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Development of Parameter Sensitivity Plot and Application 
to Modeling of Lithium-ion Secondary Batteries

パラメータ感度プロットの開発とリチウムイオン二次電池のモデリングへの応用

Ichiro MARUTA
丸田 一郎

In this paper, we propose the normalized parameter sensitivity plot as a new tool 

for analyzing the difficulty of parameter estimation in modeling. The plot visual-

izes the contribution of the identification inputs to the parameter estimation accu-

racy and the relative relationship between the estimation accuracy of multiple 

parameters in the frequency domain. This relative relationship sets a limit on 

practical estimation accuracy, and the plot is useful for evaluating this limit. As an 

application example, a model of a rechargeable battery for an electric vehicle is 

analyzed, and it is shown that the proposed approach can obtain information 

useful in the selection of model structure and planning of identification 

experiments.

本稿では，モデリングにおけるパラメータ推定の困難さを解析するための新し
いツールとして，正規化パラメータ感度プロットを提案する．このプロットは同
定入力のパラメータ推定精度への寄与と，複数のパラメータの推定精度の相対
的な関係を周波数領域において可視化する．この相対的な関係によって実際的
な推定精度の限界が定まり，その推定精度限界の評価にプロットが有用である
ことが示される．また，提案法の活用例として電気自動車用の充電式電池のモデ
ルを解析し，モデル構造の選択やパラメータ推定に必要な実験の計画において
有用な情報が得られることを示す．

Introduction

In the next generation society, it is necessary to control 
large-scale network systems such as smart grids and com-
plex systems such as human behavior. For designing con-
trol systems, model construction is indispensable, and the 
conventional approach is to prepare a model with the 
same structure as the system and estimate the parameters 
included in the model from the data. However, it is unre-
alistic to build a model with an equivalent structure for 
complex / large-scale systems and estimate the parameters 
with the required accuracy. Thus, it is necessary to sim-
plify the model structure.

From this aspect, it is important to know the degree of the 
difficulty in estimating parameters for a given model 
structure, and the Cramér-Rao bound is known to be a 
powerful tool especially for linear time-invariant models.[1] 
By using the bound, we can predict how accurate the esti-
mate can be once we know the amount of noise. The 
results also can be interpreted in the frequency domain.[2] 
However, in practical problems, many uncertain factors, 

such as the error caused by the inconsistency between the 
model structure and the target system, should be handled 
as noise. Thus, it is not straightforward to estimate the 
difficulty based on the Cramér-Rao bound, which depends 
on the noise spectrum.

For this background, we introduce a new practically 
useful tool for discussing the degree of the difficulty in 
estimating parameters in linear time-invariant continuous-
time models. The newly introduced tool is the normalized 
parameter sensitivity plot. In the plot, spectral character-
istics of the normalized parameter sensitivities of a con-
tinuous-time transfer function model G with a set of 
parameter θ =Δ  [θ1,θ2,...,θnθ]

Τ, that is,

                                      

are plotted in one figure. For example, the normalized 
parameter sensitivity plot for the mass-spring-damper 
system whose structure is shown in Figure 1a and with 
the parameter
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is shown in Figure 1b. In this paper, it is shown that a 
practically important limitation on the estimation accu-
racy, which does not depend on noise spectrum, is derived 
by focusing on the relative positions of the plots.

This paper is based on the authors’ previous work[3] and 
organized as follows. First, we review the relationship 
between the parameter sensitivity and the estimation 
accuracy in Section “Parameter sensitivity and diffi-
culty in estimating parameter”. In Section “Normalized 
parameter sensitivity plot”, the usage of the normalized 
sensitivity plot is proposed, and its theoretical background 
is described. In Section “Application to battery system”, 
a lithium-ion rechargeable battery model is analyzed by 
the proposed approach to show how the normalized 
parameter sensitivity plot is used in practical problems. 
Finally, Section “Conclusion” concludes the paper.

In this paper, we denote the differential operator and the 
Laplace operator with p and s, respectively. For transfer 
functions G1 and G2, their inner product is denoted by

     

and the norm is defined as

                                      

For a matrix M, ||M||2 is the norm defined by the maxi-
mum singular value of M. In addition, cov( · ) and var( · ) 
denote the covariance matrix and the variance, 
respectively.

Parameter Sensitivity and Difficulty in  
Estimating Parameters

In this section, the relationship between the normalized 
parameter sensitivity θk(∂G ⁄ ∂θk) and the estimation accu-
racy is reviewed.

Problem formulation
First, the setting of the estimation problem, on which the 
discussion about the estimation accuracy is based, is 
described. The target system is a single input and single 
output continuous-time linear time-invariant system, 
whose input u(t) and output y(t) are related through the 
differential equation

                                      

and

                             .         

