Nanoparticle Analyzer

Industry’s Widest Range and Highest Precision Measurement Instrument for Nano-particle Characterization “nano partica SZ-100V2 series”

A highly advanced analyzer solves the mysteries of the nano-world. A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
Newly developed to satisfy the need for devices to simply and accurately evaluate the size and dispersion stability of nanoparticles, the key to nanotechnology advancement:

nano partica **SZ-100V2** Series Nanoparticle Analyzer

Nanotechnology research and development is a continuously evolving effort to control substances at the atomic and molecular level in order to achieve new and better materials and products. The miniaturization of components – that is, control at the nanolevel – is necessary to achieve faster, higher-performance devices and functions and to reduce energy consumption. Nanotechnology has come to play a key role in wide-ranging fields that affect our daily lives, including food, cosmetics, and the life sciences.

Clear and simple multi-parameter analysis of nanoparticles! Three analyzers in a single compact body deliver high-sensitivity, high-accuracy analysis of each measurement parameter.

Particle Size Measurement Range 0.3 nm to 10 μm

The SZ-100V2 Series measures particle size and particle distribution width by dynamic light scattering (DLS). Analysis across a wide range of sample concentrations: Measurement of samples ranging from low ppm-order concentrations to high-concentration samples in double-digit percentages is possible. Accepts commercially available sampling cells. Analysis of small-volume samples is also possible.

Zeta Potential Measurement −500 to + 500 mV

Analysis of sample volumes as small as 100 μL using HORIBA-developed microelectrophoresis cells. Use the value of zeta potential to predict and control dispersion stability. High zeta potential magnitudes indicate a stable dispersion, useful for formulation work.

Molecular weight 1×10^3 to 2×10^7 Da

Absolute molecular weight (Mw) and the second virial coefficient (A_2) are obtained by performing static light scattering measurement as a function of sample concentration and preparing Debye plots.

The SZ-100V2 Series applies sophisticated intelligence and learning capability to rapidly determine nanoparticle properties!

- Since the SZ-100V2 Series analyzer covers a wide sample concentration measurement range, sample dilution and other preprocessing is nearly eliminated.
- The use of a dual optical system enables measurement of high-concentration samples such as slurry and ink pigments as well as low-concentration proteins and polymers.
- A single device analyzes the three parameters that characterize nanoparticles: particle size, zeta potential, and molecular weight.
- HORIBA-developed disposable cells for zeta potential measurement prevent sample contamination.
- Simple analysis by means of ultra micro-volume dedicated cells (volume as low as 100 μL). Suitable for analysis of dilute samples.
- HORIBA-developed electrode for zeta potential cell made from carbon material, the material is not corroded by high salt samples such as saline.
Simple and Convenient Operation

1. Sampling
 Fill the sample cell.

2. Cell Set-Up
 Place the cell in the analyzer.

3. Start Measurement
 Click the Start button.

4. Results Display
 The measurement results are displayed.

A space-saving body design makes the analyzer suitable for installation in any laboratory environment.

Maintenance-Free

No maintenance or cleaning of the analyzer is required. After measurement, simply clean or dispose of the cell.
Particle size is calculated from the diffusion coefficient using the Stokes-Einstein equation:

\[D_t = \frac{kT}{3\eta n D_m} \]

The measured amplitude autocorrelation function typically has an exponential decay and the diffusion coefficient can be calculated with the following (simplified) relationship:

\[G^{(2)}(\tau) = B + Bf \exp(-2D_m q^2 \tau) \]

Measurement of the autocorrelation function is done by comparing the scattered light intensity at some reference time \(t \) and after some delay time \(\tau \). For a very short delay time, the particles have not had a chance to move and therefore the scattered light intensity is unlikely to change much. So, the autocorrelation function has a high value. For a very long delay time, the particles have had a chance to move significantly, and the autocorrelation function has a low value. This low value is related to the time average scattered intensity. The rapidity of this decay from high values to low values corresponds to the speed of particle motion and therefore to the particle size.

