A highly advanced analyzer solves the mysteries of the nano-world. A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
Newly developed to satisfy the need for devices to simply and accurately evaluate the size and dispersion stability of nanoparticles, the key to nanotechnology advancement:

nano partica SSZ-100V2 Series Nanoparticle Analyzer

Nanotechnology research and development is a continuously evolving effort to control substances at the atomic and molecular level in order to achieve new and better materials and products. The miniaturization of components – that is, control at the nanolevel – is necessary to achieve faster, higher-performance devices and functions and to reduce energy consumption. Nanotechnology has come to play a key role in wide-ranging fields that affect our daily lives, including food, cosmetics, and the life sciences.

Clear and simple multi-parameter analysis of nanoparticles! Three analyzers in a single compact body deliver high-sensitivity, high-accuracy analysis of each measurement parameter.

- **Particle Size Measurement Range** \(0.3 \text{ nm to } 10 \mu \text{m}\)
 - The SZ-100V2 Series measures particle size and particle distribution width by dynamic light scattering (DLS).
 - Analysis across a wide range of sample concentrations: Measurement of samples ranging from low ppm-order concentrations to high-concentration samples in double-digit percentages is possible. Accepts commercially available sampling cells. Analysis of small-volume samples is also possible.

- **Zeta Potential Measurement** \(-500 \text{ to } +500 \text{ mV}\)
 - Analysis of sample volumes as small as 100 μL using HORIBA-developed microelectrophoresis cells. Use the value of zeta potential to predict and control dispersion stability. High zeta potential magnitudes indicate a stable dispersion, useful for formulation work.

- **Molecular weight** \(1 \times 10^3 \text{ to } 2 \times 10^7 \text{ Da}\)
 - Absolute molecular weight (Mw) and the second virial coefficient (A₂) are obtained by performing static light scattering measurement as a function of sample concentration and preparing Debye plots.

The SZ-100V2 Series applies sophisticated intelligence and learning capability to rapidly determine nanoparticle properties!

- Since the SZ-100V2 Series analyzer covers a wide sample concentration measurement range, sample dilution and other preprocessing is nearly eliminated. The use of a dual optical system enables measurement of high-concentration samples such as slurry and ink pigments as well as low-concentration proteins and polymers.
- A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination. HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- HORIBA-developed electrode for zeta potential measurement prevent sample contamination. HORIBA-developed electrode for zeta potential measurement prevent sample contamination.
- A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
Simple and Convenient Operation

1. Sampling
 Fill the sample cell.

2. Cell Set-Up
 Place the cell in the analyzer.

3. Start Measurement
 Click the Start button.

4. Results Display
 The measurement results are displayed.

Maintenance-Free

No maintenance or cleaning of the analyzer is required. After measurement, simply clean or dispose of the cell.

A space-saving body design makes the analyzer suitable for installation in any laboratory environment.
The SZ-100V2 uses the technique of dynamic light scattering to determine particle size. Dynamic light scattering is the measurement of fluctuations in scattered light intensity with time. These fluctuations in intensity arise due to the random Brownian motion of the nanoparticles. Therefore, the statistical behavior of these fluctuations in scattered intensity can be related to the diffusion of the particles. Since larger particles diffuse more slowly than small particles one can readily relate particle size to measured fluctuations in light scattering intensity. With modern instruments such as the SZ-100V2 the technique is rapid and reliable.

Measurement of the autocorrelation function is done by comparing the scattered light intensity at some reference time \(t \) and after some delay time \(\tau \). For a very short delay time, the particles have not had a chance to move and therefore the scattered light intensity is unlikely to change much. So, the autocorrelation function has a high value. For a very long delay time, the particles have had a chance to move significantly, and the autocorrelation function has a low value. This low value is related to the time average scattered intensity. The rapidity of this decay from high values to low values corresponds to the speed of particle motion and therefore to the particle size.