Here, v(t) is a zero-mean normally distributed random 
noise with the power spectral density Φ(ω), and G(p,θ) is 
a rational function of the differential operator p and 
parametrized by θ =Δ [θ1,...,θnθ]

Τ (the parameter to be esti-
mated). We assume that the parameters {θ1,...,θnθ} have 
ratio scale, that is, each parameter is a quantity for which 
we can construct a meaningful fraction. Examples of 
quantities with ratio scale include mass, length, resistance, 
capacitance and the Kelvin temperature. Celsius tempera-
ture is not a ratio scale since it does not have absolute zero 
and we cannot construct a meaningful fraction of two 
temperatures. As for the input, u(t) equals 0 when t < 0 
and is a known square-integrable function. Also, we let 
Y0(s) and U(s) be the Laplace transforms of y0(t) and u(t), 
respectively.

For this system, we consider the accuracy of the unbiased 
parameter estimate θ̂ calculated from the system output 
sampled with time interval h, that is,

                                      

where N is the number of available samples.

Since the parameters {θ1,...,θnθ} are assumed to have ratio 

θ =Δ [m1, k1, d1, m2, k2, d2, m3, k3, d3]Τ

 = [100, 100, 100, 10, 10, 10, 1, 1, 1]Τ
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(b) Normalized parameter sensitivity plot

Figure 1   Illustrative example (mass-spring-damper system)
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scale, we focus on the normalized estimate of the 
parameter

                                      

to make the comparison between parameters more clear 
and use cov(θ

~
) for evaluating the accuracy of the 

estimate.

Cramér-Rao Bound and Parameter Sensitivity
It is well known that the Cramér-Rao inequality

                      …………………………………… (2)

holds for the unbiased estimate θ
~
, where I is the Fisher 

information matrix. For the measurement y with suffi-
ciently small sampling interval (h→0) and long time span 
(Nh→∞), (m,n)-element of I asymptotically satisfies

                                                                        …… (3)

as shown in.[2] This equation associates the normalized 
parameter sensitivity θm (∂G ⁄ ∂θm) with the estimation 
accuracy.

Especially, if v(t) is a white noise, Equation 3 can be 
rewritten as

                                                                        

where σ2 is the variance of the sampled v(t).

Normalized Parameter Sensitivity Plot

Next, we discuss how the normalized parameter sensitiv-
ity plot can be utilized for evaluating the difficulty in esti-
mating the parameters based on Equation 2 and 
Equation 3.

Information from single parameter sensitivity plot
In preparation for stating the main result related to multi-
ple parameter sensitivity plots, the information obtained 
from a single parameter sensitivity plot is summarized.

For the estimation accuracy of m-th parameter θm,

                                      

holds,[4] and together with (3),

                                                                         

…………………………………………………… (4)

is derived. Especially, if v(t) is a white noise, Equation 4 
can be written as

                                      

These results are well-known,[1] and Equation 4 shows 
that the frequency band of the identification input u which 
is important for estimating θm is indicated by the normal-
ized parameter sensitivity function θm (∂G⁄(∂θm).

For example, the peaks of the normalized parameter sen-
sitivity plots in Figure 1b are concentrated on the reso-
nant frequency of the system and lead to the conclusion 
that the identification input with such frequency spectrum 
is effective as expected.

Information from relative parameter sensitivity
In practical problems, model structures cannot be com-
pletely consistent with the target systems, and the error 
stem from the inconsistency is also contained in the mea-
surement error v(t). Since the frequency spectrum of such 
error strongly depends on the identification input u and is 
difficult to estimate, the absolute value of the lower bound 
estimated with Equation 3 is often unreliable.

To deal with the problem, we focus on the relative bound 
for the estimation variances of the parameters. For the 
physically meaningful parameters, we often have prior 
knowledge about the parameter uncertainty to a greater or 
lesser extent. For example, mechanical friction is nor-
mally non-linear phenomenon and it seems impossible to 
determine friction coefficients with the accuracy better 
than 10%. Together with such information, the following 
theorem which gives the relative lower bound for the esti-
mation variance is useful.

Theorem 1: Assume the identification input signal u has 
spectrum in a band Ω, that is,

                                      

and let σ2
m be the variance of the efficient estimate of a 

parameter θ
~

m. Then, the variance of the estimate of 
another parameter θ

~
n satisfies
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Proof: See [3].

Theorem 1 states that there is a limitation on the estima-
tion accuracy, which does not depend on the noise spec-
trum and the detail of the identification input. The 
coefficient which characterizes the limitation

                                      

corresponds to the distance in the normalized parameter 
sensitivity plot. Since Theorem 1 holds regardless of the 
noise spectrum, it gives information about the estimation 
variance even under the existence of noise with unknown 
spectrum.

Remark 1: If the normalized parameter sensitivity plot 
for θn dips below the one for θm by x [dB], the standard 
deviation of θ

~
n is at least x [dB] larger than the one 

achievable for θ
~

m.

For example, if d3 in Figure 1 has 10% uncertainty, the 
standard deviation of the estimate for d1 is larger than 
100% since the normalized sensitivity for d1 is smaller 
than that for d3 by more than 20 dB, and the estimation of 
d1 is found to be impossible in practice. For this example, 
distances between the sensitivity plots can be made 
smaller by measuring the displacement of m1 instead of 
m3 (see Figure 2), and the difficulty in estimating the 
parameters can be reduced. Although the improvement 
made by changing the measured variable is intuitively 
acceptable, the absolute value of the sensitivity is not 
improved from Figure 1 to Figure 2, and this improve-
ment is not explained easily without evaluating the rela-
tive relationship between the parameter sensitivity.