The SZ-100V2 uses the technique of dynamic light scattering to determine particle size. Dynamic light scattering is the measurement of fluctuations in scattered light intensity with time. These fluctuations in intensity arise due to the random Brownian motion of the nanoparticles. Therefore, the statistical behavior of these fluctuations in scattered intensity can be related to the diffusion of the particles. Since larger particles diffuse more slowly than small particles one can readily relate particle size to measured fluctuations in light scattering intensity. With modern instruments such as the SZ-100V2 the technique is rapid and reliable.

HORIBA uses a green laser. Since avalanche photodiodes, APD’s, are less sensitive to green light and photomultiplier tubes PMT’s, are more sensitive to green light, HORIBA has included the most sensitive PMT detector available. In addition, the dead time of a PMT is shorter than that of an APD and therefore the PMT detector dynamic range is superior.

Features of HORIBA’s Optical System

1. **High Sensitivity Optical Components**
 - The key to accurately and rapidly evaluating size with dynamic light scattering is to use a high-energy laser light source and a sensitive detector. HORIBA uses a green laser. Scattering intensity is inversely proportional to the fourth power of wavelength. Therefore, the green laser gives more scattering intensity per milliwatt than the more commonly used red laser. Since avalanche photodiodes, APD’s, are less sensitive to green light and photomultiplier tubes PMT’s, are more sensitive to green light, HORIBA has included the most sensitive PMT detector available. In addition, the dead time of a PMT is shorter than that of an APD and therefore the PMT detector dynamic range is superior.

2. **Conformance with Standards**

3. **Automatic Measurement Optimization**
 - The analyzer features the ability to measure particle size under a number of conditions. In order to eliminate guesswork, measurement conditions can be automatically selected for each sample by using data obtained from that sample.

The three angle system of the SZ-100V2 enables analysis of a wide range of high concentration and dilute samples

- **High Concentration Samples**
 - In order to minimize the effect of multiple scattering the analyzer detects back-scattered light from a scattering volume close to the cell wall.

- **Dilute Samples**
 - In order to minimize the effect of stray light and maximize signal to noise ratio the analyzer detects scattered light at a right angle.
Many nanoparticles or colloidal particles have a surface charge when they are in suspension. When an electric field is applied, the particles move due to the interaction between the charged particle and the applied field. The direction and velocity of the motion is a function of particle charge, the suspending medium, and the electric field strength. Particle velocity is then measured by observing the Doppler shift in the scattered light. The particle velocity is proportional to the electrical potential of the particle at the shear plane which is the zeta potential. Thus, this optical measurement of particle motion under an applied field can be used to determine zeta potential.

Electrophoresis

Particle motion under an applied electric field is known as electrophoresis. The method used by the SZ-100V2 is known as laser Doppler electrophoresis. Sample particles are suspended in a solvent of known refractive index, \(n \), viscosity, \(\eta \), and dielectric constant, \(\varepsilon \). The sample is irradiated with laser light of wavelength \(\lambda \). An electric field with strength \(E \) is applied. Due to the electric field, the particles are moving. Since the particles are moving, the scattered light has a frequency (Doppler) shift proportional to the particle charge. The frequency shift of the scattered light at angle \(\theta \) is measured and the particle velocity \(V \) is determined from the frequency shift. Mobility is then readily obtained as the ratio of velocity to electric field strength \(V/E \). Zeta potential is then found from mobility using a model, the most common of which is the Smulochowski model.

\[
U = \frac{\lambda \nu d}{2 E \sin(\theta/2)}
\]

The following equation is used for the relationship between the calculated electrical mobility and zeta potential.

\[
\zeta = \frac{U \eta}{\varepsilon f(ka)}
\]

- \(\zeta \): Zeta potential
- \(U \): Electrical mobility
- \(E \): Electric field strength
- \(\eta \): Solvent viscosity
- \(\varepsilon \): Solvent dielectric constant
- \(f(ka) \): Henry coefficient

Features

1. Extremely low sample volume makes it possible to measure precious or rare samples.
2. Modern signal processing electronics efficiently convert optical signals to mobility and zeta potential information. There is no need to manually calculate particle velocity or match speeds.

