

特集 分析・計測のアプリケーション開発

今号は、分析・計測のアプリ ケーション開発を特集します。 HORIBA Gr.の各事業部にわたる 製品のアプリケーション例をご 報告します。コラム・トピックス では、長年にわたるpH計測に関 する基礎技術をご紹介します。

■表紙写真

撮影:松井秀雄氏 (二科会写真部 会友) 清らかな景色を求めて北海道を 訪れました。人跡未踏の雪原の 上を飛ぶ丹頂鶴が春の訪れがも う近い事を知らせてくれている ようでした。

■誌名について

誌名 Readout (リードアウト) に は、「当社が創造・育成した製品・ 技術を広く世にお知らせし、多く の皆様に読み取っていただきた い」という願いが込められてい ます。

特集 分析・計測のアプリケーション開発

巻頭言

4 堀場製作所創立 60 年を迎えて 石田 耕三

総論

- 12 分析センターが目指すアプリケーション開発 橋本 文寿

特集論文 Pittcon 発表

- **18** Ca²⁺イオン電極を用いた食品試料中のカルシウムイオンの簡易測定 〈LAQUAtwin〉Ca²⁺イオンメーターを用いた測定例 山内 悠
- 24 イオン液体塩橋搭載ガラス複合電極を用いた低導電率試料の pH 値の決定 芝田 学
- 30 可搬型蛍光 X 線分析装置 MESA-50 青山 朋樹
- **34** 中赤外レーザ吸光法分析装置を用いた自動車排ガス中 N₂O の測定 原 健児, Montajir RAHMAN

「特集論文 アプリケーション

- 42 パワーデバイス向け SiC ウェハの非破壊評価 光分析技術を用いたマイクロ〜ナノスケールの欠陥検出 中庸行,清水 智也,馬場 洋樹,沼田 朋子,青山 淳一,粟田 正吾,畑山 智亮
- **49** リチウムイオン電池の研究開発・製造プロセスにおける分析評価 _{廣瀬} 潤
- **55** カビ毒分析用前処理カラム「SmartColumn」の開発 内ヶ島 美岐子

一般論文

- **59** イオン液体塩橋を用いた pH の正確な決定 芝田 学
- 64 SEM を用いた原子分解能ホログラフィー: 逆 X 線光電子ホログラフィー 上坂 彰朗,林 好一,松下 智裕,新井 重俊
- 69 レーザ回折/散乱法による粒子径計測の演算精度向上に関する研究 伊串 達夫

新製品紹介

- 74 次世代統合排ガス計測プラットフォーム HORIBA ONE PLATFORM 浦谷 勝己
- 81 加熱 NDIR 計を用いた過渡運転時の EGR 率計測装置の開発 吉村 友志
- **86** 新ドライブレコーダーシステム(DRT-7000 DR-2000 HssE) 石倉 理有,佐渡 泰之,橋本 明浩

コラム

90 堀場製作所の基礎技術 1 pH計, イオン計の検出部としてのガラス電極, 各種イオン電極 青海 隆

トピックス

- 96 第1回 HORIBA Group IP World Cup Gold Award 受賞案件の紹介
- 98 何を測る?何で測る?
- **102** 電気化学測定を応用した計測機器 石井 章夫,山内 悠
- 109 B to B No.1 のデザインを目指して
- 114 HORIBA World-Wide Network

We hope this issue of HORIBA Readout, Featuring the application technology in analysis and measurement in HORIBA Gr.

I visited Hokkaido, a notherm island, looking for pure scenery. A few Japanese red-crowned cranes flying across the unstepped snowfiled seem to indicate the advent of spring. -Photographer Hideo MATSUI-(Member of NIKA Association of Photographers)

Name of the book

This book is named "Readoul" in the hope that "the products and technology we have created and developed will be read out and so become widely known".

Application technology in analysis and measurement

Review

6 Engine Emission Measurement Technologies Related to Emission Regulation Trends

Kaori INOUE

12 Aiming at Development of New Applications and Professionalism. Bunji HASHIMOTO

Feature Article Pittcon

- 21 Development of On-Site Measurement of Calcium in Food Samples by Use of Ion Selective Electrode example for Using <LAQUAtwin> Ca²⁺ Ion meter Hisashi YAMANOUCHI
- 27 Potentiometric Determination of pH Values of Low Conductivity Solutions with the Glass Combination Electrode Equipped with Ionic Liquid Salt Bridge Manabu SHIBATA
- 30 Portable X-ray Fluorescence Analyzer MESA-50 with New Developed Optics and New Spectrum Processing Tomoki AOYAMA
- **38** Measurement of Automobile Exhaust N₂O by Mid-IR Laser Spectroscopy Kenji HARA, Montajir RAHMAN

Feature Article Application

- 42 Non-Destructive Evaluation of SiC wafer for Power Device Defect detection in μm~nm scale using optical analytical technique Nobuyuki NAKA, Tomoya SHIMIZU, Hiroki BABA, Tomoko NUMATA, Junichi AOYAMA, Shogo AWATA, Tomoaki HATAYAMA
- 49 Analytical Evaluation for Research & Development and Manufacturing process of Lithium ion battery Jun HIROSE
- 55 Development of an Immunoaffinity Column "SmartColumn" for Mycotoxin Analysis

Mikiko UCHIGASHIMA

Selected Article

- 59 Accurate Determination of pH by Use of Ionic Liquid Salt Bridge Manabu SHIBATA
- 64 Atomic Resolution Holography with SEM: Internal-Detector Electron Holography

Akio UESAKA, Kouichi HAYASHI, Tomohiro MATSUSHITA, Shigetoshi ARAI

69 Study of the Improvement of Calculation Method for Particle Size Distribution Using a Laser Diffraction Method. Tatsuo IGUSHI

Product Introduction

- 74 Integrated Emission Measurement Instrument Platform HORIBA ONE PLATFORM Katsumi URATANI
- 81 Development of Transient EGR Ratio Analyzer Utilizing Heated NDIR Tomoshi YOSHIMURA
- **86** New Drive Recorder Systems (DRT-7000, DR-2000, HssE) Masatomo ISHIKURA, Yasuyuki SADO, Akihiro HASHIMOTO
- 114 HORIBA World-Wide Network

堀場製作所創立60年を迎えて

石田 耕三 Kozo ISHIDA 株式会社 堀場製作所 代表取締役副社長

工学博士

石田耕王

堀場製作所は本年1月26日に創立60周年を迎えました。

堀場における分析計測技術をベースにした事業は,現,堀場雅夫最高顧問が60 年前に開発したpH計を原点に,その開発精神のDNAを継承しながら,水,ガス, 固体そして粒子の分析計測技術の開発と共に,アプリケーション技術との融合 で市場ニーズに迅速に応えることで着実に成長してきました。とりわけ,この20 年間,将来の発展を見据えた事業基盤強化のため,グローバル経営の強化の一 環として海外企業のグループ化を進めると共に,技術,製品の多様化を積極的に 図ってきました。そして60周年を迎えた今,名実ともに分析計測分野を担う世界 有数の企業の仲間入りを果す事が出来ました。

その様な中にあって, 1990年に創刊した技術誌READOUTは, お客様と堀場の 技術開発を結ぶ架け橋として弊社の成長を縁の下で支えてきました。そして, 今 回発刊40号という節目を迎える事になりました。これもひとえに読者の皆様方の ご支援ご理解の賜物であり, とりわけ論文の寄稿を頂いた多くの皆様方のご協 力の賜物と感謝いたします。また, 編集に携わってきた国内外の関係者の努力の 結晶であると深く敬意を表します。

