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Unraveling the Correlation Between Raman and Photoluminescence

in Monolayer MoS, Through Machine Learning Models
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Transition metal dichalcogenides (TMDCs) show strong, tunable photolumines-
cence (PL), advancing optoelectronic applications. Raman spectroscopy, which is
crucial for analyzing 2D materials, discerns crystallinity and material variations such
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as doping and strain. Nonetheless, the hidden PL-Raman correlations in MoS,
monolayers are not fully studied. This work methodically investigates PL-Raman
interconnections, clarifying the underlying physical mechanisms. Employing
machine learning, we differentiate strain and doping effects in Raman data. A
DenseNet model predicts PL from Raman maps, while gradient-boosted trees with
SHAP assess Raman features’ PL influence, elucidating MoS;’s strain and doping.
This research offers a machine learning-based methodology for 2D material char-
acterization and informs the tuning of semiconductors for enhanced PL.
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Introduction to MoS, Monolayers and Machine achieved through either chemical® or electrostatic

Learning Models

Two-dimensional (2D) materials, distinguished by their
ultra-thin structure and high surface-to-volume ratio,
exhibit unique physical and chemical characteristics.
Among these, monolayer transition metal dichalcogenides
(TMDCs) are 2D semiconductors known for their adjust-
able photoluminescence (PL). This PL can be altered
through external factors like strain and doping. For
instance, MoS,, a type of TMDC, shows adjustable band
structures and broad-spectrum optical absorption when
subjected to strain. These properties make it highly suit-
able for various advanced applications, such as cutting-
edge photovoltaic systems!”
science technologies, including single-photon emission

and quantum information
c}

Additionally, the near-perfect PL quantum yield in MoS,,

doping!, paves the way for creating highly efficient light-
emitting diodes™ and lasers®. To analyze these external
influences, Raman spectroscopy is employed as an effec-
tive and non-invasive method to measure the impact of
strain and doping on the properties of MoS,. While
Raman and photoluminescence (PL) spectroscopy have
been instrumental in exploring strain and doping effects
in MoS,, the majority of research has treated these effects
separately. Discovering the hidden correlations between
Raman and PL spectra can enable us to understand the
strain and doping effects comprehensively. Recently, the
rise of machine learning has revolutionized fields such as
computer vision and natural language processing and has
made significant inroads in diverse scientific disciplines,

[7] [9 ]

including biology'”, mathematics'™, and material science

Although machine learning approaches have been utilized
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in research on 2D materials, these efforts remain in the
nascent stage®'" and hold potential for groundbreaking
discoveries.

In this study, we leveraged an array of machine learning
algorithms to uncover the hidden patterns linking Raman
and PL spectra in MoS,, providing insights into the physi-
cal mechanisms connecting PL and Raman features. Our
approach started with the implementation of a DenseNet
model, which demonstrated high predictive accuracy for
PL features from Raman spectral maps. Subsequently, we
integrated a gradient-boosted model with SHapley
Additive exPlanations (SHAP) to correlate Raman and PL
data, offering both global significance and local interpret-
ability in terms of feature contributions. Lastly, we pro-
jected MoS, Raman features on frequency scatter plots to
decompose strain and doping effects. Our findings illus-
trate the potent capability of machine learning tools in
elucidating complex relationships across different material
characterization techniques.

The conceptual illustration provided in Figure 1(a) shows
the trajectory of knowledge acquisition through machine
learning models (represented by the red line), commenc-
ing from the results of material characterization, progress-
ing through established material knowledge, and
culminating in the understanding of external perturba-
tions and defect structures. This methodology enables the
integration of prior investigations-those that examined
changes in Raman and PL spectra due to single external
effects such as strain (indicated by the green line) or
doping (denoted by the blue line)-into a comprehensive
understanding of MoS, monolayers. Additionally, the
employment of statistical data analysis within our frame-
work serves to reduce potential biases arising from
sample selection and experimental setup. By integrating
statistical analysis with machine learning, our model
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Figure 1

creates a robust connection between Raman and PL char-
acteristics, the crystalline and electronic structures, as
well as the effects of strain and electrostatic doping.