Molecular Weight Measurement Principle

Molecular weight of macromolecules such as polymers, proteins, or starches is determined in two ways with the SZ-100V2. The first method is the use of the dynamic light scattering size information and the empirical Mark Houwink Sakurada equation. The second method is analysis with a Debye plot. Both of these methods are described below.

The Mark Houwink Sakurada equation relates the diffusion coefficient determined by dynamic light scattering to the molecular weight. All that is required are two empirical constants for the selected polymer-solvent system, an exponent and a prefactor. If the constants are not in the SZ-100V2 software database, the user can add new constants for rapid analysis. This technique has the advantage that sample concentration need not be well known.

The Debye plot is obtained by first measuring the excess static light scattering intensity of a series of solutions with well known concentration. Here, the excess intensity refers to the increase of the scattered intensity of the solution compared to the pure solvent. Plotting a quantity proportional to the concentration over the excess scattering as a function of concentration yields a straight line. Extrapolating to zero concentration yields the reciprocal of molecular weight. The graph below shows a typical result.
Software

Simple and Convenient Operation/Software Functions

The operator selects a measurement mode (particle size, zeta potential, or molecular weight), loads the sample when the measurement screen appears, and begins measurement. The SZ-100V2 Series offers the ultimate in clear, simple operability. 21 CFR Part 11 software is available.

Quick and Simple Operation

Measurement conditions are readily set manually or with user programmable methods that can be tied to custom buttons. Operators need merely click a button to begin.

Particle size measurement accuracy using NIST-traceable polystyrene latex standards particles is as shown below.

<table>
<thead>
<tr>
<th>Particle size standard value (nm)</th>
<th>Concentration</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm</td>
<td>100 ppm</td>
<td>Measured values for cumulant average size are within ±2 %. (This does not include variation in the standard particles themselves.)</td>
</tr>
</tbody>
</table>

Particle size measurement reproducibility is as shown below.

<table>
<thead>
<tr>
<th>Particle size standard value (nm)</th>
<th>Concentration</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nm</td>
<td>100 ppm</td>
<td>The CV value for 6 repeated measurements is less than 2 %.</td>
</tr>
<tr>
<td>100 nm</td>
<td>10 wt %</td>
<td>The CV value for 6 repeated measurements is 5 % or less.</td>
</tr>
</tbody>
</table>

Navigation Creation Is Simple

Use the software wizard to select analysis conditions. If desired, assign a button for fast analysis in the future.

Particle size

Using a HORIBA-designated colloidal silica sample, HORIBA confirms that the measured value is higher than -75 mV and lower than -40 mV. Reproducibility for 6 repeated measurements is within 10 % or less in CV value.

Molecular Weight

The measured value is within ±10 % of the standard value using a polystyrene standard sample (Nominal molecular weight: 96,000).
Applications

Biomaterials: Gold colloid particle size measurement results

<table>
<thead>
<tr>
<th>Au colloids (NIST)</th>
<th>RM8011</th>
<th>RM8012</th>
<th>RM8013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Size (nm)</td>
<td>10</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>NIST reference size by dynamic light scattering (nm)</td>
<td>13.5</td>
<td>26.5</td>
<td>55.3</td>
</tr>
<tr>
<td>Size measured with SZ-100V2 (nm)</td>
<td>11.0</td>
<td>26.6</td>
<td>55.4</td>
</tr>
</tbody>
</table>

Gold colloid particle (2 nm) size measurement results (with high power laser 532 nm 100 mW)

Sample concentration: 0.05 mg/mL
Acetic acid buffer: pH = 4.3
Average diameter: 4.0 nm

