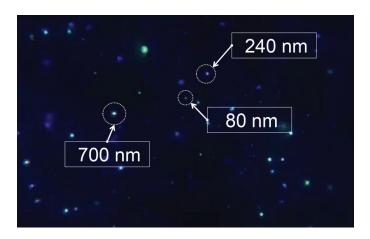


Visualização incomparável e Medição de Nanopartículas

Subpopulação • Tamanho • Concentração • Fluorescência • Sedimentação


ViewSizer™ 3000

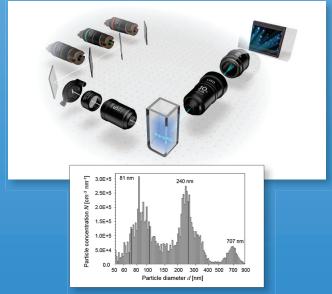
Análise Simultânea de Rastreamento de Nanopartículas Multilaser

Introdução

Analisar nanopartículas como coloides, vírus, proteínas e vesículas extracelulares (EV) é inerentemente desafiador. Essas partículas são muito pequenas para serem obtidas com luz visível e devem ser fotografadas por microscopia eletrônica ou de varredura. O espalhamento dinâmico de luz e a difração a laser têm sido usados com sucesso para determinar o tamanho das partículas e a distribuição de tamanho. Essas técnicas são rápidas e precisas para determinadas amostras, no entanto, por serem técnicas de conjunto, informações de distribuição em alta resolução não podem ser obtidas.

O ultramicroscópio e o rastreamento convencional de nanopartículas de laser único têm sido usados com sucesso apenas parcial, uma vez que a ampla gama de tamanhos presente em muitas amostras significa que o espalhamento da maior partícula é brilhante o suficiente para saturar o detector e eliminar qualquer esperança de aprender sobre partículas menores. Este problema conhecido é discutido na ISO 19430:2016 Particle size analysis — Particle tracking analysis (PTA) method onde afirma: "... A polidispersidade da amostra afeta a capacidade de rastrear e, portanto, analisar diferentes frações de tamanho na distribuição do tamanho do número de partículas." Para superar esses problemas de longa data, o ViewSizer 3000 integra três lasers de operação simultânea com apoder djustable para melhorar a detecção de partículas de 10 nanômetros para 15 mícrons.

O ViewSizer 3000 explora hardware e software avançados para visualizar a luz dispersa de partículas individuais em suspensão. Esses dados são então usados para determinar o movimento das partículas e inferir o tamanho das partículas usando a relação Stokes-Einstein. Além disso, como o volume da amostra iluminada é bem conhecido, juntamente com o número de partículas fotografadas, a concentração do número de partículas é prontamente determinada. Assim, a partir de uma única medição, duas informações críticas são determinadas: distribuição de tamanho de partículas e concentração de partículas mesmo para amostras polidispersas. A captura de tela de uma análise no ViewSizer 3000 (mostrada acima) demonstra sua capacidade incomparável de visualizar amostras altamente heterogêneas.

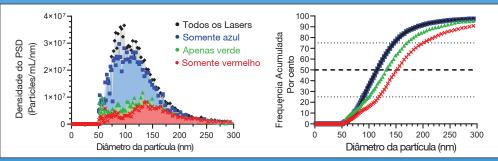

Como funciona

O instrumento caracteriza as nanopartículas analisando seu movimento induzido por térmicas (movimento browniano) e partículas maiores, do tamanho de mícrons, analisando o sedimentamento gravitacional. Um esquema de espalhamento de luz é mostrado na figura à direita. As partículas são iluminadas e as imagens da luz espalhada de cada partícula são ampliadas por uma objetiva de microscópio antes de serem gravadas em uma câmera de vídeo. O vídeo obtido mostra cada partícula individual.

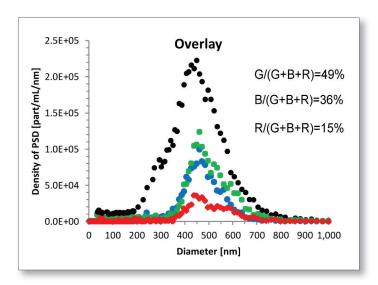
Aproveitando as modernas câmeras de vídeo de alta resolução e a velocidade de processamento de computação gráfica, o movimento de cada partícula é rastreado para determinar o coeficiente de difusão e, a partir disso, o tamanho de cada partícula. A distribuição do tamanho das partículas de uma mistura é mostrada à direita.

O ViewSizer 3000 permite vantagens sem precedentes em relação ao NTA convencional, introduzindo a amostra verticalmente em uma cubeta de quartzo equipada com uma inserção, uma barra de agitação, e um boné (mostrado à esquerda).