科学,技術の進歩発展は、太陽系が存続する限りにおいて、地球上で営なまれる 人類の生命活動を維持継続してゆくために、誰しもが疑うことのない普遍的で あって重要であると考えます。技術誌を創刊して今日まで20年を振り返ってみる と、その僅かな時間の中で世の中は自然科学の大きな進展,飛躍的な技術の進歩 そして新たな産業の創出など激しく変化してきました。半導体技術の加速的な 進化は通信,世界の情報ネットワークの革命を起こし,政治や経済にさらには文 化面においても新たな時代,パラダイムシフトをもたらそうとしています。また, 昨年のノーベル生理学・医学賞を受賞された山中伸弥博士のiPS*1細胞の発見 は医療創薬の領域での革命を予感するものです。これらの革新的な科学・技術 の進歩には必ず分析計測技術の進化が伴っていることは疑いの余地はありませ ん。創立50周年(2012年)に創設された堀場雅夫賞は科学技術の進歩を縁の下で 支える分析計測技術の発展に貢献され,将来嘱望される若手研究開発者を対象 としたユニークな賞で,科学技術の進歩に大いに貢献できるものと期待されてい ます。

この堀場雅夫賞の受賞者の受賞論文や審査を御願いした諸先生方にも本誌に寄稿を頂き,まさに双方向の交流の架け橋として,内容の充実を図ると同時に,この技術誌のグローバルな発信にも積極的に取り組み,世界のユーザーにより広くお読み頂く機会を作って来ました。この間,編集委員長として企画編纂を担当させていただきましたが,科学技術の革新が一層加速される時代に,新たな視点を持ってREADOUTをさらに発展させて行く新たな力が必要です。今後お客様にとって「プレミアムな技術の架け橋」として進化させるために,今回の発行を期して,編集委員長のタスキを足立開発本部長に渡すことに致しました。

新しい編集委員長へのこれまで以上のご支援を御願いすると同時に,本誌を支 えていただいた読者の皆様,ご投稿いただいた専門分野の研究者,技術者の皆 様,編集に尽力いただいた関係者の皆様に重ねて心から感謝の意を表します。

Review

総論

エンジン排出ガス規制の動向と計測技術

Engine Emission Measurement Technologies Related to Emission Regulation Trends

井上 香 Kaori INOUE

近年,自動車・エンジンの排出ガス規制は大きく動いており,関連する計測技 術への要求も複雑化している。たとえば,欧州連合において粒子数(PN)とい う新しいカテゴリの規制が導入され,米国では温室効果ガスとして亜酸化窒 素(N₂O)の基準値が設けられるなど,新たな成分を規制対象として追加する 動きが相次いでいる。このような新規制の導入にあたっては,対象成分を計 測する方法もあわせて検討することが必須となっている。さらに,リアルワー ルドでの排出実態への関心の高まりや,ハイブリッド電気自動車をはじめとす る次世代自動車の実用化により,規制の前提となる試験手順・計測条件も見 直されている。本稿では,このような排出ガス規制の最新動向を,計測技術と のかかわりという視点から紹介する。

Recently, drastic changes in engine/vehicle emission regulations lead to complicated requirements for emission measurement technologies. One of the emission regulation trends is introducing limit vales to new components/ categories, e.g. particle number (PN) in EU countries and nitrous oxide (N_2O) as a greenhouse gas in US. To make such new standards effective, measurement techniques to be adopted must be carefully investigated and validated. Test procedures and measurement conditions defined in regulations have been revised in response to increasing interest in real-world emission behavior and diffusion of new-generation vehicles such as hybrid electric vehicles. This article gives an outline of some emission regulation trends, from the view-point of relation with measurement technologies.

はじめに

1960年代後半, 深刻な光化学スモッグに悩まされていたカリフォルニア州で 自動車排出ガスの規制が始まったのを皮切りに, 日欧米で同様の規制が相次 いで導入された。それから40年以上が経った現在, これらの地域ではエンジ ン排出ガス中の一酸化炭素(CO)・窒素化合物(NOx)・炭化水素(HC)・粒子 状物質(PM)に対する厳しい規制が実施されている。その結果, 乗用車の排 出ガスに至っては、「空気よりきれい」といわれるまでに浄化が進んだ。また, 規制する対象カテゴリは, 乗用車から重量車, 二輪車, さらに建機や農機な どのエンジンへも広がった。近年では新興諸国での排出ガス規制も確実に進 んでいる。 エンジン排出ガスの計測技術は、このような排出量削減の過程において重要 な役割を果たしてきた。その一方、上述の規制成分の排出量が十分下がって しまえば、排出ガス計測は各成分が「ほぼゼロ」であることを確認するだけの 単純なものになり、その重要度も下がるようなイメージがあったように思う。 ところが、現実には、従来の規制成分の排出量は確実に削減されているにも 関わらず、排出ガス計測への要求はより複雑になっている。これは、各国にお いて規制対象への新規成分の追加、あるいは従来成分も含む試験手順の見 直しなどの大きな動きがあり、それぞれに計測技術の裏づけが必要とされる ためである。本稿では、最近のエンジン排出ガス規制動向のうち、計測技術 とのかかわりの大きいものを紹介する。

規制対象成分の追加

これまで,エンジンから排出される大気汚染物質として,CO・NOx・HC・ PMの排出質量が規制されてきた。これに対し,最近,粒子数(PN)という新し い考え方での粒子状物質の規制,あるいはアンモニア(NH₃)規制の本格導入 などの動きが相次いでいる。さらに,かつては「有害物質」ではなかった温室 効果ガスも,明確に規制対象として意識されるようになった。ここでは,例と して,PN,および温室効果ガスとしての亜酸化窒素(N₂O)の規制と計測技術 を取り上げる。

粒子数規制

従来の排出ガス規制では、「規定の専用設備を用いて希釈したエンジン排出 ガスを、52℃以下(または47±5℃)の専用フィルタに通した時に捕集される 物質」を、PMとして規制対象にしてきた。Figure 1に、PM捕集に使用される 希釈トンネル設備の構成を示す。実際にフィルタに捕集される物質は、いわ ゆる「すす」のような固形物、凝縮したHCや硫酸ミストなどの液体、それらに 吸着した気体のHCなどである。PMの排出質量は、捕集前後に秤量したフィ ルタ質量の変化量から算出する。この方法(フィルタ重量法)は、ある意味、エ ンジン排出ガス規制におけるPMの定義そ

のものといえる。

一方,今後PM排出量削減がますます進む と見込まれることから,一定の重さのある フィルタごとPMを秤量するフィルタ重量 法では精度確保が難しい,との指摘がされ ている。また,欧州を中心に,「人体に影響 が大きいのは排出粒子のうちでも特に微小 なものであり,粒子径という視点を規制に も加味すべき」との意見が聞かれるように なった。これらの背景のもと,自動車に関す る国際基準調和を議論している国連の委員

Figure 1 Schematic of Full Flow Dilution System for Particulate Mass Emission Measurement

eview 総論

> 会(WP. 29)の下に,既存の粒子計測法の最適化または代替計測法の確立を 目指すグループ(PMP)が組織された。このPMPの活動の結果,新しい計測 法として提案されたのが「固体粒子数計測システム」である。この方法では, 名前のとおり,固体粒子を重さではなく数で計測する。このように粒子数をカ ウントする方法は,粗大粒子に左右されてしまう質量での計測に比べて微小 粒子の排出量が反映されやすいと考えられ,低濃度計測にも向くとされる。 このPMP法で計測される粒子数は,「PN」として,欧州連合(EU)加盟国の規 制にすでに導入されつつある^[1, 2]。