Lysozyme (from egg white) particle size measurement result (with high power laser 532 nm 100 mW)

Sample concentration: 50 ppm, pH = 2.5
Mobility (rated): 2.53 ± 0.12 μm·cm/Vs
Measurement results: Mobility = 2.53 μm·cm/Vs
Zeta potential = 32.9 mV

Thiamin hydrochloride (Vitamin B1 hydrochloride) particle size measurement result

Sample concentration: 300 mg/mL
Average diameter: 0.4 nm

Isoelectric point of silica measurement result

Sample concentration: 0.01 mol/L
(Adjusted to 10 w% with KCl)
Zeta potential = -38.3 mV

NIST SRM 1980 -FeOOH zeta potential measurement result

Sample concentration: 0.01 mol/L
(Adjusted to 10 w% with KCl)
Zeta potential = -38.3 mV

Sample Cell Types and Specifications

We can guide you in selecting the right cell for your application.

<table>
<thead>
<tr>
<th>Cell Name</th>
<th>Measurement Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Disposable cell</td>
<td>Particle size/Molecular weight</td>
<td>Plastic, 4 surfaces clear, 100 pieces, Full volume 4000 μL (Minimum sample volume 1000 μL)</td>
</tr>
<tr>
<td>B Semi-micro cell</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 4 surfaces clear, Full volume 1600 μL (Minimum sample volume 400 μL)</td>
</tr>
<tr>
<td>C Glass cell</td>
<td>Particle size/Molecular weight</td>
<td>Glass, 4 surfaces clear, Full volume 4000 μL (Minimum sample volume 1200 μL)</td>
</tr>
<tr>
<td>D Semi-micro disposable cell</td>
<td>Particle size/Molecular weight</td>
<td>Plastic, 2 surfaces clear, 100 pieces, Full volume 800 μL (Minimum sample volume 400 μL)</td>
</tr>
<tr>
<td>E Cell with lid</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 4 surfaces clear, Full volume 4000 μL (Minimum sample volume 1000 μL)</td>
</tr>
<tr>
<td>F Micro-cell (Side detector only)</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 3 surfaces clear, Side detector only, Full volume 30 μL (Minimum sampling volume 15 μL)</td>
</tr>
<tr>
<td>G Sub-micro cell</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 4 surfaces clear, Full volume 750 μL (Minimum sampling volume 250 μL)</td>
</tr>
<tr>
<td>H Flow cell</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 3 surfaces clear, Full volume 100 μL (Minimum sampling volume 100 μL), 2 connectors with pH controller</td>
</tr>
<tr>
<td>I Zeta potential plastic cell</td>
<td>Zeta potential</td>
<td>For aqueous sample, 20 pieces</td>
</tr>
<tr>
<td>J Zeta potential glass cell</td>
<td>Zeta potential</td>
<td>For organic solvent, 50 replacement gold electrodes, PTFE lid, and 2 caps</td>
</tr>
</tbody>
</table>

Autotitrator

This device can be used to automatically prepare plots of zeta potential or particle size as a function of pH. It is an excellent choice for iso-electric point determination.

Accessories

Sample concentration: 0.05 mg/mL
Acetic acid buffer: pH = 4.3
Average diameter: 4.0 nm

NIST SRM 1980 -FeOOH zeta potential measurement result

Sample concentration: 0.01 mol/L
(Adjusted to 10 w% with KCl)
Zeta potential = -38.3 mV

Lysozyme (from egg white) particle size measurement result (with high power laser 532 nm 100 mW)

Sample concentration: 50 ppm, pH = 2.5
Mobility (rated): 2.53 ± 0.12 μm·cm/Vs
Measurement results: Mobility = 2.53 μm·cm/Vs
Zeta potential = 32.9 mV

Thiamin hydrochloride (Vitamin B1 hydrochloride) particle diameter measurement result

Sample concentration: 300 mg/mL
Average diameter: 0.4 nm

Isoelectric point of silica measurement result

Sample concentration: 0.01 mol/L
(Adjusted to 10 w% with KCl)
Zeta potential = -38.3 mV

NIST SRM 1980 -FeOOH zeta potential measurement result

Sample concentration: 0.01 mol/L
(Adjusted to 10 w% with KCl)
Zeta potential = -38.3 mV

Sample Cell Types and Specifications

We can guide you in selecting the right cell for your application.

