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This paper proposes a way to augment the existing machine learning algorithm 

applied to state-of-charge estimation by introducing a form of pulse injection to 

the running battery cells. It is believed that the information contained in the pulse 

responses can be interpreted by a machine learning algorithm whereas other 

techniques are difficult to decode due to the nonlinearity. The sensitivity analysis 

of the amplitude of the current pulse is given through simulation, allowing the 

researchers to select the appropriate current level with respect to the desired 

accuracy improvement. A multi-layer feedforward neural networks is trained to 

acquire the nonlinear relationship between the pulse train and the ground-truth 

SoC. The experimental data is trained and the results are shown to be promising 

with less than 2% SoC estimation error using layer sizes in the range of 10 - 

10,000 trained in 0 - 1 million epochs. The testing procedure specifically 

designed for the proposed technique is explained and provided. The implemen-

tation of the proposed strategy is also discussed. The detailed system layout to 

perform the augmented SoC estimation integrated in the existing active balanc-

ing hardware has also been given.
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ACCURATE state-of-charge (SoC) estimation is neces-
sary for optimal battery management and safe and reliable 
utilization of battery powered devices, such as electric 
vehicles (EVs) and grid level energy storage. For lithium-
ion batteries, in particular, SoC estimation is difficult 
because the relationship between the SoC and the open-
circuit voltage (OCV) is nonlinear, as can be seen in 
Figure 1. In certain ranges of the SoC in Figure 1, the 
voltage is completely flat with respect to the SoC due to 
phase changes occurring within the system; this makes it 
challenging to estimate the SoC from voltage measure-
ments. A variety of methods have been proposed to esti-
mate the SoC in lithium-ion batteries.
Unlike the fuel level in traditional combustion engine 
vehicles, the SoC cannot be directly measured in EV 
applications. However, the SoC is internally linked with 
direct measurement (voltage, current, temperature and 
capacity) and can be extracted by using battery intrinsic 
relations and/or control theory.

Open-Circuit Voltage (OCV) mapping
The techniques of estimating the SoC have been exten-
sively investigated. The most straightforward method is to 
map the OCV to the SoC, as a oneto- one translation can 
be found between SoC and OCV under certain conditions. 
Given a specific OCV, the corresponding SoC can be 
accurately interpreted if the measured condition matches 
the one where the OCV-SoC map is acquired. In other 
words, the OCV-SoC map varies with the testing condi-
tions, such as temperature and aging status, which intro-
duces a significant amount of variability and can bias the 
SoC estimation.[1-3] Even the direction of current flow 

(charging/discharging) will affect the OCV-SoC map sig-
nificantly according to.[4] In addition, complete electro-
chemical equilibrium cannot be achieved within a short 
time frame.[5] Therefore, while the battery is under load, it 
is unfeasible to perform real-time updates of the SoC 
based on OCV measurements. For these reasons, 
OCVbased SoC estimation is commonly used as a com-
plementary or corrective method running in the back-
ground.[6]

Coulomb-Counting
Coulomb-Counting identifies a SoC estimation technique 
that integrates the battery current, i.e. counts the 
Coulombs. Hence, it can identify an SoC difference but 
requires knowledge of an initial SoC value, which can be 
obtained with an OCV-SoC map in a well known condi-
tion. Coulomb counting (or Ah counting) integrates the 
current passed in/out of the battery with respect to time 
and converts it to the SoC using the following expression:

                                        ………………………… (1)

where SoC0 is the initial state of the SoC; C is the present
capacity of the cell. The charging/discharging efficiency 
is denoted as η. The current that charges/discharges the 
battery is i. However, the accuracy of SoC estimation 
would be compromised if low-res current sensors are used 
or the capacity is not updated as the battery ages.[3, 7] 
Especially in situations where the SoC cannot be regularly 
corrected by OCV-based methods, the predicted SoC sig-
nificantly drifts away from the true value and misleads 
other functions in BMS. As a result, coulomb counting is 
commonly used in the laboratory environment where  
the aforementioned uncertainties can be reasonably 
controlled.