The analyzer features the ability to measure particle size under a number of conditions. In order to eliminate guesswork, measurement conditions can be automatically selected for each sample by using data obtained from that sample.

Features of HORIBA's Optical System

1. **High Sensitivity Optical Components**
 The key to accurately and rapidly evaluating size with dynamic light scattering is to use a high-energy laser light source and a sensitive detector. HORIBA uses a green laser. Scattering intensity is inversely proportional to the fourth power of wavelength. Therefore, the green laser gives more scattering intensity per milliwatt than the more commonly used red laser. Since avalanche photodiodes, APD's, are less sensitive to green light and photomultiplier tubes PMT's, are more sensitive to green light, HORIBA has included the most sensitive PMT detector available. In addition, the dead time of a PMT is shorter than that of an APD and therefore the PMT detector dynamic range is superior.

2. **Conformance with Standards**

3. **Automatic Measurement Optimization**
 The analyzer features the ability to measure particle size under a number of conditions. In order to eliminate guesswork, measurement conditions can be automatically selected for each sample by using data obtained from that sample.

The three angle system of the SZ-100V2 enables analysis of a wide range of high concentration and dilute samples.
Many nanoparticles or colloidal particles have a surface charge when they are in suspension. When an electric field is applied, the particles move due to the interaction between the charged particle and the applied field. The direction and velocity of the motion is a function of particle charge, the suspending medium, and the electric field strength. Particle velocity is then measured by observing the Doppler shift in the scattered light. The particle velocity is proportional to the electrical potential of the particle at the shear plane which is the zeta potential. Thus, this optical measurement of particle motion under an applied field can be used to determine zeta potential.

\[U = \frac{\lambda Vd}{2 E \eta \sin(\theta/2)} \]

The following equation is used for the relationship between the calculated electrical mobility and zeta potential.

\[\zeta = \frac{U \eta}{\varepsilon f(\lambda a)} \]

- \(\zeta \): Zeta potential
- \(U \): Electrical mobility
- \(E \): Electric field strength
- \(\eta \): Solvent viscosity
- \(\varepsilon \): Solvent dielectric constant
- \(f(\lambda a) \): Henry coefficient

\(\lambda \): Laser frequency
\(V_0 \): Scattered light frequency

\(V + \lambda Vd \) vs. \(V_0 + \lambda Vd \)

Electrophoresis

Particle motion under an applied electric field is known as electrophoresis. The method used by the SZ-100V2 is known as laser Doppler electrophoresis. Sample particles are suspended in a solvent of known refractive index, \(n \), viscosity, \(\eta \), and dielectric constant, \(\varepsilon \). The sample is irradiated with laser light of wavelength \(\lambda \). An electric field with strength \(E \) is applied. Due to the electric field, the particles are moving. Since the particles are moving, the scattered light has a frequency (Doppler) shift proportional to the particle charge. The frequency shift of the scattered light at angle \(\theta \) is measured and the particle velocity \(V \) is determined from the frequency shift. Mobility is then readily obtained as the ratio of velocity to electric field strength \(V/E \). Zeta potential is then found from mobility using a model, the most common of which is the Smoluchowski model.

Molecular Weight Measurement Principle

Molecular weight of macromolecules such as polymers, proteins, or starches is determined in two ways with the SZ-100V2. The first method is the use of the dynamic light scattering size information and the empirical Mark Houwink Sakurada equation. The second method is analysis with a Debye plot. Both of these methods are described below.

1. **Features**
 - Extremely low sample volume makes it possible to measure precious or rare samples.
 - Modern signal processing electronics efficiently convert optical signals to mobility and zeta potential information. There is no need to manually calculate particle velocity or match speeds.