<table>
<thead>
<tr>
<th>Cell Name</th>
<th>Measurement Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Disposable cell</td>
<td>Particle size/Molecular weight</td>
<td>Plastic, 4 surfaces clear, 100 pieces, Full volume 4000 μL (Minimum sample volume 1000 μL)</td>
</tr>
<tr>
<td>B Semi-micro cell</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 4 surfaces clear, Full volume 1600 μL (Minimum sample volume 400 μL)</td>
</tr>
<tr>
<td>C Glass cell</td>
<td>Particle size/Molecular weight</td>
<td>Glass, 4 surfaces clear, Full volume 4000 μL (Minimum sample volume 1200 μL)</td>
</tr>
<tr>
<td>D Semi-micro disposable cell</td>
<td>Particle size/Molecular weight</td>
<td>Plastic, 2 surfaces clear, 100 pieces, Full volume 800 μL (Minimum sample volume 400 μL)</td>
</tr>
<tr>
<td>E Cell with lid</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 4 surfaces clear, Full volume 4000 μL (Minimum sample volume 1000 μL)</td>
</tr>
<tr>
<td>F Micro-cell (Side detector only)</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 3 surfaces clear, Side detector only, Full volume 30 μL (Minimum sampling volume 15 μL)</td>
</tr>
<tr>
<td>G Sub-micro cell</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 4 surfaces clear, Full volume 750 μL (Minimum sampling volume 250 μL)</td>
</tr>
<tr>
<td>H Flow cell</td>
<td>Particle size/Molecular weight</td>
<td>Quartz, 3 surfaces clear, Full volume 100 μL (Minimum sampling volume 100 μL), 2 connectors with pH controller</td>
</tr>
<tr>
<td>I Zeta potential plastic cell</td>
<td>Zeta potential</td>
<td>For aqueous sample, 20 pieces</td>
</tr>
<tr>
<td>J Zeta potential glass cell</td>
<td>Zeta potential</td>
<td>For organic solvent, 50 replacement gold electrodes, PTFE lid, and 2 caps</td>
</tr>
</tbody>
</table>

Autotitrator

This device can be used to automatically prepare plots of zeta potential or particle size as a function of pH. It is an excellent choice for iso-electric point determination.
SZ-100-S2 Measurement Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>SZ-100-S2 (particle size and molecular weight measurement only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement principles</td>
<td>Particle size measurement: Dynamic Light Scattering</td>
</tr>
<tr>
<td></td>
<td>Molecular weight measurement: Diffusion plot method (static scattered light intensity)</td>
</tr>
<tr>
<td>Measurement range</td>
<td>Particle size: 0.3 mm to 10 µm</td>
</tr>
<tr>
<td></td>
<td>Molecular weight: 1000 to 2 x 10^10 Da (Dex concentration: 5 x 10^10 Da in 1% ethanol)</td>
</tr>
<tr>
<td>Maximum sample concentration</td>
<td>40 wt%</td>
</tr>
<tr>
<td>Particle size measurement accuracy</td>
<td>Measurement accuracy of ±2% for NIST traceable polystyrene latex 100 nm spheres (not including variation in the standard particle's themselves)</td>
</tr>
<tr>
<td>Measurement angles</td>
<td>90° and 173° (automatic or manual selection)</td>
</tr>
<tr>
<td>Cells</td>
<td>None</td>
</tr>
<tr>
<td>Measurement time</td>
<td>Approx. 2 min. under ordinary conditions</td>
</tr>
<tr>
<td>Required sample volume</td>
<td>Minimum volume of 12 mL to 1000 mL (depends on cell material)</td>
</tr>
<tr>
<td>Usable liquids</td>
<td>Water, ethanol, organic solvents</td>
</tr>
</tbody>
</table>