Model-based observer
To reduce the uncertainties of the open-loop SoC estima-
tion methods mentioned previously, techniques with feed-
back mechanisms to correct for possible bias and real-
world compromises (such as sensor resolution) have been 
extensively investigated. Modern nonlinear state estima-
tors and observers are commonly adopted. Particularly, 
Kalman-Filter (KF) based technologies,[6], [8-12] recursive 
least square methods (RLS)[13, 14], and slide-mode observ-
ers[15-17] have been heavily researched as they provide rea-
sonable estimation accuracy and relatively robust 
performance.
However, constructing such an observer requires precise 
system modeling[13] for the specific type of battery in the 
system and repetitive hand tuning to select a well-behaved 
covariance matrix. As the battery ages, the derived bat-
tery model using a ‘fresher’ cell’s data is biased and may 
even be invalid. The capacity decreases while impedance 

Figure 1     The simulated open-circuit voltage (OCV) of the lithium trivana-
date (LixV3O8) electrode vs lithium metal as a function of state of 
charge (SoC). The inset is a representation of how the pulse is 
implemented for the system; this pulse was taken at SoC = 95.
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increases for aged cells, which can result in an offset/error 
from the true SoC and even divergence of the observer. In 
addition, the initial states of the observer that are fed from 
external sources significantly affect the performance of 
the estimator, in terms of convergence and accuracy.

Data-driven methods
With advancements in computation and an abundance of 
real world data, machine learning or specifically neural 
network-based methods are providing researchers with 
the ability to achieve significant advancements in many 
fields.[18-22] SoC estimation applying neural network-based 
methods has also drawn attention.[23-26]

Compared to a 2% average SoC error achieved by model-
based observers,[6], [8-12] 4% RMS error on terminal voltage 
is achieved with 2-layer neural network and 30 neurons in 
the hidden layer.[26] However, should further error reduc-
tion be desired, neural networks need the help of external 
filtering/ observer (like Kalman-filter in[25]). Chemali et 
al. directly mapped the measurements of the cell (instan-
taneous and average terminal voltage, temperature, and 
average current) to the SOC estimation and is able to 
achieve a mean absolute error below 1%.[24] This paper 
also showed that the number of layers and neurons had a 
minimal effect on the SOC estimation accuracy - a 2-layer 
network with 2 neurons per layer seems to be a good 
compromise between computational time and estimation 
accuracy. Nevertheless, the worst-case error through the 
entire test was as high as 7%.
In cases where estimation performance is limited by an 
OCVSoC plateau, seen in Figure 1, or when complete 
equilibrium of the battery is unfeasible, additional infor-
mation can be gathered by injecting an augmented current 
profile into a battery under load. This paper hypothesizes 
that passing current pulses through a battery and measur-
ing the voltage response to these pulses can be used to 
retrieve information about a lithium-ion battery’s SoC. 
Because these measured electrochemical responses do not 
have an obvious relationship with the SoC, a neural-net-
work can be used to learn the relationship and reconstruct 
the information.
This paper is organized as follows. In Section II, a previ-
ously constructed electrochemical model is used to prove 
the concept and provide insights of correlation between 
pulse amplitude and accuracy improvement. A neural net-
work constructed using TensorFlow was tested in Section 
IV whether OCV measurements and current pulse infor-
mation could effectively reconstruct the SoC information 
of the system. The testing procedure and experimental 
results using NMC cells captured by real-time battery 
testing system are shown in Section III. The hardware and 
software are being developed for practical implementation 
of the pulse derived SoC estimation in Section V. The 
results of the paper are summarized and proposed future 

work is discussed in Section VI.

Hypothesis and Proof-of-Concept Simulation

The numerical details for the implementation of the 
LixV3O8 electrochemical model are found in refs.[27, 28] For 
the current pulses done in this paper, the cathode thick-
ness was assumed to be 500 μm, the porosity was 
assumed to be 0.45, with the volume fraction of active 
material (LixV3O8) being 0.48, and the volume fraction of 
conductive material being 0.07, and the crystal size of the 
active material was assumed to be 120 nm in the [001] 
direction.
Figure 1 shows how the OCV of LixV3O8 varies as a 
function of SoC. It is observed that the relationship 
between the SoC and the OCV is non-linear and in partic-
ular, when this material goes through a phase-change (SoC 
   S40), the OCV is constant, i.e. OCV ≠ f (SoC). Because 
of the non-linearity and because of the OCV-SoC plateau, 
it is difficult to estimate the SoC from OCV measure-
ments alone. Figure 2 (left - black data) shows how the 
estimates produced from the OCV (black) deviate from 
the true SoC. The OCV derived estimates are precise and 
accurate in the range 60 ≤ SoC ≤ 100, but are imprecise 
and inaccurate in the range SoC < 60.
To gain more information about the battery and thereby 
obtain better estimates of the SoC, pulses were con-
structed by lithiating the LixV3O8 cathode at a current rate 
of C/18, allowing the system to rest for 2 hours, then pass-
ing a pulse current at various amplitudes and measuring 
the potential for 60 seconds at a sampling rate of 1 Hz. An 
example of the voltage measurements derived from one of 
these current pulses can be seen in the inset of Figure 1. 
Figure 2 (left - brown data) shows that the estimates 
derived from voltage measurements during a current 
pulse are more accurate and precise than the estimates 
from the OCV measurements, especially in the range SoC 
< 60.
Figure 2 (right) shows the relationship between accuracy 