2. **Cell design minimizes electro-osmotic flow to enhance sensitivity.**

 Particles are not the only objects that acquire a surface charge when in contact with a liquid. Macroscopic objects such as cell or capillary walls do as well. Due to electrostatic attraction, ions with a charge opposite to that of the wall will accumulate close to the wall. And, when an electric field is applied during zeta potential measurement these ions will move in response to the applied field. The moving ions drag the fluid along, creating bulk flow called electro-osmotic flow. This flow will disturb particle motion and distort zeta potential measurements. By eliminating the capillary between the electrodes, the HORIBA zeta potential cell minimizes this effect and maximizes instrument sensitivity.

 Zeta Potential Measurement Principle (Laser Doppler Electrophoresis)

 The Debye plot is obtained by first measuring the excess static light scattering intensity of a series of solutions with well known concentration. Here, the excess intensity refers to the increase of the scattered intensity of the solution compared to the pure solvent. Plotting a quantity proportional to the concentration over the excess scattering as a function of concentration yields a straight line. Extrapolating to zero concentration yields the reciprocal of molecular weight. The graph below shows a typical result.

 ![Graph showing molecular weight measurement](image)

 Results
 - 0.9 k
 - 9.9 k
 - 95 k
Software

Simple and Convenient Operation/Software Functions

The operator selects a measurement mode (particle size, zeta potential, or molecular weight), loads the sample when the measurement screen appears, and begins measurement. The SZ-100V2 Series offers the ultimate in clear, simple operability. 21 CFR Part 11 software is available.

Quick and Simple Operation

Measurement conditions are readily set manually or with user programmable methods that can be tied to custom buttons. Operators need merely click a button to begin.

Click on the Start button

The user enters the sample name.

Measurement begins.

Navigation Creation Is Simple

Use the software wizard to select analysis conditions. If desired, assign a button for fast analysis in the future.

First, select the measurement type (particle size, zeta potential, or molecular weight) ➔ Select the sample cell ➔ Set the operating conditions ➔ Assign a name to the method and save the file.

The software follows a progression of selecting measurement conditions and procedures and creates a navigation file.

Performance

Measurement Accuracy

HORIBA confirms measurement performance prior to product shipment using HORIBA-approved standard samples to confirm accuracy and reproducibility as per the tables below. To ensure high-level, stable performance, HORIBA delivers products manufactured in accordance with rigorous quality control systems worldwide.

Particle size

Particle size measurement accuracy using NIST-traceable polystyrene latex standards particles is as shown below.

<table>
<thead>
<tr>
<th>Particle size standard value (nm)</th>
<th>Concentration</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm</td>
<td>100 ppm</td>
<td>Measured values for cumulant average size are within ±2 %. (This does not include variation in the standard particles themselves.)</td>
</tr>
</tbody>
</table>

Particle size measurement reproducibility is as shown below.

<table>
<thead>
<tr>
<th>Particle size standard value (nm)</th>
<th>Concentration</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm</td>
<td>100 ppm</td>
<td>The CV value for 6 repeated measurements is less than 2 %.</td>
</tr>
<tr>
<td>100 nm</td>
<td>10 wt %</td>
<td>The CV value for 6 repeated measurements is 5 % or less.</td>
</tr>
</tbody>
</table>

Zeta Potential

Using a HORIBA-designated colloidal silica sample, HORIBA confirms that the measured value is higher than -75 mV and lower than -40 mV. Reproducibility for 6 repeated measurements is within 10 % or less in CV value.

Molecular Weight

The measured value is within ±10 % of the standard value using a polystyrene standard sample (Nominal molecular weight: 96,000).
Applications

- **Biomaterials: Gold colloid particle size measurement results**
 - Au colloids (NIST)
 - Nominal Size (nm): 10, 30, 60
 - NIST reference size by dynamic light scattering (nm): 13.5, 26.5, 55.3
 - Size measured with SZ-100V2 (nm): 11.0, 26.6, 55.4

- **Gold colloid particle (2 nm) size measurement results (with high power laser 532 nm 100 mW)**
 - Sample concentration: 0.05 mg/mL
 - Acetic acid buffer: pH = 4.3
 - Average diameter: 4.0 nm

