Two Color Silicon and Lead Sulfide Solid State Detector

An excellent two-color detector composed of silicon and lead sulfide photodiodes, available in two different cooling levels, provides broad spectral response from the UV to near-IR.

These dual color single point detectors detect signals across a broad wavelength range, with a dual layered photodiode design using silicon on top of indium gallium arsenide. The silicon photodiode is transparent to wavelengths above 1000 nm allowing the InGaAs to detect those longer NIR wavelengths. With high sensitivity (D*) and two options for ambient and thermoelectric cooling, responsivity extends from 200 nm to 2600 nm. This is one of a number of dual color single point solid state detectors available from HORIBA Scientific. Contact us for further information.

Used in conjunction with optically optimized housings, these detectors integrate seamlessly with HORIBA's extensive selection of monochromators. In addition, the SpectrAcq2 acquisition module allows for software integration with LabSpec, SynerJY, or LabVIEW. With all of the additional Optical Building Blocks available from HORIBA, a user can easily go from individual components to a complete spectroscopy solution.

Features and Benefits
- Wide spectral responsivity from 200 nm to 2600 nm
- High sensitivity (D*~10^{12})
- Compact ambient and TE detector housing

Accessories
Various accessories are available for powering the detectors, optically coupling detectors to HORIBA monochromators, and data acquisition.

- Power supply for TE cooled detector, DSS-15V-TEP
- Power supply for ambient, DSS-15VP
- Mirror-based housing, 1427C
- BNC cable, J30646
- SpectrAcq2 data acquisition module
- SMA fiber adapter, DSS-SMA
- Dual 1427C housing adapter, J23078370
- Dual detector housing, J23079050
- BNC switchbox for dual detectors, SWB-AB
Specifications

<table>
<thead>
<tr>
<th>Part number</th>
<th>DSS-SPS020A</th>
<th>DSS-SPS020T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector type</td>
<td>2.5 mm diameter silicon photodiode / 2 mm x 2 mm lead sulfide photoconductor</td>
<td></td>
</tr>
<tr>
<td>Operating temperature (°C)</td>
<td>22°C ambient</td>
<td>-30°C TE cooled</td>
</tr>
<tr>
<td>Operating wavelength (µm)</td>
<td>0.2 – 1.0 µm</td>
<td>0.2 – 1.0 µm</td>
</tr>
<tr>
<td>Responsivity (V/W @ peak)</td>
<td>0.6 x 10⁸ / 10⁷</td>
<td>0.55 x 10⁹ / 10⁸</td>
</tr>
<tr>
<td>Noise (V/Hz¹/²)</td>
<td>1.2 x 10⁻⁶ / 10⁻⁷</td>
<td>3.6 x 10⁻⁶ / 10⁻⁷</td>
</tr>
<tr>
<td>NEP pk, (W/Hz¹/²)</td>
<td>< 2.0 x 10⁻¹⁴</td>
<td>< 3.0 x 10⁻¹²</td>
</tr>
<tr>
<td>Detectivity (D°)</td>
<td>2.22 x 10¹⁴</td>
<td>6.67 x 10¹¹</td>
</tr>
<tr>
<td>Bandwidth (-3dB – Hz, typical)</td>
<td>DC – 2 kHz</td>
<td>5 – 500 Hz</td>
</tr>
<tr>
<td>Power requirements</td>
<td>± 9 VDC to ± 15 VDC</td>
<td></td>
</tr>
<tr>
<td>Connections</td>
<td>BNC signal output. Shielded power cable terminated with a DB-9 connector directly couples the unit with the PS/TC-1 Low Noise Power Supply / Controller.</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Dimensions, Ambient and TE Housing

(All measurements are in inches)

Electrical Diagrams, Ambient and TE Cooled

DB-9 Pin Out Diagrams, TE Cooled [Ambient]

1. Cooler (+) [No connect]
2. Cooler (-) [No connect]
3. Thermistor [No connect]
4. Thermistor [No connect]
5. No connect
6. +V
7. -V
8. GND
9. Case GND