Figure 2     (Left) Deviation (and uncertainty) of the predicted SoC from 
their true value as a function of the true SoC. Estimates were 
produced from the neural network using only the open-circuit 
voltage data (black) and using a current pulse of 10× (brown). 
(Right) Maximum error of the SoC estimation produced from 
varying current pulses; current pulse of 0 is the estimation using 
OCV data and every mA/g is C/20.
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of the SoC estimates and the amplitude of the pulse cur-
rent. A pulse current of 0 corresponds to the estimate 
obtained using the OCV data. It is observed that as the 
amplitude of the injected current increases, the accuracy 
of the estimation improves and this improvement is most 
pronounced at low amplitudes. Additionally, the improve-
ment appears to plateau at 8×. If an objective function 
seeks to minimize estimation error, while also minimiz-
ing the cost incurred by pulsing the system, the relation-
ship observed in Figure 2 (right) implies that there is an 
optimal current to apply for this particular system. It 
should be noted that there is a preference toward low 
amplitude pulses especially in EV applications because 
low amplitude pulses are easier to implement through the 
balancing hardware.

Test Cases Design

Injecting pulses can clearly improve the robustness of 
SoC estimation as shown in the previous section. To build 
up the initial machine learning model and implement the 
concept in real battery systems, the pulse data sets that 
are used to train the neural network are first obtained in 
the laboratory environment. Therefore, a systematic test-
ing procedure is proposed to ease the procedures that 
future researchers need to go through. The test cases 
basically follow the standard hybrid power pulse charac-
terization (HPPC) test regulated by DOE[29] but with dis-
tinguished modifications to adapt the optimized pulse 
amplitude as well as the facilitated aging tests, as dis-
cussed in Section II.

Testbench
The lithium nickel manganese cobalt oxide (NMC) cells 
are selected initially to explore the possibility of imple-
menting machine learning. Compared with other chemis-
tries, such as lithium cobalt oxide (LCO), NMC provides 
higher boost current and longer life-span and therefore is 
commonly used in automotive and energy storage sys-
tems.[30]

The testbench consists of (i) real-time battery cycler with 
thermal couples, Neware BTS4000 series; (ii) host PC 
recording and uploading data to data base; (iii) NMC 
high-energy cells (parameters shown in Table 1). The 
complete system is shown in Figure 3.
The real-time battery cycler is capable of testing the cells 
using constant current (CC), constant voltage (CV), 
CCCV, and dynamic current profiles (driving cycles) with 
a sampling resolution of 0.1s. The hi-res measurements, 
including voltage, current and temperature, are uploaded 
to the database through the communication line with the 
host PC for later data process.

Capacity check
Before discussing the pulse train structure, the capacity 
should be checked regularly in order to interpret the SoC 
correctly. One of the most obvious consequences that can 
be observed when the battery cells are aged is the capac-
ity fade. In addition to the uncertainties of the estimator, 
if the capacity is also outdated, it further degrades the 
accuracy of SoC estimation as the SoC and present capac-
ity are interacting with each other according to the SoC 
definition in Equation 1. Note that in this paper the sign 
convention for the current is positive for charging and 
negative for discharging.
Should the accurate SoC be desired, knowing the capacity 
in advance is essential to train the machine learning algo-
rithm. Capacity is often defined with the current level. 
Higher current (either charging or discharging) will result 
in lower capacity due to the internal resistance of the bat-
tery.[31] However, in order to obtain the approximately true 
capacity that is available in the cell, a relatively small cur-
rent rate (0.1 C-rate) is trickled in to fully charge and dis-
charge the cell. The smaller the current rate is, the better 
the internal resistance can be ignored. Both charge and 
discharge capacity can be obtained by integrating the cor-
responding parts, as shown in Figure 4. Note that, this 
capacity should be used for back-calculating the precise 
SoC breakpoints in the following section.