- **Lysozyme (from egg white) particle size measurement result (with high power laser 532 nm 100 mW)**
 - Sample concentration: 0.05 mg/mL
 - Acetic acid buffer: pH = 4.3
 - Average diameter: 4.0 nm

- **Thiamin hydrochloride (Vitamin B1 hydrochloride) particle diameter measurement result**
 - Sample concentration: 300 mg/mL
 - Average diameter: 0.4 nm

- **Isoelectric point of silica measurement result**
 - Sample concentration: 0.05 mol/L (Adjusted to 10 w% with KCl)
 - Zeta potential = -38.3 mV

Accessories

- **Sample Cell Types and Specifications**
 - We can guide you in selecting the right cell for your application.

<table>
<thead>
<tr>
<th>Cell Name</th>
<th>Measurement Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Disposable cell</td>
<td>Plastic, 4 surfaces clear, 100 pieces, Full volume 4000 μL (Minimum sample volume 1000 μL)</td>
</tr>
<tr>
<td>B</td>
<td>Semi-micro cell</td>
<td>Quartz, 4 surfaces clear, Full volume 1600 μL (Minimum sample volume 400 μL)</td>
</tr>
<tr>
<td>C</td>
<td>Glass cell</td>
<td>Glass, 4 surfaces clear, Full volume 4000 μL (Minimum sample volume 1000 μL)</td>
</tr>
<tr>
<td>D</td>
<td>Semi-micro disposable cell</td>
<td>Plastic, 2 surfaces clear, 100 pieces, Full volume 800 μL (Minimum sample volume 400 μL)</td>
</tr>
<tr>
<td>E</td>
<td>Cell with lid</td>
<td>Quartz, 4 surfaces clear, Full volume 4000 μL (Minimum sample volume 1000 μL)</td>
</tr>
<tr>
<td>F</td>
<td>Micro-cell (Side detector only)</td>
<td>Plastic, 3 surfaces clear, Side detector only, Full volume 30 μL (Minimum sampling volume 15 μL)</td>
</tr>
<tr>
<td>G</td>
<td>Sub-micro cell</td>
<td>Quartz, 4 surfaces clear, Full volume 750 μL (Minimum sample volume 250 μL)</td>
</tr>
<tr>
<td>H</td>
<td>Flow cell</td>
<td>Quartz, 3 surfaces clear, Full volume 100 μL (Minimum sampling volume 10 μL), 2 connectors with pH controller</td>
</tr>
<tr>
<td>I</td>
<td>Zeta potential plastic cell</td>
<td>For aqueous sample, 20 pieces</td>
</tr>
<tr>
<td>J</td>
<td>Zeta potential glass cell</td>
<td>For organic solvent, 50 replacement gold electrodes, PTFE lid, and 2 caps</td>
</tr>
</tbody>
</table>

- **Autotitrator**
 - This device can be used to automatically prepare plots of zeta potential or particle size as a function of pH. It is an excellent choice for iso-electric point determination.

pH Controller Accessory Specifications

- Number of titrant bottles: 1 or 2
- pH adjustment range: -1 - 13
- Burette volume: 5 mL
- Power supply: AC 100 - 240 V, 50/60 Hz, 45 VA
- Dimensions and weight:
 - Body: 141 (W) x 296 (D) x 367 (H) mm, approx. 4 kg
 - Circulation Pump: 124 (W) x 202 (D) x 122 (H) mm, approx. 1.7 kg
- Option: Magnetic Stirrer
 - pH electrode parts number 3200585428
 - pH calibration unit parts number 3200043642
SZ-100-S2 Measurement Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Measurement principles</th>
<th>Measurement range</th>
<th>Maximum volume concentration</th>
<th>Particle size measurement accuracy</th>
<th>Measurement angles</th>
<th>Cells</th>
<th>Measurement time</th>
<th>Required sample volume</th>
<th>Usable liquids</th>
<th>Carrier fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZ-100-S2</td>
<td>Particle size measurement: Dynamic Light Scattering</td>
<td>Particle size: 0.3 mm to 10 μm, Molecular weight: 1000 to 2 x 10^9 Da</td>
<td>90° and 173° (automatic or manual selection)</td>
<td>Approx. 2 min. under ordinary conditions</td>
<td>100 μL</td>
<td>Water, ethanol, organic solvents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Mark-Hoven-Sakurada Equation, depending on sample. *2 Depending on sample. *3 Micro-cell.