Synthesis and Characterization of MoS,
Monolayers

MoS, monolayers are synthesized through chemical vapor
deposition (CVD) on 300 nm SiO,/Si substrates, utilizing
molybdenum trioxide (MoQs;) and sulfur (S) powders,
each weighing 20 mg, as source materials. Substrates are
prepared with a spin-coated layer of Perylene-3,4,9,10-
tetracarboxylic acid tetrapotassium (PTAS) solution,
which acts as a seeding promoter. To ensure an oxygen
and moisture-free environment, the CVD system is
flushed with an Argon (Ar) flow of 1000 sccm for 5 min-
utes. The temperature of the furnace is increased to 625°C
at a rate of 30°C per minute. Concurrently, sulfur is main-
tained at 180°C in an upstream position within the system.
The growth of MoS, monolayers occurs at 625°C under
atmospheric pressure for 3 minutes, with an Ar flow of 20
sccm and an O, flow ranging from 0 to 1 sccm, serving as
the carrier and reactant gases, respectively. Post-growth,
the furnace is allowed to cool to room temperature natu-
rally under a continuous Ar flow of 1000 sccm to avert
any additional unintended chemical reactions. The MoS,
crystals were obtained from SPI Supplies and 2D semi-
conductors, and then mechanically exfoliated and depos-
ited onto a 300 nm SiO,/Si substrate. The SPI crystals
were naturally grown, while the 2D semiconductor crys-
tals were synthetic. The exfoliated flakes were termed
natural and synthetic, accordingly.

We employed the HORIBA LabRAM HR800 spectrome-
ter for Raman and photoluminescence (PL) characteriza-
tions, utilizing a 532 nm (2.33 eV) laser source. Due to
time constraints associated with each spectral mapping,
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(a) Overview of unraveling correlation between Raman and PL with external perturbations. The green and blue lines correspond to the studies of

strain and doping effects, respectively. The red dashed line indicates the discovering path by the machine learning models in this work. (b-c)
Raman and PL spectra of CVD-grown MoS, monolayers. (b) Raman, and (c) PL spectra of CVD-grown (hexagonal, random, and triangle) and
exfoliated (natural and synthetic) MoS,. The vertical dashed lines denote the Raman E” and A", frequencies for the synthetic MoS; in a and the
MoS; exciton energy of 1.86 and 1.89 eV for trion and exciton, respectively.
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the laser power was carefully maintained at approximately
1 mW, and the acquisition time was set to 0.5 seconds.

For our spectral maps, we collected data across 1,600
pixels, corresponding to a spatial dimension of 40 by 40.
This process required approximately 30 minutes per spec-
tral map. Consequently, the complete measurement of a
single MoS, crystal, including the necessary system cali-
brations, amounted to over 1.5 hours. Our Raman and PL
measurements utilized a 100X objective lens, which
focuses the laser to a 1 pm diameter spot size. The nor-
malization of Raman spectra was conducted against the
intensity of the silicon (Si) peak, with calibration referring
to the Si Raman frequency established at 520.6 cm™. We
employed spectral gratings of 1,800 grooves per millime-
ter (gr/mm) for Raman and 300 gr/mm for PL measure-
ments to ensure high-resolution spectral data. The spatial
dimensions for the Raman and PL mapping were tailored
to match the domain size of the MoS, flakes under investi-
gation, with a spatial resolution of 1 pm achieved through
the precision control of a motorized stage.

The Raman spectra of MoS, monolayers are characterized

by three characteristic features as illustrated in
Figure 1(b), which represent the in-plane E’ mode at
approximately ~385 cm™, the out-of-plane A’ mode near
405 cm’”, and the second-order double resonance 2LA
mode around 450 cm”. These vibrational modes are pre-
cisely defined using a Voigt profile for the extraction of
key parameters: the frequency (Freq, w), the full-width-
at-half-maximum (FWHM, I"), and the intensity (Int, 7).
Figure 1(b) displays the frequency distribution for these
modes across the MoS, monolayers sampled, highlighting
a trend of frequency softening for the w,, mode in natu-
rally-grown MoS, and for the wy mode in hexagonal-
shaped MoS,, in comparison to those exfoliated from
synthetic sources. In the context of PL characterization,
trions appear to dominate the PL response from MoS, due
to the ~1 mW laser power utilized during our experi-
ments. A closer evaluation of Figure 1(c) indicates that
MosS, flakes with hexagonal and random shapes tend to
show lower PL energy, wider FWHM, and reduced inten-
sity in contrast to triangle-shaped and mechanically exfo-

liated MoS, crystals.