Figure 3   The overview of the testing and data acquisition system

Figure 4   Capacity check

Table 1   Cell parameters

Cell chemistry NMC

Nominal capacity 3000 mAh

Cut-off voltage/current 2.5 V/150 mA

Maximum voltage 4.2 V

Maximum charging/discharging current 4/15 A
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Pulse train
The pulse train needs to be carefully designed in order to 
maximize the information that can be extracted from lim-
ited data points. As discussed previously, the properties of 
the pulse determine the accuracy of the SoC estimation. It 
can be seen that higher current level contributes to lower 
estimation error. However, the feasibility of the current 
amplitude in the real battery system needs to be investi-
gated. So a trade-off should be made between accuracy 
and feasibility. Especially in real-life EV systems, the 
pulses should not interrupt how the drivers drive or leave 
any obvious sign that the BMS is trying to reconstruct the 
SoC. The violation, for example but not limited to, can be 
unexpected acceleration. But it can be as ‘stealthy’ as a 
current sharing between cells when the battery needs bal-
ancing, which can be achieved by active balancing topol-
ogy describe in the next section. In this paper, the current 
amplitude is chosen to be 1 C-rate since it potentially will 
decrease the error more while keeping the cells away 
from maximum allowed current.
The pulses are injected at every 10% SoC. Finer resolu-
tion can also be achieved but with the compromise of test-
ing time. Firstly, the battery cells are fully charged by 
CCCV, followed by 1 - 2-hour rest to allow complete 
equilibrium inside of the battery. The battery is then dis-
charged at 1 C-rate to 90% SoC. By allowing 1-hour 
relaxation before injecting pulses, the voltage response 
isolates the charge-transfer and/or charge diffusion effects 
that are induced by previous current excitation. The sub-
sequent voltage response will be purely excited by the 
current pulses. If the cell is not well rested, the charge 
history will be coupled into the pulse response, which 
makes the results less accurate. A 1-min long charge pulse 
and discharge pulse with 1-min rest between them are 
injected at 90% SoC. Then the cell is discharged to 80% 
SoC and repeat the same sequence as it is for 90% SoC. 
This procedure keeps repeating until cutoff voltage is 
reached at any time. The sample results for testing 
sequence is shown in Figure 5.
Cells occasionally show strong individuality in terms of 
aging trends and responses to current due to the variations 
in manufacturing processes. Three cells are tested under 
same conditions as a batch to minimize the individuality 
by comparing and averaging the resulting data. Figure 6 
illustrates the voltage responses excited by the current 
pulses from 90% to 20% SoC levels. The major difference 
among them is the voltage level where they operate gradu-
ally decreases as the cells deplete more. There are also 
more subtle differences which hardly can be differentiated 
by bare eyes but can be captured by the machine learning 
algorithm, for example higher voltage drops when current 
just applies to the cells as cells discharge. At each SoC 
breakpoint, the results from three cells are superimposed 
on each other. It shows high consistency across the entire 

SoC test points.

Overall test procedure
As the battery ages, the performance of the model-based 
SoC estimators significantly degrade as they highly rely 
on an accurate model, especially on capacity as expressed 
in Equation 1. Normally, a joint estimator or a separate 
slow-react estimator needs to be added for capacity esti-
mation,[32, 33] which inevitably increases the complexity of 
the BMS.
Aging a battery is a time-consuming task. To accelerate 
the aging process, a pre-defined aging procedure is pro-
posed here. The cells under test fully discharge with a CC 
at 1 C-rate, and followed by fully charge with a CC at 1 
C-rate to maximum voltage and CV until current drops 
below 150 mA. The aging test will be terminated when 
the capacity reaches 80% of its original one, which is nor-
mally called end-of-life (EOL) for EV application.
Combining the capacity check, pulse train and accelerated 
aging test completes the testing procedure design. The 
entire test procedure is summarized in Figure 7.

Figure 5   Pulse train with intermediate discharging and rest

Figure 6     Supperimposed cell voltage responses between 20% and 90% 
SoC from three cells
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Machine Learning Finding the Correlation

Feedforward neural networks (FNN), shown in Figure 8 
to have 2-layer and multi-layer architectures, can in prin-
ciple, model most non-linear systems by mapping inputs 
to a desired output. In this paper, the pulse-train gener-
ated from previous tests is fed as an input to an FNN and 
an estimated SoC is provided as an output of the network. 
The network is trained by computing the difference 
between this estimated value and the ground-truth or 
ideal SoC values. Therefore, a typical input sequence will 

contain pulse-train information paired with their corre-
sponding ground-truth SoC value and can be defined by 
D = {(ψ(1), SoC(1)*), (ψ(2), SoC(2)*), ..., (ψ(τ), SoC(τ)*)}, 
where SoC(p)* and ψ(p) are the ideal state-of-charge 
value and the vector representing the pulse-train input.
FNNs can be summarized by a sequence of matrix multi-
plication and can be represented by the below composite 
function. Let wl

j,k denote the weight connection between 
neuron j in layer l-1 and neuron k in layer l. Let bl

k and hl
k 

be the bias and the activation function, respectively, of 
neuron k in layer l. The hidden layer activations can be 
computed as follows;

                                                        ……………… (2)

where,

                                                …………………… (3)