SZ-100-Z2 Measurement Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Measurement principles</th>
<th>Measurement range</th>
<th>Size range suitable for measurement</th>
<th>Measurement conductivity range</th>
<th>Maximum sample concentration</th>
<th>Cells</th>
<th>Measurement time</th>
<th>Required sample volume</th>
<th>Carrier fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZ-100-Z2</td>
<td>Zeta potential measurement: Laser Doppler electrophoresis</td>
<td>-500 to +500 μm</td>
<td>Minimum 2.0 mm, Maximum 100 μm</td>
<td>0 to 20 ±1/5</td>
<td>40 μL</td>
<td>Dedicated cell with electrodes</td>
<td>Approx. 2 min. under ordinary conditions</td>
<td>100 μL</td>
<td>Water</td>
</tr>
</tbody>
</table>

*4 Depending on sample. *5 Recommended sample conductivity range ±0.2 ±5 μs. *6 Depending on sample.

Analyzer Specifications (SZ-100-S2 and SZ-100-Z2)

<table>
<thead>
<tr>
<th>Measuring unit optical system</th>
<th>Light source: Diode pumped frequency doubled laser (532 nm, 0.2/0.5 mW), HS2 / HH2 (200 mW)</th>
<th>Detectors: Photomultiplier tubes (PMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser classification</td>
<td>Class I</td>
<td></td>
</tr>
<tr>
<td>Operating temperature and humidity</td>
<td>15 - 35 °C, RH 85% of less (no condensation)</td>
<td></td>
</tr>
<tr>
<td>Holder temperature control temperature settings</td>
<td>0 - 90 °C (up to 70 °C for cells with electrodes and plastic cells)</td>
<td></td>
</tr>
<tr>
<td>Purging</td>
<td>Dry gas purge port tube connection is possible.</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>AC 100 - 240 V, 50/60 Hz, 150 VA</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>518 x (385) x (273) (cm) (excluding protrusions)</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>25 kg</td>
<td></td>
</tr>
<tr>
<td>Personal computer</td>
<td>Windows computer with one available USB port</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>USB 2.0 (between measuring unit and PC)</td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>Windows®/XP/2004/2008/7/2010/8/10/64 bit</td>
<td></td>
</tr>
</tbody>
</table>

Class I laser product CE certification

- Composite photographs are inserted into the PC screens.

Dimensions (mm)

- Length: 385
- Width: 528
- Height: 150 (max. of 10 items displayed)

Zeta Potential Measurement

- Zeta potential, standard deviation, electrophoretic mobility, and average zeta potential at each peak / Display of zeta potential graphs, mobility graphs, recalibration of data

Options

- 2121PZ Part 11 software / Zeta potential measurement organic solvent cells / pH control unit / KYOCQPO support / High power laser 532 nm 100 mW

Please read the operation manual before using this product to assure safe and proper handling of the product.

The specifications, appearance or other aspects of products in this catalog are subject to change without notice. Please contact us with enquiries concerning further details on the products in this catalog.

The color of the actual products may differ from the color pictured in this catalog due to printing limitations. The screen displays shown on products in this catalog have been inserted into the photographs through compositing.

Please contact us with enquiries concerning further details on the products in this catalog.