Application to Battery System

Next, a model of a lithium-ion rechargeable battery for 
electric vehicles is analyzed by the proposed approach to 
illustrate the effectiveness of the approach in realistic situ-
ations. Indeed, the estimation of the detailed status of the 
battery is the key for improving the energy efficiency 
while preserving safety (see [5] and references therein), 
and it is important to know the degree of the difficulty in 
estimating the parameters related to the battery status.

In this paper, we consider the linear battery model shown 
in Figure 3. In the figure, R0 represents the DC resistance 
of the electrolyte, C represents the linearized relationship 
between the state of charge (SOC) and the open circuit 
voltage (OCV), and Zw represents the Warburg impedance 
which models the ion diffusion process.[6] The relationship 
between the input current (= u(t)) and the output voltage 
(= y(t)) of the battery model can be described by the trans-
fer function

                                      

…………………………………………………… (5)

In Equation 5, the first term corresponds to C in the 
figure; k is the proportionality coefficient for the linearly 
approximated relationship between the SOC and the 
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Figure 2     Parameter sensitivity plot for improved mass-spring-damper 
system (displacement of m1 is measured instead of m3)
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Figure 3   Linear circuit model for Lithium-ion battery
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OCV; FCC0 is the full charge capacity for the brand-new 
battery; and SOH is the state of health parameter which 
represents the degree of battery deterioration.

For this model, we consider the difficulty in estimating 
the parameter

                                      

based on the proposed approach. Since rough value of the 
parameters are required for the analysis, we use R0 = 
0.565 mΩ, Rd = 0.896 mΩ, τd = 224 s, SOH = 91%, and 
FCC0 = 2.36×105 C, which are estimated from the experi-
ment in the literature.[7]

Figure 4 shows the normalized parameter sensitivity plot 
for the model. From the figure, we can conclude that:
  •  For reliably estimating SOH, or the degree of bat-

tery deterioration, data with a time span longer than 
2000 s are desired since the parameter sensitivity 
for SOH is relatively smaller than that for the other 
parameters for the frequency higher than 10-3 Hz.

  •  For estimating SOH in a shorter time, the uncertain-
ties of Rd, R0 and τd are the most important bottle 
necks in this order since the normalized sensitivities 
for these parameters surpass that for SOH in this 
order when increasing the frequency.

  •  The estimation of τd is relatively more difficult 
because the normalized parameter sensitivity for τd 
never come on the top. And, the identification input 
around 0.002 Hz is most effective.

This information is of great value in devising strategies 
for estimating the battery statuses, such as, the level of 
deterioration, and is consistent with the empirical knowl-
edge of the battery. Note that the batteries for electric 
vehicles are used on a time scale larger than hours, and 
the time scale of the information obtained by analyzing 
the plot is reasonable.

In addition, we attempt to evaluate another model struc-
ture. In Equation 5, we adopted the Warburg impedance 
model for the ion diffusion process.
However, it is also possible to adopt generic rational 
transfer function model

                                      

…………………………………………………… (6)

for the process. Here, the order of the transfer function 
model is set three because the number is enough for 
approximating the Warburg impedance model for practi-
cal I/O data.[7] Since this model have larger number of 
parameters than Equation 5, it might be possible to pro-
vide models with greater accuracy.

For this model, the normalized parameter sensitivity plot 
for the parameter

                                      

is shown in Figure 5. In the figure, the plots for b2 and a3 
dip below the one for R0 by nearly 20 dB. The uncertainty 
of R0 is empirically not smaller than 10%, one cause of 
which is thought to be unmodeled dependency on the 
temperature, we can conclude that it is impossible to 
obtain dependable estimates of b2 and a3. 

On the other hand, the largest distance among the normal-
ized parameter sensitivities is around 5 dB for Figure 4, 
and there is no major problem predicted from Theorem 1. 
Therefore, we can conclude that the model Equation 5 is 
more promising.

As shown in this example, the normalized parameter sen-
sitivity plot can be utilized for devising strategies for esti-
mating parameters and selecting models with appropriate 
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Figure 4     Normalized parameter sensitivity plot for battery model with 
Warburg impedance diffusion process model (Gd)
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generic transfer function diffusion process model (Gr)
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complexity.

Conclusion

In this paper, the analysis based on the normalized 
parameter sensitivity plot is introduced for evaluating the 
degree of the diffi culty in estimating model parameters. 
From the plot, the limitation on the estimation accuracy, 
which stems from the relative relationship between the 
model sensitivities for the parameters, is easily obtained. 
The theoretical background of this limitation is shown, 
and an example with a rechargeable battery system is 
shown to illustrate how the proposed approach provides 
valuable information in practical problems.

The proposed approach can be expected to be a useful 
tool for dealing with large-scale complex systems in the 
next generation society. Part of its usefulness is shown in 
the example of the rechargeable battery, which plays a 
crucial role in the next generation society.
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