SoC(p) is the estimated state-of-charge for pulse-train p. 
The nonlinearity used in these networks is called 
Rectified Linear Units (ReLU) due to its simplicity during 
the feedforward and backpropagation steps. The latter is 
given by;

                           ………………………………… (4)

The error signal measuring similarity of the estimated 
SoC value to the gound-truth value is given by;

                                          ……………………… (5)

The a mean absolute error summarizes the performance 
of the FNN over the entire dataset and is defined by;

                                    …………………………… (6)

where τ is the length of the pulse-train. A forward pass 
begins when the pulses are fed into the network and is 
complete when the FNN provides an estimate of the SoC 
and the over loss is computed. A full training epoch, ε, 
includes one forward pass and one backward pass; 
describing the process of tuning the network weights and 
biases based on the loss function. This is defined by the 
following composite function;

                                          ……………………… (7)

where β1 and β2 are decay rates set to 0.9 and 0.999, 
respectively, α is the learning rate and κ is a constant term 

Figure 7   The test procedure

(a) The flowchart

(b) Complete test sequence captured by the battery cycler

Figure 8     Architecture of Feedforward Neural Network (FNN). The input 
data is the vector representing the recorded pulse-train and the 
output of the FNN is the estimated SoC for pulse-train p.
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set to 10−8.
Training of the FNN is done offline and only when net-
work converges to a lower loss threshold can the networks 
be applied online. During online operation, only a for-
ward pass is required in order to estimate SoC. Backward 
passes are no longer required once the model is appropri-
ately trained. FNNs offer an advantage of faster comput-
ing time, once trained, since a forward pass is comprised 
mainly of a sequence of matrix multiplications.
In this paper, TensorFlow,[34] a machine learning frame-
work, is used with a TITAN Xp NVIDIA Graphical 
Processing Unit (GPU). The TensorFlow and Keras 
frameworks provide the ability to prototype neural net-
works quickly and iterate on various architectures and 
loss functions. These frameworks also offer automatic 
gradient computation thereby allowing for a seamless 
backward computation without any manual intervention.
An example of the training and validation process is 
shown in Figure 9 and Figure 10, where the estimation 
error is shown as a function of the true SOC values or 
ground-truth values in Figure 9a and Figure 10a. The 
mean error across the entire SOC range is well below 2% 
which is quite competitive compared with aforementioned 
model-based observers. In Figure 9b and Figure 10b, the 
model is trained for 10,000 epochs; training and valida-
tion MAE are shown. In this work, training typically 

spanned 1 to 10 hours depending on the number of epochs 
chosen.

Application in Electric Vehicles

Although training is done on a GPU to capitalize on their 
parallel computing capability, when applying the FNNs in 
real world situations, a standard microprocessor can be 
used since, as mentioned above, the feedforward step 
comprises of a series of matrix multiplications.
A summary of experiment testbench to implement the 
proposed machine learning algorithm in real battery sys-
tems is presented. The diagram of the testbench is shown 
in Figure 11. Note that the DC/DC converter, illustrated 

Figure 9     Estimation accuracy of a feed-forward neural network recon-
structing SoC from a finite-time test sequence with N=100 
hidden nodes. a) SOC percent error recorded as a function of 
ground-truth SOC values. b) Example of training process for 
FNNs. MAE and RMSE over training and validation datasets are 
recorded as a function of training epochs.

(b)

(a)

Figure 10     Estimation accuracy of a feed-forward neural network recon-
structing SoC from a finite-time test sequence with N=10,000 
hidden nodes. a) SOC percent error recorded as a function of 
ground-truth SOC values. b) Example of training process for 
FNNs. MAE and RMSE over training and validation datasets 
are recorded as a function of training epochs.

(b)

(a)

Figure 11   Machine learning algorithm implemented in real battery system
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in Figure 11, has already been built. The DC/DC con-
verter is a battery balancing circuit equipped with sensors 
and necessary computing unit to perform basic BMS 
functions.[35, 36] In addition, the microcontroller has been 
integrated with the converter to perform reasonable com-
puting work. The entire system consists of (i) the periph-
eral hardware (the DC/DC converter); (ii) center and 
localized controllers that actuates the pulse injection, nec-
essary BMS functions and circuit operation; and (iii) 
powerful computing units that analyze the uploaded data 
and generate the machine learning model for the use of 
the microcontroller.