For the analysis of spectral data, a curve-fitting routine
was executed within a Python environment. This routine
involved the subtraction of background noise from the
spectra by employing the BaselineRemoval package, spe-
cifically utilizing the ZhangFit method"®. To accurately
fit the spectral lines, we utilized the Voigt profile function,
accessible from the Scipy library, which is defined by a
quartet of parameters: the frequency of the Raman fea-
ture, o (which is the standard deviation of the Gaussian

component of the Voigt profile), y (representing the half-
width at half-maximum of the Lorentzian component),
and the intensity of the Raman feature. For optimization
purposes, the least-squares optimization function from
the Scipy library was engaged. The full width at half-
maximum (FWHM) is then computed by applying the
following equation (1-3):

fe = 20V2In2 )
fu=2y 2

I ~0.5346f, + 0.2166f7 + f2 A

This equation effectively combines the contributions from
both the Gaussian and Lorentzian components that make
up the Voigt profile, giving a comprehensive measure of
the spectral line’s width at its half-maximum intensity.
Upon capturing the Raman and PL spectra, we channeled
the data through a curve-fitting process. Each spectral
peak was modeled with a Voigt profile, which yielded
three primary parameters: the peak frequencies, the
FWHM, and the intensities. We then normalized all char-
acteristic peaks using the intensity of the Raman signal at
520.6 cm™ from the silicon substrates. For MoS, monolay-
ers with a normalized intensity of the A', mode (Z,,) less
than 0.5, we applied a stringent threshold to demarcate
regions attributed to multilayer MoS,. Meanwhile, outliers
identified in the spectral maps were subsequently elimi-
nated using a binary opening operation.

In the development of our machine learning models - spe-
cifically XGBoost and the support vector machine
(SVM)-we utilized a total of 7,023 data points. The
DenseNet model’s training dataset comprised all pixel
data, inclusive of those with and without Raman/PL sig-
nals. Data augmentation was performed by applying a
90-degree rotation to the pixel maps, accumulating in a
dataset encompassing 35,596 patched maps. Statistical
analysis was conducted using Matlab and Python, incor-
porating libraries such as Pytorch, Scipy, and Numpy to
facilitate the analysis.

Statistical Analysis for MoS, Monolayers

To further elucidate the characteristics of PL in MoS,, we
graphed the PL FWHM against the normalized PL inten-
sity, as depicted in Figure 2(a). This graph demonstrates
a discernible trend: higher PL intensities are associated
with narrower PL FWHMSs, a pattern typically observed
in synthetic and triangle-shaped MoS, crystals, as shown
in Figure 2(b). The PL FWHM (/%) can be represented
by a reciprocal relationship with PL intensity (/p;) as
shown in Equation (4), which plots as the blue curve in
Figure 2(a). When considering potential discrepancies
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Figure 2 Scatter plots for PL features for MoS, monolayers. (a) The correlation between FWHM and intensity in a Voigt function for a fixed area of 0.1 with-
out (blue, Equation (4)) and with (red, Equation (5)) the background. (b) PL FWHM as a function of the normalized intensity following the multipli-
cative inverse function (solid-black line) described by Equation (5). (c) PL energy as a function of the normalized intensity following the reverse
multiplicative function (solid-black line) described by Equation (6). (d) PL energy as a function of the PL FWHM following a linear function (solid

black) described by Equation (7).

due to imperfect background subtractions in the spectral
data, we adjusted the equation to include an offset for both
intensity and FWHM, resulting in Equation (5). This
adjusted model corresponds to the red curve seen in
Figure 2(a) and aligns well with the distribution observed
in Figure 2(b). In addition, we explored the relationship
between PL energy (Ep;) and intensity (/p;) as shown in
Figure 2(c). As the PL spectrum was fitted using a Voigt
profile with a fixed integrated area, a reverse reciprocal
function illustrated by Equation (6) was employed, indi-
cating that stronger PL intensities are associated with
higher PL energies. Moreover, a linear relationship
between PL energy and FWHM is depicted in Equation (7),
and this is graphically represented in Figure 2(d).