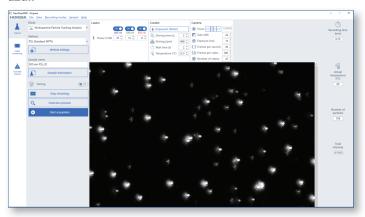
Essas vantagens incluem:


- A opção de misturar a amostra entre a gravação de vídeo, oferecendo uma análise mais representativa, resultados repetíveis e reprodutíveis.
- A capacidade de lidar com partículas dispersas em solventes não aquosos, como xileno ou outros álcoois.
- Transferência e manuseio mais seguros de materiais perigosos, mantendo a amostra fechada com uma tampa.
 Automotor | Processo & Meio Ambiente | Médico | Semicondutor | Científica

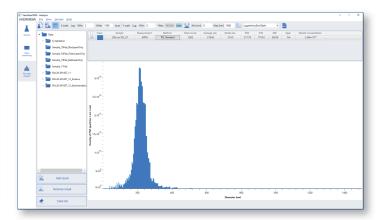
Página 2


Influência do comprimento de onda do laser na detecção de partículas

EVs isolados do plasma requerem comprimentos de onda multilaser para análise precisa



	Tamanho Médio (nm)	Tamanho Mediano (nm)	Concentração de partículas (part/mL)
Todos os Lasers	131	116	3.03E+09
Somente azul	132	116	2.58E+09
Apenas verde	153	132	1.07E+09
Somente vermelho	178	153	8.65E+08


Figura 1 (acima) Mostra uma mistura de três esferas fluorescentes de carboxilato e seu resultado de fluorescência individual usando lasers vermelho, verde e azul.

Software Avançado

O software ViewSizer foi desenvolvido pensando no usuário. A coleta de dados pode começar com apenas alguns cliques do mouse e os resultados finais estão disponíveis em vários formatos para acomodar todos os usuários. Todos os dados podem ser analisados e exibidos diretamente dentro do software ou exportados para posterior análise e plotagem. A interface do usuário inclui visualização em tempo real de todas as partículas da amostra - um aspecto valioso de cada análise. realizada no ViewSizer 3000.

As Figuras 2 e 3 (abaixo) mostram o software ViewSizer exibindo a captura das imagens e a tela de resultados.

Especificações

10 nm a 15 μm	
350 μL a 2.5 mL	
10 ⁵ – 10 ⁹ partículas/mL	
10 °C para 50 °C, ± 0.1 °C	
55 cm W x 66 cm D x 35 cm H	
27 kg	
15 °C to 30 °C com < 85% RH	

^{*} Dependente da amostra

Principais características

O ViewSizer 3000 oferece o seguinte:

- Design óptico e algoritmos aprimorados que permitem um volume de espalhamento mais conhecido e, portanto, melhores dados de concentração, mesmo para amostras polidispersas.
- Sem contaminação cruzada com cubetas.
- Análise de partículas maiores por sedimentação (técnica) possível com delineamento vertical, permitindo maior faixa de tamanho.

As aplicações incluem

- Vesículas extracelulares (EV's)/Exossomos
- Planarização Químico-Mecânica (CMP)
- Vírus e partículas semelhantes a vírus (VLP's)
- Agregação de Proteínas e Proteínas
- Nanopartículas Lipídicas (LNP's)/ Lipossomas
- Nanobolhas
- Microplásticos/Polímeros
- Qualidade/Tratamento de Água
- Oceanografia
- Colóides
- Partículas metálicas (nano)partículas
- Grafeno
- Baterias

Por favor, leia o manual de operação antes de usar este produto para garantir o manuseio seguro e adequado do produto.

- O conteúdo deste catálogo está sujeito a alterações sem aviso prévio e sem qualquer responsabilidade subsequente para com esta empresa.
- A cor dos produtos reais pode diferir da cor retratada neste catálogo devido a limitações de impressão.
- É terminantemente proibida a cópia do conteúdo deste catálogo em parte ou na íntegra.
- Todos os nomes de marcas, nomes de produtos e nomes de serviços neste catálogo são marcas comerciais ou marcas registradas de seus respectivos empresas.

© 2023 HORIBA Instruments Incorporated

Para mais informações sobre este documento ou nossos produtos, entre em contato conosco.

ViewSizer é uma marca comercial da HORIBA Instrumentos Incorporados

HORIBA Instruments Incorporated

9755 Research Drive Irvine, CA 92618 USA Phone: 1-800-446-7422

www.horiba.com/particle Email: labinfo@horiba.com

062023cm