Pulse injection module
As the key novelty of the proposed concept, the pulses 
should be injected to the cells at the right timing with 
proper amplitude and duration as accurate as in labora-
tory environment. The higher-level controller which acts 
like a ‘brain’ of the BMS initially sends commands to the 
local microcontroller. This command describes the refer-
ence currents of the battery cells, specifying amplitude 
and duration of expected pulses. Once the command is 
received by the microcontroller, it will generate corre-
sponding PWM pulses and pass them to DC/DC converter 
to actuate the pulses into the battery cells. Additionally, 
the property (amplitude, period, etc.) of pulses could be 
arbitrarily adjusted by properly controlling the converter’s 
behavior.

Measurements update module
The microcontroller equips high-resolution analog-to-dig-
ital converters that translates the analog signals (such as 
voltage/current measurements) to digital values, such that 
the computing unit can process them. The essential mea-
surements (cell voltages, currents and temperatures) that 
are necessary inputs for the machine learning algorithm 
are captured and updated at the pre-defined sampling rate. 
Based on the sampling rate, the measurements will be 
continuously uploaded to the computing unit via commu-
nication protocol for further calculations of the machine 
learning model.

Machine learning model update
During machine learning model update, aforementioned 
measurements captured by the microcontroller have been 
transmitted to computation center either through wire or 
wireless. The machine learning model is iteratively 
trained and updated using accumulated cell information. 
At every pre-defined rate, the updated machine learning 
model is sent back to the local controllers for corrections 
of aging side-effects and temperature changes.

SoC estimation
As explained previously, the current pulses are injected to 

the cells through pulse injection module. The correspond-
ing responses from battery cells are recorded by measure-
ment update module to be used as inputs for the SoC 
estimation using machine learning model. The SoC esti-
mation can be performed based on the measurement with 
the machine learning model, taking advantage of the sim-
plified matrix multiplications. Two approaches using 
pulse injection to augment SoC estimation have been con-
sidered as candidates to update SoC estimation in real-
time. 1) The machine learning model is continuously 
operating to obtain the SoC values in real-time. 2) 
machine learning model only operates at certain 
moments, for example when the vehicle stops at red light. 
Between the times when SOC estimation is updated by 
machine learning, other SoC estimation techniques (such 
as coulomb counting and EKF) can be applied to estimate 
SoC for those cost- and computation-constrained 
applications.
Figure 12 showcases how the latter method is employed 
in the actual battery system with UDDS driving cycle. 
The red line represents the actual SoC. The blue one 
illustrates the SoC estimation algorithm of the latter 
approach, where SoC resets at every point when the elec-
tric vehicle stops. After the vehicle restarts, other SoC 
estimation technique (such as coulomb counting or EKF) 
resumes. As a result, accumulated error in the previous 
driving period will be eliminated.
Please note that the error presented between the two SoC 
curves, in Figure 12, is exaggerated for greater clarity. In 
practice, the difference between them will be heavily 
dependent on the SoC estimation strategy adopted in the 
system and can be reduced significantly by correcting the 
estimated SoC more regularly.

Conclusions and Future Work

This paper introduces a new strategy to augment the per-
formance of SoC estimation powered by neural networks. 
A high-fidelity electrochemical battery model is used to 
validate the concept of the pulse injection and demon-
strate that higher current amplitudes contribute to more 
accurate SoC estimation. As the first batch of cell data is 

Figure 12     SoC estimation in real battery system with UDDS driving 
cycle[37]
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usually acquired from laboratory environment, the testing 
procedure tailored for the pulse-injection augmentation is 
discussed and detailed steps are given. The method to 
construct FNN for mapping the pulse measurements to a 
ground-truth is provided. By applying FNN to the data, 
the SoC can be reconstructed within a error boundary of 
±2%. Thanks to the advantage of FNN, a standard micro-
processor is capable of running FNNs with just simplified 
matrix multiplications after the model is trained, which 
makes real-time computing feasible. Lastly, the experi-
mental validation platform has been demonstrated and 
explained. By using a BMS-ready balancing circuit that is 
previously developed, the pulse injection can be inte-
grated into balancing current demands without interfering 
with driving behaviors.
At the time of writing this paper, the experimental setup 
has been completed and the experimental tests are under-
going on a scaled battery-pack. The test-bench that is rep-
resentative of realworld conditions in transportation 
electrification and the SoC estimation results will be pub-
lished. Furthermore, the authors intend to apply the pro-
posed technique to monitor battery aging. In fact, the 
battery response to a time series is expected to encode a 
range of information on the internal behavior of the bat-
tery. Future research will study finite-time sequences that 
can reveal general aging information, i.e. the State of 
Health (SoH), as well as specific aging effects such as 
active material dissolution, surface layer formation, and 
atomic structure rearrangement.