The collective interpretation of these findings suggests
that the triangular, as well as natural and synthetic MoS,
flakes, display PL peaks that are more intense, sharper,
and exhibit a blue shift, signaling a higher crystal quality
when compared to the random and hexagonal MoS,
flakes.

Ip, = 0.0157/Ip, @

Iy, = 0.0157/(Ip, — 0.25) +0.08  (5)
Ep, = 1.855— 0.0047/(Ip, — 0.25)  (6)
Ep, = 1.879 — 0.3 % I, (7)

High Performance of DenseNet

To unravel the hidden relationships within our Raman and
PL data, we employed a variety of machine learning tech-
niques, particularly focusing on revealing hidden patterns
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and establishing connections to underlying physical phe-
nomena. Deep convolutional neural networks (CNNGs),
renowned for their proficiency in a multitude of visual
recognition tasks, enable the extraction of valuable
insights from diverse imaging systems, encompassing the
biomedical™ to the microscopic™ and hyperspectral
domains"®. Viewing spectral maps as image-based datas-
ets with multiple channels, such as the number of spectral
points. Using CNNs, we correlate the Raman spectra with
the corresponding PL features for the CVD-grown and
exfoliated MoS, flakes.

We chose to deploy Dense Convolutional Networks
(DenseNet)"™ for their efficiency in predicting three PL
features from the Raman spectral images. DenseNet has
been demonstrated to require fewer parameters and less
down-sampling compared to other advanced CNN
models, such as U-Net""”! and SegNet"®, while still deliv-
ering comparable accuracy. This characteristic makes
DenseNet particularly advantageous for handling small
datasets and small pixelated inputs, aligning perfectly
with the scope of our research. The DenseNet architec-

ture!™®

implemented in our study was a tailored version of
the original design, adapted to comprise two dense
blocks. Preceding the entry to the first dense block, the
input image undergoes a convolution with an output of 12
channels; the specifics of this step are illustrated in
Figure 3(a). Each dense block is constructed with several
layers: batch normalization, ReLU activation, convolu-
tions with 1x1 and 3x3 kernel sizes, and is followed by a
dropout rate set at 0.1 to prevent overfitting. The transition
layer that bridges the two dense blocks includes batch
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normalization, a ReLU layer, a convolutional layer with a
Ix1 kernel size, and concludes with an average pooling
layer. Upon the completion of the final dense block, an
adaptive average pooling operation is executed, output-
ting three channels, which are then connected to a linear
layer designed to produce three final output values. The
deployment of DenseNet was facilitated through the
PyTorch framework. To evaluate the performance of
DenseNet, we utilized the relative absolute error, articu-
lated by the following Equation (8):

B0 -9

RAE ;
[T vl

@®

In this equation, y'; represents the predicted values
obtained from DenseNet, and y; denotes the actual experi-
mental values acquired from the PL measurements. This
metric allows for the quantification of the prediction
accuracy of the network relative to the true data values.

To explore the relationship between the spatial informa-
tion contained within Raman patched maps and the per-
formance of the DenseNet architecture, we experimented
with various sizes of Raman patched maps. These ranged
from a local spatial size of 1x1 to a more extensive spatial
size of 11x11 for the intensity data of hexagonal MoS,, an
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example of which is shown in Figure 3(b-d). It was
observed that the smaller 1x1 patch size yielded a higher
error rate of 21.48%, which can be attributed to the lim-
ited spatial information provided by the Raman maps. On
the other end of the spectrum, the 11xI1 patch size
resulted in a marginally increased relative error of
11.86%, potentially due to zero padding implemented
around the edges of the patched inputs. Out of all the
patch sizes tested, the 5x5 configuration achieved the
most favorable balance, exhibiting the lowest relative
absolute error (RAE) of 10.31% for the PL intensity of a
triangle-shaped MoS,. This particular patch size managed
to integrate adjacent Raman signals while avoiding the
inclusion of extraneous spatial information.