> Figure 2に, 国連の発行する国際規則(UNECE規則)に記載されている固体 粒子数計測システムの構成図を示す^[3]。このシステムでは, まず前段の分級 器で2.5µm以上の粗大粒子を取り除き, 次に液体のみで構成される揮発性の 粒子を蒸発させ, 最後に残った固体粒子を検出下限23 nmのカウンタで計数 する。ここで, 液体粒子をわざわざ蒸発させるのは, そのような粒子の生成・ 消滅がサンプリング条件に大きく影響され, 計測の再現性を悪化させる要因 になるためである。このように, EUで規制されるPNは, 計測精度を重視した 結果, 微小粒子の一部である液体粒子をあえて取り除いたものとなっている。 なお, 粒子数という考え方には欧州以外でも関心が持たれており, 23 nm以 下のさらに微細な粒子をどう考えるかなどの議論も続いている。

温室効果ガスの規制

近年,エンジン排出ガス規制の新しい対象として,いわゆる温室効果ガス (GHG)への関心が高まっている。主な対象は排出量の多い二酸化炭素(CO₂) であるが,同じく温室効果を持つメタン(CH₄)やN₂Oを含めて議論される場 合もある。米国の環境保護庁(EPA)では、2012年から、小型車の排出ガス中 のCO₂・CH₄・N₂Oに対してGHGとしての規制値を導入した^[4]。重量車やそ のエンジンについても,同じく2014年からのGHG規制導入を決めている^[5]。

Figure 2 Schematic of Recommended Particle Sampling System by PMP^[3]

上の対象成分のうち、CO₂の排出量は燃費算出の目的で以前より計測されていた。また、HCを「CH₄以外のHC(非メタン炭化水素、NMHC)」として規制する地域があることから、排出ガス中のCH₄濃度分析法もすでに確立されている。一方、規制に関連してN₂Oの計測が要求されるのはこれが最初であり、どのような分析方法を採用するのかが注目されている。特に小型車の場合、もともとN₂Oは低濃度でしか排出されないと予想されるのに加え、それを大気で希釈してサンプリングするのが標準法であることから、実際の測定濃度はほとんど大気レベル(320 ppb程度)というケースも考えられる。EPAで可能性のある分析方法を比較検討した結果、小型車のGHG規制のアナウンスの中で、このような低濃度計測においてはレーザ赤外分光法が有望、との見解が示された^[6]。同時に、この手法はまだ新しく計測器としての普及には時間がかかるとの理由から、小型車でのN₂O実計測の開始が2015年から2017年に延期された^[6]。

試験手順・計測条件の見直し

排出ガス規制を目的とする自動車・エンジンの試験では,試験室内に設置し たダイナモメータを用い,車両やエンジン単体を規定のパターン(試験サイク ル)で運転させる手法がとられてきた。Figure 3に試験室, Figure 4に試験サ イクルの例を示す^[7]。最近では,実路を走行しての「リアルワールド」の計測, あるいは次世代自動車の計測など,試験手順や計測条件にも多くの新しい要 素が加わりつつある。

Figure 3 Example of Vehicle Test Cell with a Cassis Dynamometer

リアルワールドの計測

ダイナモメータを用いる排出ガス試験法 は,試験条件が統一でき,計測値の再現性 も確保しやすいという利点がある。その一 方で,排出ガスのNOx規制を強化しても沿 道のNO2濃度がなかなか下がらないことな どから,より実走行に近い試験を実現する ための検討がされてきた。たとえば,試験 サイクルをより実情を反映しやすいものに 改良する試みもそのひとつである。さらに 進んで,一律の試験サイクルによらない試 験法(オフサイクル試験法)を採用するとい う動きも出ている。

オフサイクル試験の手法のひとつは, エン ジン回転やトルクなどが規定の条件範囲 (コントロールエリア)内にある間の排出ガ スを評価するというものである。Figure 5 に, コントロールエリアのイメージを示す ^[8]。実路試験では, 採取した時系列データ

Figure 5 Example of Control Area for Off-cycle Emission Test(WNTE)^[8]

R eview 総論

> 中,指定のエリア内でかつ継続時間等の条件も満たしていた区間のデータの みを採用する。これに近い考え方は、米国EPAにおける重量車の使用過程車 試験プログラムにすでに採用されている。EPAのプログラムでは、市場に出 回っている車の抜き取り試験の形で、実路走行でのガス成分・PMの排出量 を評価する^[9]。このような実路試験では、専用の車載型排出ガス計測システ ム(PEMS)が必要である。そのため、実際に試験プログラムが導入される前 に、かなりの時間をかけてPEMSの評価が実施された。

> EU加盟国でも、重量車の次期規制(Euro VI)より、実路走行による使用過程 車試験が導入されることになっている^[10]。ただし、その方法は、累積エンジン 出力(またはCO₂排出量)が基準値と等しくなる区間ごとに排出ガス量を評価 するというもので、米国とはかなり異なる。なお、EUでは、リアルワールド計 測に対する関心が非常に高く、小型車への実路走行試験導入を前提に、採用 すべき評価手法などの検討が進められている。また、日本においても、重量車 にオフサイクル試験を導入する方針がすでに示されている^[11]。こちらも現在、 どのように実現するかが議論されている段階である。

ハイブリッド電気車の計測

ここ数年,エンジンに加えバッテリでも走行ができるハイブリッド車(HV)や プラグインハイブリッド車(PHV)の普及が急速に進んでいる。HV・PHVの 場合,従来の試験手順のままでは,規制成分の排出量や燃費を正しく求める ことができない。もちろん,バッテリの状態が排出ガスや燃費に影響するため である。各国の排出ガスや燃費の計測方法には,すでにHV・PHVに関する 規定が盛り込まれている。その扱いは,エンジン由来のエネルギーだけでバッ テリが充電されるHVと,外部充電の可能なPHVとで異なる。

HVの計測時は, 試験前後におけるバッテリ充電量の情報が必要になる。試 験後に充電量が増加している場合は, 実際の走行に要するよりも余分にエン ジンが動作していたことになり, 燃料消費量もガス排出量も多めになってい るはずである。充電量が減少していればもちろん逆である。そこで, HVの計 測においては, 試験車について充電量変化(電気量収支)と各成分の排出量

一方PHVでは、満充電からの走行開始を想 定する必要がある。Figure 6に、そのような 場合のバッテリ充電量の推移のイメージを 示す。走行開始後しばらくはバッテリから のエネルギーを主にした走行(プラグイン (CD)走行)が続く。その後バッテリが一定 量まで放電されると、エンジン主体でバッ

Figure 6 Battery State of Charge during Driving a Plug-in Hybrid Electric Vehicle

テリの充放電をバランスさせながらの走行(ハイブリッド(CS)走行)に移る。 CS走行時のエンジン条件は通常のHVと同等とみなせるが, CD走行では大 きく異なる。そのため, PHVの計測では, 両方の条件での計測値を組み合わ せるのが普通である。ただし, 現時点では, その方法が日欧米でそれぞれ異 なるという, 複雑な状況となっている。

おわりに

現在,本当に健康に影響するものをより効果的に規制したいという根本的な 要求や,最先端の次世代自動車の実用化による状況の変化により,エンジン 排出ガス規制の考え方が大きく変化している。また,各国・各地域の関心に 応じてそれぞれ新しい提案が出てくるため,全体像を把握するのが大変難し くなっている。試験方法を世界的に統一しようという活動もされているが,ま だまだその途上,というのが実情である。逆に,その統一のために試験方法 が変化している面もあり,排出ガスの規制と試験方法はまさに過渡期にある といえる。今後も出てくると予想される新たな計測要求に対し,分析計・計 測機器メーカの立場から的確にサポートしていくことの重要性を改めて実感 している。

参考文献

- Regulation(EC)No 715/2007 of the European Parliament and of the Council of 20 June 2007
- [2] Regulation(EC)No 595/2009 of the European Parliament and of the Council of 18 June 2009
- [3] UNECE Regulation No. 83 rev 4(April 26, 2011)
- [4] Federal Register Vol. 75, No. 88, 25324-25728(May 7, 2010)
- [5] Federal Register Vol. 76, No. 179, 57106-57513(September 15, 2011)
- [6] Federal Register Vol. 77, No. 199, 62624-63200(October 15, 2012)
- [7] 国土交通省告示第1268号(平成18年11月1日)
- [8] Global Technical Regulation No. 10(September 9, 2009)
- [9] Federal Register Vol. 70, No. 113, 34594-34626(June 14, 2005)
- [10] Commission Regulation(EU)No 582/2011 of 25 May 2011
- [11] 中央環境審議会:今後の自動車排出ガス低減対策のあり方について(第十次答申)(平成22年7月 28日)

井上 香

Kaori INOUE 株式会社 堀場製作所 開発本部 開発企画センター 産業活性化推進室 兼 経営戦略本部 自動車計測事業戦略室

Review

総論

分析センターが目指すアプリケーション開発

Aiming at Development of New Applications and Professionalism.