Acknowledgement

This research was undertaken, in part, through funding 
from the Columbia University Data Science Institute (DSI) 
Seed Fund Program. It was facilitated by NVIDIA 
Corporation with the donation of a Titan Xp GPU. We 
acknowledge computing resources from Columbia 
University’s Shared Research Computing Facility project, 
which is supported by NIH Research Facility 
Improvement grant 1G20RR030893-01, and associated 
funds from the New York State Empire State Development, 
Division of Science Technology and Innovation (NYSTAR) 
Contract C090171, both awarded April 15, 2010. We 
would also like to thank Robert C. Mohr for his contribu-
tions in the experimental setup.

References

[ 1 ]  E. Chemali et al., “Electrochemical and electrostatic energy storage 
and management systems for electric drive vehicles: State-of-the-art 
review and future trends,” IEEE Journal of Emerging and Selected 
Topics in Power Electronics, vol. 4, pp. 1117-1134, 2016.

[ 2 ]  W. Waag et al., “Critical review of the methods for monitoring of 
lithium-ion batteries in electric and hybrid vehicles,” Journal of 
Power Sources, vol. 258, pp. 321-339, 2014.

[ 3 ]  F. Baronti et al., “State-of-charge estimation enhancing of lithium 
batteries through a temperature-dependent cell model,” International 
Conference on Applied Electronics, vol. 0, no. 1, pp. 29-34, 2011.

[ 4 ]  M. a. Roscher et al., “OCV Hysteresis in Li-Ion Batteries including 
Two-Phase Transition Materials,” International Journal of 
Electrochemistry, vol. 2011, pp. 1-6, 2011. arXiv: ID984320.

[ 5 ]  W. Waag et al., “Adaptive on-line prediction of the available power of 
lithium-ion batteries,” Journal of Power Sources, vol. 242, pp. 548-
559, 2013.

[ 6 ]  R. Xiong et al., “SPECIAL SECTION ON BATTERY ENERGY 
STORAGE AND MANAGEMENT SYSTEMS Critical Review on 
the Battery State of Charge Estimation Methods for Electric 
Vehicles,” IEEE Access, vol. 6, pp. 1832-1843, 2017.

[ 7 ]  K. S. Ng et al., “Enhanced coulomb counting method for estimating 
state-of-charge and state-of-health of lithium-ion batteries,” Applied 
Energy, vol. 86, no. 9, pp. 1506-1511, 2009.

[ 8 ]  G. L. Plett, “Extended Kalman filtering for battery management sys-
tems of LiPB-based HEV battery packs - Part 3. State and parameter 
estimation,” Journal of Power Sources, vol. 134, pp. 277-292, 2004.

[ 9 ]  W. Wang et al., “Comparison of Kalman Filter-based State of Charge 
Estimation Strategies for Li-Ion Batteries,” in IEEE Transportation 
Electrification Conference and Expo (ITEC), Dearborn, MI, 2016, 
pp. 1-6.

[10]  Y. Dai et al., “Capacity Fade Model for Spinel LiMn2O4 Electrode,” 
Journal of the Electrochemical Society, vol. 160, no. 1, A182-A190, 
2012.

[11]  S. Sepasi et al., “Improved extended Kalman filter for state of charge 
estimation of battery pack,” Journal of Power Sources, vol. 255, pp. 
368-376, 2014.

[12]  G. Plett, “Dual and Joint EKF for Simultaneous SOC and SOH 
Estimation,” In Proceedings of the 21st Electric Vehicle Symposium 
(EVS21), Monaco, pp. 1-12, 2005.

[13]  H. He et al., “Online model-based estimation of state-of-charge and 
open-circuit voltage of lithium-ion batteries in electric vehicles,” 
Energy, vol. 39, no. 1, pp. 310-318, 2012.

[14]  B. Xia et al., “Online parameter identification and state of charge 
estimation of lithium-ion batteries based on forgetting factor recur-
sive least squares and nonlinear Kalman filter,” Energies, vol. 11, no. 1, 
2018.

[15]  B. Ning et al., “A sliding mode observer SOC estimation method 
based on parameter adaptive battery model,” Energy Procedia, vol. 
88, pp. 619-626, 2016.

[16]  A. Belhani et al., “Adaptive sliding mode observer for estimation of 
state of charge,” Energy Procedia, vol. 42, pp. 377-386, 2013.

[17]  C. Liu et al., “A new method of modeling and state of charge estima-
tion of the battery,” Journal of Power Sources, vol. 320, pp. 1-12, 
2016.

[18]  A. Krizhevsky et al., “ImageNet Classification with Deep 
Convolutional Neural Networks,” Advances In Neural Information 
Processing Systems, pp. 1-9, 2012.

[19]  D. CireşAn et al., “Multi-column deep neural network for traffic sign 
classification,” Neural Networks, vol. 32, pp. 333-338, 2012.

