducible measurement of:
 - particle number concentration
 - particle size distribution
 - particle kinetic processes
- and visualization of highly <u>polydispersed</u> colloids

Visualization of Brownian motion

Problem

445 nm laser on polystyrene beads in water

Six orders of magnitude

- DLS large particles skew results (small ones not detected)
- DLS experimental complications that users overlook (concentration-dependent results)
- cNTA different sized particles can't be seen simultaneously (highly irregular images for large particles, dim for smallest)
- cNTA interrogated volume depends on particles sizes and their refractive indices (similar to FC problem when sizing)

INTERNATIONALISOSTANDARD19430

Particle size analysis — Particle tracking analysis (PTA) method

"Sample polydispersity affects the ability to track and therefore analyze different size fractions in the particle number-size distribution. [...] In a polydisperse sample large particles scatter a lot more than small particles making it difficult to detect or track small size particles."

MANTA solution US patent 9645070

(Multispectral Advanced Nanoparticle Tracking Analysis)

Sample of three color video

Size determination (Einstein 1905, Langevin 1908)

• Mean Squared Distance (*MSD* in 2D, *N* frames, jumps of *n*):

$$MSD(n) = \frac{1}{N-n} \sum_{i=1}^{N-n} (x_{i+n} - x_i)^2 + (y_{i+n} - y_i)^2$$

• Diffusion coefficient D (optimized least-square fit of MSD vs. n):

$$MSD(n) = (4 \cdot \Delta t \cdot D) \cdot n$$

• Hence diameter:

$$d = \frac{k_B T}{3\pi\eta D}$$

Light sheet thickness

Concentration (counts per volume)

- Observed volume depends on intensity of scattered light
- Calibration of interrogated volume is done using standards (various sizes and refractive indices) → *lookup table*
- Volume factor is calculated from average intensity of scattered light for each tracked particle (*takes laser power, camera exposure & gain into account*)
- Density of particle size distribution (PSD) is calculated with variable volume factor for each size bin

Volume factor US patent 9857283

ViewSizer[®] 3000

cuvette w/insert US patent 9541490

Specifications

Range of particle sizes measured*	10 nm to 15 μm
Minimum sample volume	0.4 mL
Typical sample concentration	5 x 10 ⁶ to 1 x 10 ⁸ particles/mL
Sample temperature range (controlled)	10 °C to 50 °C, ± 0.1 °C (-15 °C to 110 °C available)
Dimensions	55 cm W x 66 cm D x 35 cm H
Weight	27 kg
Operational Environment	15 °C to 30 °C with < 85% RH

*Sample material dependent

NIST exploratory poly-standard

Gold mixes: DLS vs. MANTA

TEM, DLS & cNTA vs. MANTA

α-lactalbumin nanoparticlesmade as per Arroyo-Maya et al.*J. Dairy Sci.* (2012) **95**, 6204-6214

Whole vs. fat-free milk

How to compare two distributions with unknown shapes (no theory)? Use the so called nonparametric tests like **Kolmogorov-Smirnow statistics**:

$D_{A,B}$	alpha	$D_{A,B,\alpha}$	Reject?
0.2335	0.050	0.0338	yes

d_{av}=256 nm, SD=145 nm, CV=0.57 d_{av}=163 nm, SD=68 nm, CV=0.42

Micellisation of a polymer

If number of particles retained, diameter/volume increases -> growth by adding polymer

Neat proteins

Sample 1

Sample 2

Viscosity of proteins

7.0e+5 in water 6.0e+5 in protein 1 in protein 2 Density of PSD [counts/mL/nm] 5.0e+5 d_{in protein} 4.0e+5 $\eta_{protein} =$ $*\,\eta_{water}$ d_{in water} 3.0e+5 2.0e+5 1.0e+5 0.0 0 500 1000 1500 2000 Diameter [nm]

203 nm PSL in water and proteins

Neat proteins PSD

Lysozyme heated to 60 °C

Fluorescence

Mix of three types of carboxylate fluorescent beads (all nominally 500 nm diameter, stained with Fluoresbrite®)

Vesicles stained with fluorophore

1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine-5,5'-Disulfonic Acid

Diameter [nm]

Vesicles processed differently

Vesicles stained with Dil_c18(3)

$D_{A,B}$	alpha	$D_{A.B.\alpha}$	Reject?
0.0647	0.050	0.0297	yes

d_{av}=278 nm, SD=166 nm, CV=0.60 d_{av}=264 nm, SD=169 nm, CV=0.64

Nanoparticles dissolution rate

Nanoparticles dissolution rate II

Time [minutes]

Settling rate for large particles

$$d = \sqrt{\frac{18 * v * \eta}{g * (\rho - \rho_0)}}$$

Protein crystallization rate

Time [minutes]

Wittbold & Tatarkiewicz 2017, BioProcess International 15 (3)

polystyrene, also with PEG coating, silica, silver, gold, 316L stainless, sand/dirt, clay, CaO, YAG, SiO₂, carbon, PMMA, LiMnO

sea water, fresh water, rain water, tap water, acetone, wine, urine, blood plasma, milk, ammonia, jet A-1 fuel

small molecule APIs, protein aggregates, silicon oil, protein crystals, liposomes, exosomes, vesicles, micelles, α-lactalbumin, rolled DNA, RNA, viruses, bacteriophages, emulsions, polymeric API carriers, self-adjuvanted proteins

- Individual particle method, not ensemble average
- Accurate density of PSD for polydisperse samples
- Concentration measured, not estimated
- Absolute method (no calibration w/standards needed)
- Particles and processes visualization

Other benefits

- Kinetic processes (time constants)
- Temperature range and ramp rates
- Real time agitation
- Real time reagent addition
- Multiple tests w/o changing sample

Customers love ViewSizer® 3000

Better Nanoparticle Characterization

Thank you

Jan "Kuba" Tatarkiewicz PhD

VP Engineering

MANTA Instruments, Inc.