橋本 文寿

Bunji HASHIMOTO

分析センターでは、日常的な活動である依頼分析、デモンストレーション、セミ ナー講演に加えて、学術的な活動であるアプリケーション開発、特許出願、学 会発表、論文投稿などの業務にも積極的に取り組んできた。多様なお客様の ニーズに応えるためには、アプリケーション開発をさらに充実させる必要があ る。本稿では、これまでの分析センターの活動内容を紹介するのと同時に、今 後どのような考え方でアプリケーション開発を推進し、どのようなアプリケー ションエンジニアを目指すかについて言及した。

Everyday activity of the application center includes: development of the new characterization methods for particular instruments, demonstration for visiting customers, sample analysis and user's trainings. On the other hand, academic activity includes: scientific articles submission, patent applications and presentations at various conferences. Recently, it became very difficult to satisfy customer's needs, by following the same way. To cover the customer's demand for versatile characterization, it became necessary to introduce application approach. In this review, application center's present activity and the vision for the near future are presented, specifically emphasizing the development of application approach and professionalism of the application engineers.

はじめに

近年,日常生活においてもアプリケーションという言葉を頻繁に耳にするよう になった。これは,IT (Information Technology)の発達やスマートフォンの 普及が大きく影響しているように思う。アプリケーションは、"アプリ"と略され て表現されることも多く,とても便利な言葉である故,何気なくその言葉を使 い,何となくの雰囲気で会話が成立していることが多々ある。曖昧さや抽象 的かつ,簡略化した表現が好きな日本人には打って付けの言葉であるが,時 に誤った意味に捉えられるため,その本質が何であるかを明確にしておく必 要がある。

アプリケーションという言葉から何を想像するか,おそらく人によってその捕 らえ方はまちまちではないだろうか。"アプリケーション"を辞書で調べると, ①適用,②応用,③実用化,などと記載されている。では,アプリケーション 開発とは何か?①適用範囲を広げる,②応用範囲を広げる,③実用化できる ようにする,という事になるだろう。これを分析技術や分析装置に当てはめる と,分析できる試料の種類,形状,形態など適用可能な範囲を広げることにな る。測定できる原子や分子あるいは化合物の情報,検出できる感度,測定で きる濃度範囲を広げる。今まで分析が困難とされた物質の状態変化をリアル タイムに観察できるようにする。反応性の高い試料でも試料調製から分析終 了まで変質することなく維持して実用的な雰囲気での分析を可能にする。こ のように,その拡張範囲は,試料の種類,用途,利用目的,分野の違いなどに より異なり,無限に提案が広がる。現状のままの分析装置の性能だけでは,ど うにもならないことをまるで触媒が作用したような働きで実現可能にするこ とである。分析センターの目指すアプリケーション開発とは,未知の分析手法 やソリューションを考え提案し実行することである。

本稿では、これまで分析センターが取り組んできたアプリケーション開発を 概説し、今後の目指すべき姿について言明する。

アプリケーション開発の必要性と 分析技術者に求められること

何故に現在これほどまでもアプリケーション開発が重要と言われるように なったのであろうか。近年の産業界全般に言えることであるが、分析機器の 分野も成熟期を迎え,新製品を市場に投入しても競合メーカーとの有意差が 得難い状況にある。また、機器の機能を充実させて多用途に使えるようにし ても、それを過剰な仕様とお客様に判断されれば、 むしろ煩わしさや不便さ を感じて購入していただけない。複雑系を極めれば特殊なものになり、莫大 なコストもかかるため一般ユーザーは利用できない。このような状況下では, 下手な装置の仕様変更や製品開発よりも、むしろ分析技術をより充実させて 平易な手法の組合せによる新手法の開発や原理にかなった、極めてシンプル なオプション(試料前処理装置やジグなど)を開発・提案することが、お客様 の使用用途に適したパフォーマンスを発揮できる装置のアプリケーション開 発と言える。これらの提案は専門領域の知識の深掘りだけでは困難である。 幅広い分析科学の知識と技術を身に付けておくことが必要である。それによ り専門領域の知識だけでは生まれてこないような、新しい発想や斬新な組み 合わせのアプリケーションが誕生する。そして、世の中の最新動向にも精通 していることで、将来を見据えた提案が可能となる。

分析技術の素養を養うための"ぶんせき"誌のすすめ

幅広い分析科学の知識と技術, 言い替えるならば, "分析技術の素養"を養 うのにはどうしたら良いか。様々な専門誌や学術誌を片端から読み漁るのも 1つの手段かもしれないが効率的でない。そこで, 公益社団法人日本分析化 学会の機関誌である「ぶんせき」を愛読書としてご利用することをお薦めした い^[1, 2](Figure 1)。「ぶんせき」誌は, 基本原理や正しい分析技術の普及を目的 とした「入門講座」, 基礎知識を1年単位で連載する「ミニファイル」, 分析の理 論や技術を紹介する「解説」や「話題」, 将来の分析化学, 分析技術の今後の 方向性を示唆する「展望」, 各分野の最新レビューである「進歩総説」, 分析関

Figure 1 Journal of The Analytical Society for Analytical chemistry "Bunseki"

R eview 総論

> 係者に必要な関連知識を紹介する「講義」や「創案と開発」等々。「ぶんせき」に は、理学、工学、医学、薬学、農学、生物学他、全ての学問領域に関連する分 析技術の基本・現状・将来像などが、バランスよく平易な構成で網羅されて いる。近年、最先端の成果にこだわり、基盤技術、学問の習得に費やす余力や 時間がなくなってきていることを鑑みると、毎月「ぶんせき」誌に目を通すだけ でも、自然と分析技術の素養が養えるのではないだろうか。また「ぶんせき」 誌は広域な学問領域を網羅的に紹介しているため、普段は自ら検索しないよ うな情報、研究に直接関係しないことや興味のないことがらも掲載されてい るため、自らの分析に関する知識・技術の幅や奥行きを広げるための研鑽に なるのと同時に新しいアプリケーション開発の可能性が広がる。

> 株式会社 堀場製作所から「ぶんせき」誌へ執筆している例も多数ある。これ までにpHに関しては進歩総説^[3]や入門講座^[4], 粒子計測では創案と開発^[5] や話題^[6], ラマン分光ではトピックス^[7], それ以外にも多くの執筆実績があ り^[8-11], これから掲載予定の記事も複数ある。購読して学ぶだけにとどまらず, これらの専門知識を分析に携わっている方々に広く伝えるという役割も担っ ている。我々は携わってきた分野の技術をまとめ原稿に起こすことで, 執筆 領域における自分の知識レベルを再認識し, 時には自らの視野の狭さや分析 の基盤技術が不足していることを痛感させられることもある。偉そうなことを 書いている筆者自身,「ぶんせき」誌の編集委員を拝命し, 様々な企画記事に 触れることでこのことをより強く感じている。