1 Mark-Hoven-Sakurai Equation, depending on sample. 2 Depending on sample. 3 P Micro cell.

SZ-100-Z2 Measurement Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>SZ-100-Z2 (with zeta potential measurement unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement principle</td>
<td>Zeta potential measurement: Laser Doppler electrophoresis</td>
</tr>
<tr>
<td>Measurement range</td>
<td>-50 to +500 mL</td>
</tr>
<tr>
<td>Size range suitable for measurement</td>
<td>Minimum 0.2 mm, Maximum 100 µm</td>
</tr>
<tr>
<td>Measurement conductivity</td>
<td>0 to 20 S/m</td>
</tr>
<tr>
<td>Maximum sample concentration</td>
<td>40 wt%</td>
</tr>
<tr>
<td>Cells</td>
<td>Dedicated cell with electrodes</td>
</tr>
<tr>
<td>Measurement time</td>
<td>Approx. 2 min. under ordinary conditions</td>
</tr>
<tr>
<td>Required sample volume</td>
<td>100 µL</td>
</tr>
<tr>
<td>Carrier fluids</td>
<td>Water</td>
</tr>
</tbody>
</table>

4 Depending on sample. 5 Recommended sample conductivity range: ± 2 S/m. 6 Depending on sample.

Analyzer Specifications (SZ-100-S2 and SZ-100-Z2)

- Measuring unit:
 - Optical system: Light source: Diode pumped frequency doubled laser (532 nm, 200 mW), HS2 (He:Ne 150 mW) Detectors: Photomultiplier tubes (PMT)
- Laser classification: Class I
- Operating temperature and humidity: 15 - 35 °C, RH 85% of full scale
- Holder temperature control temperature settings: 0 - 90 °C (up to 70 °C for cells with electrodes and plastic cell) (not including protrusions)
- Purging: Dry gas purge port tube connection is possible
- Power supply: AC 100 - 240 V, 50/60 Hz, 150 VA
- Dimensions: 528 (W) x 385 (D) x 273 (H) mm (excluding protrusions)
- Weight: 25 kg
- Personal computer: Windows computer with one available USB port
- Interface: USB 2.0 (between measuring unit and PC)
- OS: Windows® 10, 32/64 bit

Class I laser product

CE certification

Dimensions (mm)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>385</th>
</tr>
</thead>
<tbody>
<tr>
<td>528</td>
<td></td>
</tr>
</tbody>
</table>

Data Processing

- Navigation: This term comes parameter input into simple to use operating procedures / Store 100 data items on a data list / Display residual data items with a single mouse click. / Perform pH, temperature, and sample concentration trend measurement.

Particle Size Measurement

- Real-time display of the autocorrelation function / Display of medium size, specific surface area, mode size, average size, standard deviation, coefficient of variation, span value, priority size (max. of 10 items). 2 Z average, polydispersity index, size percentage (max. of 10 items displayed) / Particle distribution graph, autocorrelation function, residual error / Refraction index, viscosity, computing range, and data recalculation after measurement.

Molecular Weight Measurement

- Molecular Weight Measurement: Real-time display of Dosey plots / Display of molecular weight and the second virial coefficient / Recalculation of Dosey plot graph display data.

Zeta Potential Measurement

- Zeta potential, standard deviation, electrophoretic mobility, and average zeta potential at each peak / Display of zeta potential graphs, mobility graphs, recalculation of data.

Options

- 21222: Part 11 software / Zeta potential measurement organic solvent cells / pH control unit / KYC/Q PQ support / High power laser 532 nm 100 mW

The HORIBA Group adopts IMS (Integrated Management System) which integrates Quality Management System ISO9001, Environmental Management System ISO14001, and Occupational Health and Safety Management System OHSAS18001. We have now integrated Business Continuity Management System ISO22301 in order to provide our products and services in a stable manner, even in emergencies.