The specifications, appearance or other aspects of products in this catalog are subject to change without notice.

For more information, please visit our website:
http://www.horiba.com e-mail: info@horiba.co.jp

HORIBA, Ltd. Japan

Head Office
2 Miyanoihashi-cho, Kishioh, Minami-ku, Kyto, Japan
Phone: 81 (75) 313-8123 Fax: 81 (75) 321-5725

HORIBA (China) Trading Co., Ltd. China

Unit D, 1F, Building A, Synnex International Park, 1068 West Tianshan Road, Shanghai, 200335, China
Phone: 021 (6289-6660) Fax: 021 (6289-5553)

Beijing Branch
12F, Metropole Tower, No.2, Haidian Dong 3 Street, Beijing, 100080, China
Phone: 010 (8579-9666) Fax: 010 (8579-9666)

Guangzhou Branch
Room 1611 / 1612, Goldion Digital Network Center, 138 Tiyu Road East, Guangzhou, 510620, China
Phone: 020 (3878-1883) Fax: 020 (3878-1810)

HORIBA Instruments (Singapore) Pte Ltd. Singapore

3 Changi Business Park Vista #01-01, Alcobedel House, Singapore 486051
Phone: 65 (6) 745-8300 Fax: 65 (6) 745-8155

HORIBA KOREA Ltd. Korea

25, 94-Ga, Manan-Gu, Anyang-Si, Gyeonggi-Do, 13901, Korea
Phone: 82 (31) 296-7911 Fax: 82 (31) 296-7913

HORIBA India Private Limited India

246, Okhta Industrial Estate, Phase 3 New Delhi-110020, India
Phone: 91 (11) 4646-5000 Fax: 91 (11) 4646-5020

HORIBA Thailand Limited Thailand

393, 395, 397, 399, 401, 403 Layla Road, Somdetchaipraya, Klongsang, Bangkok, 10600, Thailand
Phone: 66 (0) 2-861-5956 ext.123 Fax: 66 (0) 2-861-5200

HORIBA Vietnam Co., Ltd. Vietnam

Unit 6, 10 Floor, CMC Tower, Duy Tan Street, Dich Vong Hau Ward, Cau Giay District, Hanoi, Vietnam
Phone: 84 (4) 3795-8552 Fax: 84 (4) 3795-8553

HORIBA Instruments Incorporated USA

9755 Research Drive, Irvine, CA 92618, U.S.A.
Phone: 1 (949) 250-4811 Fax: 1 (949) 250-0924

HORIBA New Jersey Optical Spectroscopy Center USA

20 Knightsbridge Rd, Piscataway, NJ 08854, U.S.A.
Phone: 1 (732) 494-8660 Fax: 1 (732) 549-5125

HORIBA Instruments Brasil Ltda. Brazil

Rua Presidente Plínio Alves de Souza, 645, Parte A, Loteamento Multivias, Jardim Ermita II - Jundiaí Sao Paulo - CEP 13210-181 Brazil
Phone: 55 (11) 2932-5400 Fax: 55 (11) 2932-5490

HORIBA FRANCE SAS France

16-18, rue du Canal 91765, Longjumeau Cedex, France
Phone: 33 (1) 69-74-72-00 Fax: 33 (1) 69-09-72-21

HORIBA Jobin Yvon GmbH Germany

Neufahrstrasse 9, D_64625, Bengersheim, Germany
Phone: 49 (89) 62-51-84-750 Fax: 49 (89) 62-51-84-7520

HORIBA ITALIA SRL Italy

Via Luca Gaurico 209-00143, Roma, Italy
Phone: 39 (6) 51-99-22-1 Fax: 39 (6) 51-96-43-34

HORIBA UK Limited UK

Kyoto Close Moulton Park Northampton NN3 6LF, UK
Phone: 44 (1604) 542-500 Fax: 44 (1604) 542-699

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Printed in Japan 1811SK00