社会から認められるということ

世の中の最新動向に精通するためには、第一に社外の人と多く接点を持つこ とが重要である。そういう意味で分析センターが日常的に行っているデモン ストレーション、トレーニング、各種セミナーは多分野の方々とお話しし新し い知識を得る最良の機会である。分析センターでは、年間1800件以上(2012 年度の実績より)の営業依頼(依頼分析、デモンストレーション、納入後実習 など)があり、それらに対応している。日々、異なるお客様とお会いして最新の 技術相談を受けている。ここで得られた情報や依頼内容の傾向を解析し、新 しいアプリケーションを組み立てることが、次のビジネスに活かす活動であ り、重要な位置づけとして取り組んできた。

専門家として磨きをかけるため、学際領域へも積極的に踏み込むことを推進 してきた。学際領域の先生方との交流を通して、社外に一人前の分析技術者 として認識され、信頼関係を構築していくことが重要である。当然のことなが ら外部セミナーや学協会の場に参加しているだけでその人の存在価値が見 出されることはない。積極的に発言をする、質の高い発表を繰り返すことな ど、自分の専門とする分野を深めることで初めて対外的に認められる。その ため、分析センターでは、学協会の活動にも力を入れてきた。その成果として、 分析装置を購入検討される際に、分析センターを通して声がかかる場合もあ るが、専門家が多くいる会社の装置ということで選定されることも多い。また これまでに、日本分析化学会、日本分析機器工業会、日本セラミックス協会な ど多くの団体で学術発表,各種委員を務めることで,技術功績賞,講演優秀 賞,貢献表彰なども受賞してきた。

アプリケーション開発への取り組み

分析センターでは、常に差別化できるアプリケーション開発が必要と言及し てきた。それを実践すべく既に概説した取り組みと共に活動してきた。ここで はこれまでに分析センターが取り組んできたアプリケーション開発について 紹介する。

分析センターは、科学製品を基軸として様々なアプリケーション開発に取り 組んできた。開発したアプリケーションは学会や研究会で成果として報告し てきた。それにより、大学、研究所、企業などの研究者との人脈が構築でき、 最新の技術情報の入手や共同研究開発が可能であった。また、同時にアプリ ケーションノート(技術資料)や製品カタログに掲載する分析事例などは、営 業資料としての役割を果たしてきた(Figure 2)。さらにホームページにも公開 しているため、オンラインでの情報提供を可能としている。勿論、ダウンロー ドも可能である^{*1}。これまでに作成してきたアプリケーションノートは、社内 管理用データベースに2013年1月現在で503件の登録実績がある。ウェブ上 でのダウンロード件数は2012年2月から11月の10ヶ月間で集計すると6000件

Figure 2 Special page of the catalogue for the budget application

R eview 総論

> を超える。これを1ヶ月平均で計算すると月に600件以上のアプリケーション がダウンロードされていることになる。

> 学協会活動の重要性については先に言及したが,分析センターでは2010~2012年の3年間で,177件,年平均59件の社外発表実績がある。つまり,1週間に1件以上,誰かが社外発表していることになる。その中には大学や公的研究 機関などとの共同研究による成果も数多く含まれる。また,それ以外にも日本 分析化学会,日本セラミックス協会などから頒布される認証標準物質の作製 (値付けのための共同実験に参加),ISO規格,JIS規格の各分析手法の規格 化など,社会貢献活動にも積極的に参画してきた。このように信頼性の高い 分析技術を世の中に提供することにより,HORIBAブランドの価値向上を図 り,そして業界屈指の分析技術者の方々とは様々な技術交流を通じて信頼関 係を構築してきた。これらの活動については,今後,一層推進していく所存で ある。

*1:URL:https://www.horiba.com/jp/ja/download/1140/

おわりに

これまで紹介してきたように、分析センターは科学製品を中心としたアプリ ケーション技術の開発をしてきた。これらのアプリケーション技術は、セグメ ントを越えて、自動車、環境、医用、各セグメントの分析・計測機器と融合可 能である。つまりは、全ての分析・計測機器の基盤である科学技術を他のセ グメントの技術に如何に融合し独創的な装置開発に貢献、寄与できるかがこ れからの課題である。これを実現するための取り組みが、今後、分析センター の目指すべきアプリケーション開発のスタイルと言える。そのためには、分析 技術者一人一人が誰かに操られるマリオネットや単なる装置のオペレーター で満足することなく、"HORIBAの分析担当の方ですよね。"から"○○さんが いるHORIBAね。"と会社名よりも自らの存在価値が認められ、稀代のアプリ ケーションエンジニアとして分析業界を牽引. 魅了していかなければならな いと考える。多くの大学では分析化学に関する講義、実験がなくなり、あるい は研究室が減少し、分析化学という学問が衰退する中、産業界では分析技術 者の存在価値が見直され、その重要性が改めて認識されるようになってきた。 製品開発の基軸に分析科学がある,我々はその自負を胸に真の分析技術者 へと変革し続けるため邁進しなくてはならない。

参考文献

- [1] 高橋和也: ぶんせき(Bunseki), 2012, 677.
- [2] 宮野 博:ぶんせき(Bunseki), 2009, 655.[3] 野村 聡:ぶんせき(Bunseki), 2011, 468.
- [4] 野村 聡: ぶんせき(Bunseki), 2011, 406.
- [5] 山口哲司:ぶんせき(Bunseki), 2011, 161.
- [6] 伊串達夫:ぶんせき(Bunseki), 2012, 522.
- [7] 太田周志:ぶんせき(Bunseki), 2011, 427.
- [8] 大道寺英弘:ぶんせき(Bunseki), 2008, 129.
- [9] 堀場 厚: ぶんせき(Bunseki), 2009, 395.
- [10] 石田耕三:ぶんせき(Bunseki), 2011, 239.
- [11] 橋本文寿: ぶんせき(Bunseki), 2012, 315.

橋本 文寿

Bunji HASHIMOTO 株式会社 堀場製作所 開発本部 アプリケーション開発センター 科学・半導体開発部

Feature Article

Pittcon解説

Ca²⁺イオン電極を用いた食品試料中の カルシウムイオンの簡易測定 〈LAQUAtwin〉Ca²⁺イオンメーターを用いた測定例

山内 悠

食品に含まれるカルシウムの量は、高周波誘導結合プラズマ発光分光分析法 (ICP)、イオンクロマト法(IC)、原子吸光光度法(AAS)を使って調べることが一 般的である。こうした備え付けの大型装置を使用せずに、現場で簡便にできる 測定方法として、新しい前処理操作法とCa²⁺イオンメーターとを組み合わせた 測定方法を紹介する。イオン電極を使った測定は、遊離したカルシウムイオン だけしか測定できない。そのため、食品試料中では蛋白質とカルシウムとが結 合するために、カルシウムの総量が測定できなかった。しかし、新しい前処理 操作で試料を処理して、結合したカルシウム化合物を分離させ遊離カルシウム イオンにすることで、カルシウムの総量を測定することができた。

はじめに

カルシウムは、骨や歯の主要な成分であり、欠かすことの できない必須元素である。体重の1~2%をカルシウムが 占めており、神経の働きや筋肉運動などの重要な役割を 担う。カルシウムは牛乳などの乳製品や野菜、小魚に多く 含まれている。これらの食品類を摂取することによって、 我々は体内にカルシウムを取り込むことができる。これら の食品に含まれるカルシウム量は、一般的に高周波誘導 結合プラズマ発光分光分析法(ICP)、イオンクロマト法 (IC))、原子吸光光度法(AAS)、を用いて測定される^[1]。

Figure 1 Illustration of the calcium ion meter(B-751)

しかし, それらの測定手法では, 備え付けの大型装置や 複雑な前処理が必要なため, 製造現場などで簡便にカル シウム量を測定するには適していない。近年の食に対す る安全・安心の関心の高まりから, 現場で簡便に測定で きる方法が求められている。この方法として, イオン電極 がこれまで検討されてきた。