[20]  G. Hinton et al., “Deep neural networks for acoustic modeling in 
speech recognition: The shared views of four research groups,” IEEE 
Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012.



Technical Reports

45English Edition No.53  October  2019

[21]  J. Ma et al., “Deep neural nets as a method for quantitative structure-
activity relationships,” Journal of Chemical Information and 
Modeling, vol. 55, no. 2, pp. 263-274, 2015.

[22]  Z.-K. Wang et al., “Graphene-nanosheet-wrapped LiV 3 O 8 nano-
composites as high performance cathode materials for rechargeable 
lithium-ion batteries,” Journal of Power Sources, vol. 307, pp. 426-
434, Mar. 2016.

[23]  E. Chemali et al., “Long short-term memory-networks for accurate 
state of charge estimation of li-ion batteries,” IEEE Transactions on 
Industrial Electronics, vol. 65, pp. 6730-6739, 2018.

[24]  E. Chemali et al., “State-of-charge estimation of li-ion batteries using 
deep neural networks: A machine learning approach,” Journal of 
Power Sources, vol. 400, pp. 242-255, 2018.

[25]  J. Du et al., “State of charge estimation for Li-ion battery based on 
model from extreme learning machine,” Control Engineering 
Practice, vol. 26, no. 1, pp. 11-19, 2014.

[26]  M. Charkhgard and M. Farrokhi, “State-of-charge estimation for 
lithium-ion batteries using neural networks and EKF,” IEEE 
Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4178-4187, 
2010.

[27]  N. W. Brady et al., “Discharge, Relaxation, and Charge Model for the 
Lithium Trivanadate Electrode: Reactions, Phase Change, and 
Transport,” Journal of the Electrochemical Society, vol. 163, no. 14, 
pp. 2890-2898, 2016.

[28]  N. W. Brady et al., “Operando Study of LiV3O8 Cathode: Coupling 
EDXRD Measurements to Simulations,” Journal of The 
Electrochemical Society, vol. 165, no. 2, A371-A379, Feb. 2018.

[29]  The Idaho National Laboratory, “U.S. Department of Energy Vehicle 
Technologies Program Battery Test Manual For Plug-In Hybrid 
Electric Vehicles,” 2014.

[30]  Battery University. (2019). Types of Lithium-ion Batteries, [Online]. 
Available: https://batteryuniversity.com/learn/article/types_of_lith-
ium_ion (visited on 08/25/2019).

[31]  W. Wang, “Modeling , Estimation and Benchmarking of Lithium Ion 
Electric Bicycle Battery,” Master’s thesis, Department of Electrical 
and Computer Engineering, McMaster University, Hamilton, ON, 
Canada, 2016, p. 149.

[32]  W. Wang et al., “Sensitivity Analysis of Kalman fi lter Based 
Capacity Estimation for Electric Vehicles,” IEEE Transportation 
Electrifi cation Conference, pp. 1-7, 2015.

[33]  Y. Zou et al., “Combined State of Charge and State of Health estima-
tion over lithium-ion battery cell cycle lifespan for electric vehicles,” 
Journal of Power Sources, vol. 273, pp. 793-803, 2015.

[34]  M. Abadi et al., “Tensorfl ow: Large-scale machine learning on het-
erogeneous systems, 2015. url h ttp,” Software available from tensor-
fl ow.org,

[35]  W. Wang and M. Preindl, “Modeling and control of a dual cell link 
for battery-balancing auxiliary power modules,” in IEEE Applied 
Power Electronics Conference and Exposition (APEC), 2018, pp. 
3340-3345.

[36]  W. Wang and M. Preindl, “Design and Implementation of a Dual Cell 
Link for Battery-Balancing Auxiliary Power Modules,” in IEEE 
Transportation Electrifi cation Conference and Expo (ITEC), 2018, 
pp. 898-903.

[37]  T. J. Barlow et al., “A reference book of driving cycles for use in the 
measurement of road vehicle emissions,” The Future of Transport, 
Tech. Rep., 2009, p. 284.

Nicholas W. Brady
Department of Electrical Engineering
Columbia University in the City of New York

Chenyao Liao
Department of Electrical Engineering
Columbia University in the City of New York

Ephrem Chemali
Department of Chemical Engineering
Columbia University in the City of New York

Youssef A. Fahmy
Department of Electrical Engineering
Columbia University in the City of New York

Alan C. West
Department of Chemical Engineering
Columbia University in the City of New York

Weizhong Wang
Department of Electrical Engineering
Columbia University in the City of New York

Matthias Preindl
Assistant Professor
Department of Electrical Engineering
Columbia University in the City of New York
Ph.D.

Winner