The central columns of Figure 3(e-Q) illustrate typical
predictions for PL energy, FWHM, and intensity as
derived from the trained DenseNet model when applied to
a random-shaped MoS, using a 5x5 patch size. For model
performance assessment, the experimentally measured PL
maps were considered as the benchmark (ground truth),
displayed in the left column. The relative errors computed
are shown in the right column of Figure 3(e-g). The
RAE:s for the PL energy and FWHM were notably low, at
0.25% and 4.61% respectively. However, the RAE for PL
intensity was higher, recorded at 10.93%, which may be
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Figure 3 (a) Schematic illustration of a DenseNet model with two dense blocks. (b-d) PL predictions from the trained DenseNet. The patch size effect on
the DenseNet for the predicted intensity of a triangle MoS.. (b) 1-by-1, (c) 5-by-5, and (d) 11-by-11 with 21.48%, 10.31 and 11.86% relative absolute
errors, respectively. (e-g) The PL mapping predictions of (e) energy, (f) FWHM, and (g) intensity for CVD-grown MoS, with random shape. Left:
the measured PL maps as the ground truth for the DenseNet model. Middle: the predicted results by the trained DenseNet with 5-by-5 patch
inputs. Right: the relative error between measured and predicted PL maps.
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indicative of non-ideal experimental conditions or errors
in the data processing stages, including spectroscopic
measurements, background spectral subtraction, and the
fitting procedures.

XGBoost Model with SHAP Explainer

Although CNNs represent the state-of-the-art model to
make inferences on image- or spectral-based tasks, their
multilayer nonlinear structures are often criticized as
non-transparent and non-explainable™. In response to
this, we transformed spectral maps into a tabular dataset
comprising roughly 7000 discrete data points. An extreme
gradient boosting (XGBoost) model, trained on this tabu-
lar dataset, was utilized to discern the correlations
between Raman characteristics and corresponding PL
features in MoS, monolayers.

a Global feature importance

XGBoost, an ensemble learning model constructed from

9 is widely recognized for its effectiveness

decision trees
in supervised learning tasks, especially when dealing
with tabular datasets featuring individually significant
attributes that do not incorporate temporal or spatial
structures®. The optimization of the XGBoost regres-
sor’s hyperparameters was conducted via Bayesian
Optimization®", with the model configured to include 700
gradient-boosted trees, a learning rate of 0.05, and a maxi-
mum tree depth of 15. Root mean square log error (RMSLE)
was employed as the evaluative metric to minimize the

impact of outliers on error calculation.
To interpret the XGBoost model predictions and link them

to their physical underpinnings, we applied Shapley
Additive exPlanations (SHAP)??, which acts as a tree
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Figure 4 Correlation analysis for Raman and PL by XGBoost with SHAP values. (a) PL energy, (b) PL FWHM, and (c) PL intensity results are interpreted by
the trained XGBoost model by Shapley additive explanations (SHAP). The Raman features are sorted in descending order according to global
parameter importance. Left: the global importance of Raman features based on the average SHAP value magnitude for PL features. Right: a set
of beeswarm plots corresponding to a single pair of Raman and PL. The vertical axis displays the sorted Raman features, while the horizontal
axis shows the impact of the model output. Each data point represents a predicted output, and the color indicates the Raman features values.
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explainer. SHAP provides both local and global insights
based on game theory principles, elucidating the connec-
tions between Raman and PL spectra.

In Figure 4, SHAP summary plots visualize the influence
of specific Raman feature values on the predicted PL fea-
tures. Individual dots on these plots represent model pre-
dictions, with colors encoding the value of a particular
Raman feature. For instance, a higher frequency of the E’
Raman mode (wg, indicated by a red color) correlates
with an increased SHAP value, suggesting a heightened
PL energy. Moreover, bar charts in Figure 4 detail the
SHAP importance values, offering a global perspective on
the contribution of each Raman parameter to the PL
features.

Analysis of the SHAP values revealed that the Raman
features, wg, wy,, and I are the most impact factors in
predicting PL features. The average SHAP importance for
the E', A", and 2L A modes with respect to the PL features
are 67.6%, 25.5%, and 6.9%, respectively. This distribu-
tion of importance is consistent with prior studies indicat-
ing that the £’ Raman mode is sensitive to in-plane strain

but less affected by doping®, whereas the 4’; mode’s
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sensitivity is reversed, being more responsive to doping
than to strain®?®". Given that the £’ mode exhibits the
most significant SHAP importance (67.6%) for PL predic-
tion, we infer that the PL response within our dataset is
predominantly influenced by strain effects rather than
doping.