イオン電極は、溶液中のイオン濃度を作用電極と比較電 極の二つの電極間で発生する電圧から求めることができ る。その他の測定法に比べて、安価で小型な装置構成で 測定ができる。しかし、イオン電極は、解離している遊離 イオンだけに反応するため、食品に含まれる蛋白質や有

> 機酸と結合したカルシウムを検出でき ない。イオン電極を使って,食品に含ま れるカルシウム量を測定するには,前処 理方法や標準液に工夫が必要になる。 本稿では,試料のpHを調整してカルシ ウムイオンとの結合を解離させる新し い測定方法を紹介する。この方法を使う ことで,これまでの複雑な手間を必要と せず,現場で手軽に測定ができ,ICPで 測定した結果と相関がある値が得られ る。イオン電極には,2012年9月に上市 したコンパクト水質計〈LAQUAtwin〉

Ca²⁺イオンメーターを使って測定した。測定方法や測定 事例に併せてこの特徴も紹介する。

実験

試料

カルシウムが含まれる食品試料として,乳製品飲料を用 意した。2種類の牛乳と2種類の乳酸飲料のカルシウムを, あらかじめ室温にしてから測定した。

装置と標準液

カルシウムの測定には、堀場製〈LAQUAtwin〉Ca²⁺イオ ンメーター (B-751)を使った。(Figure 1参照)これは測定 部と電位差計,表示部が一体型になったものである。測 定部に薄さ約0.8 mmの平面シートを採用しており、比較 電極の液絡部と応答膜が同一平面にある。それによって、 サンプル量が300μLという微量測定が可能となっている。

試料を測定する前に,標準液でイオンメーターの校正を 行った。150 ppmと2000 ppmのCa²⁺標準液(CaCl₂)を 用意した。標準液には,Ca²⁺イオン電極の電位に影響を 与えない支持電解質として0.1 mol/Lの塩化カリウムが 添加されている。2点間で校正をして,センサのゼロ点 とスパンを測定毎に校正した。Ca²⁺イオンメーターの測 定結果と比較するために,HORIBA JOVINYVON製 ACTIVA-M ICPを使って各試料のカルシウムの測定も 行った。

Figure 2 Illustration of milk product sample after pretreatment

前処理方法

乳製品飲料に含まれるカルシウムは、乳蛋白質の主成分 であるカゼインや、乳酸などと結合した状態で試料に含 まれている。これらのイオン結合を解離させるために、試 料に強酸を添加してpHを2.0付近に調整した。その後、試 料を10倍希釈して、pHを4.3~4.6に調整するためにトリ ス緩衝液の粉末を適量加えた。pHを4.3以上にする理由 は、カルシウムイオン電極が試料のpHが酸性になると、 pHによる影響を受けるためである^[2]。またpHを4.6以下 にする理由は、カゼインの等電点である4.6以上に溶液の pHを高くすると、解離したカルシウムイオンが再びカゼ インと結合してしまうからである。試料のpHの調整範囲 を決定するために、イオンメーターを使ってpHの影響を 確認した。このpH範囲内で溶液を静置させることで、カ ルシウムと結合する前のカゼインを取り除ける。静置さ せてから数分後に沈殿が生じてくるので、上澄み液だけ を採取して測定した。以下に前処理手順の詳細を記載す る。

前処理操作手順

- 1. 試料5 mLを用意する。
- 2.5 mol/LのHCl 100µLを滴下する。
- 3. イオン交換水を45 mL加えて10倍希釈する。
- 4. Tris (hydroxymethyl)aminomethaneを約0.05 g加 えてpHを4.3~4.6に調整する。
- 5. 試料に沈殿が生じるまで数分間静置させる。(Figure 2 参照)
- 6. 上澄み液を5 mL採取する。
- 1. 上澄み液5 mLに対して支持電解質としてKClを 0.0375 g加える。これを測定試料とする。

測定値に10倍を乗じた値を,各試料のカルシウムの総量 とした。なぜなら,測定した試料は前処理操作で10倍希 釈しているためである。ICPで同じ試料を測定する場合 は,イオン交換水で直接試料を1000倍希釈したものを測 定試料とした。

結果と考察

最初に試料のpHがイオンメーターに与える影響を調べた。イオンメーターの作用極と比較電極の間で発生する 電圧(E)を, HClとNaOHを使ってpHを2から12に調整し

た、10⁻³ mol/LのCaCl₂と0.1 mol/L KClの溶液中で測定 した。pH 7.5におけるこの溶液中で測定した電圧を基準 にして、電圧の変動量をpHが与える影響の指標とした。 pH 7.5のこの溶液における電圧E_{nH 7.5}, とそれ以外のpH における電圧 $E_{pH(X)}$, との差 ΔE_{pH} を各pHのCaCl₂とKCl の混合溶液中で求めた。Figure 3に各pHにおける ΔE_{nH} を示した。図中では3個のセンサの平均値を(◇), 最大値 と最小値をエラーバーで示している。FigureからpH 5~ pH 12までは, pHの変化に伴って電圧が変動する傾向は 現れずに、電圧は数mVしか変動しなかった。この程度の 変化であれば、測定に大きく影響しないので無視できる。 pH 4以下の領域になると、pHが低くなるにつれて水素 イオン濃度の影響を受けるため、電圧が大きく変化した。 pHが4から2へ変化することで、約60 mV変動した。Ca²⁺ 濃度の変化に換算すると、1/100の濃度変化に相当する ため^[3]. この影響を回避する必要がある。そのためには、 試料をpH 4以上に保つ必要がある。先述した前処理操

Figure 3 Dependence of voltages generated by the calcium ion meter on the hydrogen ion activity.

Figure 4 Relationship between measurement value using by calciumion meter and ICP. Four samples were measured with pretreatment $\langle \bigcirc \rangle$ and without pretreatment $\langle \bigcirc \rangle$.

作はこの結果を考慮した条件となっている。

前処理操作をした食品資料を,イオンメーターで測定した結果をFigure 4に示した。イオンメーターで測定した値をプロットしている。縦軸にイオンメーター,横軸にICPの値をそれぞれ示した。図中には前処理操作をして測定した値を(□)で,前処理操作をせずに測定した値を(○)で示した。前処理操作をしない場合は,ICPの測定値に対してイオンメーターの値は半分以下の値を示した。前処理操作をすることで,この値が増加してICPの値と近い値を示した。R²値(最小二乗法で算出した相関係数)は0.952で,ICPの測定結果と良い相関を示した。

Figure 4から前処理操作をすることで、イオンメーターの 測定値がICPと良い相関を示すことがわかった。前処理 操作をすることで、食品中の化合物とカルシウムとの結 合が分解されて遊離カルシウムイオンとなるため、試料 中のカルシウムの総量が測定できている。その結果、ICP の測定値と良い相関を得ることができた。

おわりに

今回用いた前処理操作を行うことで、イオン電極で乳製 品飲料のカルシウムを測定できることを明らかにした。コ ンパクト計Ca²⁺イオンメーターと、紹介した前処理操作 を組み合わせることで、製造現場などでも手軽にカルシ ウムを測定できる。ICPやICのような大型装置を使わな くても、信頼性ある測定ができることから、幅広い分野で の応用が期待できる。食品に対する安心・安全への関心 の高まりが、今後さらに高まっていくことが予想され、現 場で正確な値をリアルタイムに測定できる手法が必要と なってくる。そういった要望に今回紹介した測定方法や センサが少しでも役にたてば幸いである。

参考文献

- **[1]** JIS K 0400-50-20, JIS K 0400-52-30
- [2] J. RUZICKA, E. H. HANSEN, J. CHR, TJELL, 160-173
- [3] 関口光夫, 高橋勝幸, イオン選択電極法入門読本

山内 悠

株式会社 堀場製作所 開発本部 アプリケーション開発センター 液体計測開発部

Feature Article

Pittcon

Development of On-Site Measurement of Calcium in Food Samples by Use of Ion Selective Electrode example for Using <LAQUAtwin> Ca²⁺ Ion meter

Hisashi YAMANOUCHI

The concentration of calcium in food samples is commonly measured by use of Inductively Coupled Plasma (ICP), Ion Chromatography (IC) and Atomic Absorption Spectrophotometry (AAS). However, these methods are not appropriate for on-site measurement at production lines and farms because these instruments are too large to carry out. In this paper, we propose new measurement method which dissociates the compound including calcium into the calcium ion adjusting pH of samples before the potentiometric measurement with the compact calcium ion meter (abbreviated as Ca²⁺-meter). The results obtained by use of Ca²⁺-meter with pretreatment were good agreement with that obtained by use of ICP. We can measure all amount of calcium in milk products by use of Ca²⁺-meter with pretreatment which generate free calcium ions from the calcium compound in milk products.