Please read the operation manual before using this product to assure safe and proper handling of the product.

The specifications, appearance or other aspects of products in this catalog are subject to change without notice. Please contact us with enquiries concerning further details on the products in this catalog. The color of the actual products may differ from the color pictured in this catalog due to printing limitations. It is strictly forbidden to copy the content of this catalog in part or in full. The screen displays shown on products in this catalog have been inserted into the photographs through compositing. All brand names, product names and service names in this catalog are trademarks or registered trademarks of their respective companies.

http://www.horiba.com e-mail: info@horiba.co.jp

HORIBA, Ltd. Japan Head Office 2 Miyano-higashi-cho, Kisshoin, Minami-ku, Kyoto, Japan Phone: 075 (73) 313-812 Fax: 075 (312) 57-525

HORIBA (China) Trading Co., Ltd. China Unit D, 1F, Building A, Synnex International Park, 1068 West Tianzhan Road, Shanghais, 200335, China Phone: 021 (6298-0660) Fax: 021 (6298-5553

Beijing Branch 12F, Metroplaza Tower No.2, Haidian Dong 3 Street, Beijing, 100080, China Phone: 010 (8567-9666) Fax: 010 (8567-9666

Guangzhou Branch Room 1611 / 1612, Goldion Digital Network Center, 138 Tian Yu Road East, Guangzhou, 510620, China Phone: 020 (3878-1833) Fax: 020 (3878-1810

HORIBA Instruments (Singapore) Pte Ltd. Singapore 3 Changi Business Park Vista #01-01, Alzobed House, Singapore 486051 Phone: 65 (6) 745-8300 Fax: 65 (6) 745-8155

HORIBA KOREA Ltd. Korea 255, 95-Da-Gu, Manan-Gu, Anyang-Si, Gyeonggi-Do, 13901, Korea Phone: 82 (31) 296-7911 Fax: 82 (31) 296-7913

HORIBA India Private Limited India 246, Okhla Industrial Estate, Phase 3 New Delhi-110020, India Phone: 91 (11) 4646-5000 Fax: 91 (11) 4646-5020

HORIBA Italy SRL Italy Via Via Lussemburgo 3, 42020, Reggio Emilia, Italy Phone: 055 (2923-5400) Fax: 055 (2923-5490

HORIBA Instruments Co., Ltd. Vietnam Unit 6, 10 Floor, CMC Tower, Duy Tan Street, Dich Vong Hau Ward, Cau Giay District, Hanoi, Vietnam Phone: 84 (4) 3795-8552 Fax: 84 (4) 3795-8553

HORIBA instruments Incorporated USA 745 Research Drive, Irvine, CA 92618, U.S.A. Phone: 1 (949) 250-4811 Fax: 1 (949) 250-0924

HORIBA New Jersey Optical Spectroscopy Center 20 Knightsbridge Road, Piscataway, NJ 08854, U.S.A. Phone: 1 (732) 494-8660 Fax: 1 (732) 549-1215

HORIBA FRANCE SAS France 16-18, rue du Canal, 91765, Longjumeau Cedex, France Phone: 33 (1) 69-74-72-00 Fax: 33 (1) 69-09-07-21

HORIBA Jobin Yvon GmbH Germany Neufustrasse 9, D-64625, Bensheim, Germany Phone: 49 (89) 62-51-84-750 Fax: 49 (89) 62-51-84-7520

HORIBA ITALIA SRL Italy Via Lucca Gaurico 209-00143, Rome, Italy Phone: 39 (6) 51-99-22-1 Fax: 39 (6) 51-98-43-34

HORIBA UK Limited UK Kyodo Close Moultain Park, Northampton NN3 6L1, UK Phone: 44 (1604) 542-500 Fax: 44 (1604) 542-699

Bulletin HRE-3677E Printed in Japan 811SSK00