Scatter Plots for Decomposition of Raman
Frequencies

The differentiation of strain and doping effects on the
vibrational properties of graphene has been established
through the shifting of G and 2D band frequencies.
Extending this methodology to monolayer MoS,**?” the
SHAP importance results have highlighted that the fre-
quencies of the wz and w,, modes predominantly influ-
ence the PL characteristics. While similar strategies have
been previously applied to MoS,, the hidden details of
these physical phenomena have not been fully discerned
from the Raman frequency analyses.

In our investigation, we demonstrated the decomposition
of strain and doping effects as functions of wx and w,, in
Figure 5(a). We begin by identifying the intrinsic point,
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Figure 5 (a) Schematic representation of strain and doping base vectors for (wg, wa,) coordinates. The red and black solid line corresponds to strain and
doping, respectively. The orange circle is denoted as the intrinsic point, defined as the charge-neutral and unstrained state. (b-d) Scattered plots
of CVD-grown and exfoliated MoS, monolayers on Raman features of wa, versus wg. The coded colors indicate (b) PL energy, (c) PL FWHM, and (d)

PL intensity.
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which is characterized as the undoped and unstrained
state of MoS,. The intrinsic Raman frequencies of the wg
and w4, modes are somewhat elusive; however, by com-
paring a range of £’ and A4'; data from both literature and
our own studies, we find that most data align with the
established frequency difference of w,, - wz= 19 cm'”zs],
which is the recognized standard for monolayer MoS,. We
have designated the Raman frequencies from exfoliated
synthetic MoS,, located centrally within our data distribu-
tion, as the intrinsic point, marked at (385.3, 404.5) for (wg,
w4, respectively. This point is indicated by an orange
circle in our representations. Regarding strain effects, we
observe that tensile strain induces shifts in the w; and w4,
of 4.48 and 1.02 cm™/%, respectively. This observation is
aligned with the ratio of the Griineisen parameters of the
E' and A", phonons®®. The impact of compressive strain,
for which Raman studies on MoS, are scarce, has been
inferred from literature, suggesting that Raman frequency
shifts due to tensile strain are 1.56 times greater than
those due to compressive strain®. Doping effects are rep-
resented by a black line, with recent studies indicating
that the w,, mode softens with electron accumulation but
remains unaltered with hole doping®. Thus, the vector
for electron doping in the low electron concentration
region has been quantified as (wg, @wy,) is (-0.15, -1.19)
cm/1013 cm™® as shown in Figure 5(a). The hardening
of w4, potentially caused by substitutional doping during
the CVD growth process, is exemplified by shifts of -0.18
and 0.2 cm™/at% due to substitutional oxygen doping®".
The scatter plot in Figure 5(b-d) of ws and w,, which
considers both strain and doping effects, reveals that the
intrinsic point corresponds to higher PL energy, increased
intensity, and reduced FWHM. This relationship is visual-
ized with color coding that represents the PL energy,
intensity, and FWHM across various data points.

Conclusion

In conclusion, we have demonstrated a framework for
capturing the correlations between Raman and PL essen-
tial to tune MoS, optical properties by external perturba-
tions to understand, predict, and design next-generation
devices. We utilize the DenseNet model to build end-to-
end connections from Raman spectral maps to photolumi-
nescence. To gain more comprehensive insights into the
physical mechanisms of strain and doping effects, we
adopt the XGBoost model with the SHAP explainer and
reveal that wg, w,,, and I are the three dominant Raman
characteristics for PL feature predictions, which further
indicates that the strain effects govern the PL response
more than the doping effects in our dataset. We further
disentangle strain and doping effects and predict the loca-
tion of the intrinsic point on the Raman frequency plot.
The proposed methodology establishes an analysis
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approach to comprehensively interpret experimental
observations to explore novel physics, which is suitable
for Raman spectra and PL on 2D materials and for many
other types of spectroscopies and condensed matter.
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