Introduction

Calcium is one of the most important elements for our body. As a major mineralization of bone and teeth, calcium constitute a few percent of the body's weight. It has an important role as a signal for many cellular processes such as nerves work and muscle movement. We can take it into our body by eating which milk products and fish have much calcium..

The concentration of calcium in food samples is commonly measured by use of Inductively Coupled Plasma (ICP), Ion Chromatography (IC) and Atomic Absorption Spectrophotometry (AAS).^[1] However, these methods are not appropriate for on-site measurement at production lines and farms because these instruments are too large to carry out and they need for complicated pretreatment. Recently, for on-site measurement of calcium, the minimization and simplification of instrument is demanded. An ion selective electrode is one of the suitable sensors for the on-site measurement of calcium.

A calcium ion selective electrode (abbreviated as Ca²⁺-

Figure 1 Illustration of the calcium ion meter (B-751)

ISE) consists of a working electrode and a reference electrode. The cell voltage between two electrodes varies depending on the concentration of calcium ion in the solution. The potentiometric measurement by use of Ca^{2+} -ISE is cheaper and smaller than that used for above mentioned methods. However the Ca^{2+} -ISE is not sensitive to calcium binding protein and various organic acids in food because an ion selective electrode can respond only dissociated ions in aqueous solution. Accordingly, when we determine total amount of calcium in food by use of Ca^{2+} -ISE, the special pretreatment which makes the calcium in the compound into a free calcium ion is needed.

In this paper, we propose new measurement method which dissociates the compound including calcium into the calcium ion adjusting pH of samples before the potentiometric measurement with Ca²⁺-ISE. By use of this method, we can easily measure the concentration of calcium and the measured values correlate well with that obtained by use of ICP. In addition, we introduce the compact calcium ion meter (abbreviated as Ca²⁺-meter, Horiba, Ltd, LAQUAtwin B-751) which newly released in September 2012.

Experimental

Sample.

Milk products contained much calcium were prepared. Two milks and two lactic acid were kept at room temperature ($22\sim24$ °C) during the measurements.

Instrument and standard solution.

Figure 1 illustrates the structure of Ca^{2+} -meter which consists of the calcium ion sensor, the potentiometer and the display. The ion selective membrane and liquid junction of reference electrode were located on the same plane surface whose thickness was about 0.8 mm. This instrument enables us to measure small volume sample (about 300µL).

The ion meter was calibrated with two standard solutions before measurements. The 150 ppm and 2000 ppm calcium standard solutions (3.74 mmol dm⁻³ and 49.9

Figure 2 Illustration of milk product sample after pretreatment

mmol dm⁻³ at CaCl₂) were used for the two point calibration. 0.1 mol dm⁻³ KCl was added into the standard solutions as supporting electrolyte. The intercept (zero point) and slope for the calibration curve of the cell voltage against the concentration of calcium ion were determined from two point calibrations. Compared with the Ca²⁺-meter, the concentration of calcium in same samples was measured with ICP (Horiba, Ltd., ACTIV-M ICP).

Pretreatment of sample

Milk products contain calcium bonding casein protein and lactic acid compounds. The pH of these sample was controlled to 2 with adding strong acid in order to break these bonds, and then it was adjusted to among 4.3 to 4.6 by diluting with ion-exchange water and adding appropriate amount of Tris powder. There are two reasons why we control pH in sample. First, the interference of hydrogen ions causes the measurement errors.^[2] Second, the free calcium ion dissociated from calcium compound may recombine casein protein and lactic acid when the pH value in sample is more than 4.6.

Supernatant liquid of samples after pretreatment was measured. The details of pretreatment procedures are as follows.

Pretreatment procedures

- 1. Preparation of 5 mL sample.
- 2. Adding of 100μ L of 5 mol dm⁻³ HCl to sample.
- 3. Dilution by adding ion exchange water to 50 mL.
- 4. Additoin of 0.05 g of Tris (hydroxymethyl) aminomethane to diluting sample to control pH4.3~4.6.
- 5. Keeping on leaving diluting sample for a few minutes. (Figure 2) The casein protein precipitated in pH 4.3~4.6 because the isoelectric point of casein is 4.6.
- 6. Removing 5 mL of supernatant liquid from diluting sample.
- 7. Dissolving 0.0375 g of KCl in 5 mL of supernatant liquid.

The concentration of calcium in samples was calculated by multiplying experimental values obtained by use of Ca^{2+} -meter by ten because the tenfold dilution was made of the sample through the pretreatment. In the case of the measurement with ICP, the thousandfold dilution was made of sample by ion exchange water.

Results and Discussion

Figure 3 shows the difference cell voltage (ΔE_{pH}) dependence on pH with ion meter at 1 mmol dm⁻³ CaCl₂ and 0.1 mol dm⁻³ KCl. The difference between *E* values at

other pH CaCl₂ solution except pH 7.5, $E_{pH(X)}$ and at pH 7.5 CaCl₂ solution, $E_{pH7.5}$, $\Delta E_{pH} = E_{pH(X)} - E_{pH7.5}$, is given in Figure 3. The measurement of *E* at each pH was repeated with three different ion meters. Experimental values were obtained from the average of *E* values and the range of error bar shows the difference between maximum and minimum values for three measurements. The pH of each solution was controlled to among 2 to 12 with adding HCl or NaOH.

The ΔE_{pH} value was independent on pH in the range of pH 5~12. The ΔE_{pH} value changed due to the interference of hydrogen ion on the Ca²⁺-ISE in a solution whose pH was less than 4. The change of pH from 4 to 2 in sample decrease the cell voltage by about 60 mV which corresponds to the 1/100 dilution of the concentration of calcium ion. Therefore, pH of samples must be controlled above 4 to prevent the interference of pH on the Ca²⁺-ISE. Figuer 4 shows comparison of experimental values obtained by use of Ca²⁺-meter and ICP at four milk products. Measurements by use of Ca²⁺-meter by with

Figure 3 Dependence of voltages generated by the calcium ion meter on the hydrogen ion activity.

Figure 4 Relationship between measurement value using by calciumion meter and ICP. Four samples were measured with pretreatment (\bigcirc) and without pretreatment (\square) .

pretreatment (\Box) and without pretreatment (\bigcirc) were carried out to confirm the effect of pretreatment on measurement of calcium. The results obtained by use of Ca²⁺-meter with pretreatment were good agreement with that obtained by use of ICP. The correlation coefficient, r² was 0.952. Experimental values obtained by use of Ca²⁺-meter without pretreatment were less than a half of that obtained with the pretreatment.

Thus, we can measure all amount of calcium in milk products by use of Ca^{2+} -meter with pretreatment which generate free calcium ions from the calcium compound in milk products.

Conclusion

By use of Ca²⁺-meter with pretreatment, calcium concentration in milk products were determined. This method enables us to measure more easily total amount of calcium in milk products on-site at production lines and farms than the expensive instrument such as ICP, IC and AAS. It is expected that this method will be widely used on-site measurement.

On-site measurement of calcium will be more required in the food industry because of the increase of interest in healthy, safety and peace of mind. We expect this method can be helpful in these demands.

References

- [1] JIS K 0400-50-20, JIS K 0400-52-30
- [2] J. RUZICKA, E. H. HANSEN, J. CHR, TJELL, 160-173

Hisashi YAMANOUCHI

Liquid and Water Quality R&D Dept. Application R&D Center Reserch & Development Division HORIBA, Ltd. Pittcon解説

イオン液体塩橋搭載ガラス複合電極を用いた 低導電率試料のpH値の決定

芝田 学

KCI比較電極タイプのガラス複合電極を用いて低導電率試料のpHを正確に安 定して測定することは、難しいといわれている。その理由は、比較電極からの高 濃度KCIの流出による比較電極内部液と被験溶液との間の液間電位差の変動 と、KCIによる試料のpH変化である。この本質的な問題解決のために、イオン 液体を液絡材料に用いた新しい比較電極が提案された。イオン液体型比較電 極タイプのpH電極(PUREIL電極)を用いると、試料の汚染が無く、純水やボイ ラー水などの10 mS m⁻¹以下の低導電率試料のpHを正確に安定して測定でき る。本稿では、イオン液体型pH電極を用いて10 mS m⁻¹の希薄硫酸のpH測定 例を紹介する。

はじめに

pHの正確な決定は、科学技術だけでなく我々の生命や環 境において重要である。濃厚KCl溶液に基づいた塩橋*1 (以下, KCl塩橋と記す)を備えた比較電極とガラス電極 から成る電気化学セルを用いた電位差測定が、信頼ある 簡便なpH測定として用いられてきた^[1, 2]。しかし, KCl塩 橋を用いた電位差測定は、低イオン強度の試料に対して 十分に正確でない。これは、高濃度KCl塩橋と希薄溶液 の液間電位差, KClの流出による試料の導電率変化が原 因である。1970~1990年代にかけての多くの研究におい て、その問題点が指摘されてきたが、いまだ解決されず にいる^[3-16]。KCl塩橋の問題点を解決する塩橋として、イ オン液体*2を用いた新しい塩橋(以下,イオン液体塩橋と 記す)が提案されている[17-20]。イオン液体塩橋の基礎や 原理については、本稿のp. 59を参照されたい。本論文で は、イオン液体塩橋を用いたガラス複合電極(堀場製作 所製, PUREIL, 9600-10D)を用いることにより、希薄溶

LAQUA

液の正確なpHが決定できることを報告する。

- *1: 塩橋とは, 異なる二種の溶液間に発生する液間電位差を除去する ために、二つの溶液間に挿入された第三の液体のこと
- *2:イオン液体とは常温で融解状態にある塩のこと

実験

試薬

イオン液体, tributyl (2-methoxyethyl) phosphonium bis(pentafluoroethanesulfonyl)amide(TBMOEPC₂C₂N) は、関東化学から購入し、精製せずに用いた。20 µmol dm⁻³硫酸溶液は、水酸化ナトリウムを用いた滴定によっ て濃度が確定された(5.00±0.01)×10⁻² mol dm⁻³の硫 酸溶液をMilliQ水で希釈して調整した。リン酸塩標準 液 $(0.025 \text{ mol kg}^{-1} \text{ KH}_2\text{PO}_4 + 0.025 \text{ mol kg}^{-1}\text{Na}_2\text{HPO}_4$. pH=6.865 at 25 ℃)は, 関東化学から入手した。0.05 mol

> kg⁻¹クエン酸塩緩衝液(pH=3.776 at 25 ℃)は、KH₂C₆H₅O₇(関東化学製, 99%)の11.41 gを純水に溶かして1.0000 ±0.0004 dm³に希釈した。

イオン液体塩橋型複合電極(PUREIL電極)

Figure 1にゲル化したイオン液体塩橋を実装した比較 電極とガラス電極から成る複合電極の外観を示す。イオ ン液体塩橋には、TBMOEPC₂C₂Nを用いた。Figure 2 にTBMOEPC₂C₂Nを構成するカチオンとアニオンの構 造を示す。0.1 dm³アセトン中にP(VdF-HFP)の8 gと 0.008 dm³ TBMOEPC₂C₂Nを溶解させた後, アセトンを 揮発させることでTBMOEPC₂C₂Nをゲル化した。ゲル 化されたTBMOEPC₂C₂Nのシートから、リング状に切り 出した^[21]。ゲル化TBMOEPC₂C₂Nのリング状膜をシリコ ンOリングを用いて、複合電極の円筒ボディに実装した。 イオン液体塩橋型複合電極の内極は、従来のガラス複合 電極と同様に、Ag | AgCl電極を用いた。比較電極の内 部液は, 0.1 mol dm⁻³ KCl溶液を用いた。ガラス電極の 内部液は、AgClを飽和させた0.1 mol dm⁻³ KCl溶液と 0.04 mol dm⁻³ KH₂PO₄+0.16 mol dm⁻³ Na₂HPO₄溶液 を用いた。ガラス応答膜の組成は、ガラス電極(堀場製作 所製.9618)と同じ組成とした。

pH測定方法

ガラス電極とイオン液体型比較電極を用いたpH決定に 用いられた電気化学セルは、

Ι	Ш	III	IV	V	VI	VII	VIII	VIV
Ag	AgCI	0.1 mol dm ⁻³ KCI saturated with TBMOEP C ₂ C ₂ N and AgCI	gelled TBMOEP C ₂ C ₂ N	pH standards or x μmol dm ^{−3} H₂SO₄	glass	$\begin{array}{c} 0.1 \mbox{ mol dm}^{-3} \\ \mbox{KCl saturated} \\ \mbox{with AgCl} \\ 0.04 \mbox{ mol dm}^{-3} \\ \mbox{KH}_2 PO_4 \\ 0.16 \mbox{ mol dm}^{-3} \\ \mbox{Na}_{\rm s} HPO_4 \end{array}$	AgCl	Ag (A)

と表される。

Tributyl(2-methoxyethyl)phosphonium (TBMOEP⁺)

Bis(pentafluoroethanesulfonyl)amide ($C_2C_2N^-$)

Figure 2 Structure of TBMOEPC₂C₂N

垂線は,相境界を,点線の垂線は,異なる組成の二つの 電解質溶液の接合を示す。セル電圧, E, すなわち, セル (A)の左側の端子に対する右側の端子の電位は, pH計 (堀場製作所製, F53)を用いて測定された。

20 dm³の試料溶液の入ったポリプロピレン容器を, 恒温 水槽中で, 25.0±0.1 ℃で保った。セル(A)を, 硫酸のpH 測定の前に, 二つのpH標準液を用いて較正した。

セル電圧からpH値の算出

セル(A)を標準液, pH_s,を用いて較正すると, 硫酸溶液の 未知のpH値, pH_s, は,

$$pH_x = pH_s - \frac{[E_{ex} - E_s - (E_{j(x)} - E_{j(s)})]F}{RT \ln 10}$$
(1)

のように記述される。ここで、 $E_{ex} \ge E_{s}$ は、それぞれ、pH 値がpH_xの硫酸溶液とpH値がpH_sの標準液に対するpH 電極が示す電圧値である。 $E_{i(x)} \ge E_{i(s)}$ は、

塩橋 | x μmol dm⁻³硫酸と, 塩橋 | 標準液の界面 での液間電位差を表す。Fは, ファラデー定数, Rはガス 定数, Tは絶対温度である。ガラス電極は, 1 pH当たりの 起電力の理論値より小さいpH応答を示す。したがって, 一般的には, 1 pH当たりの起電力の代わりに, 操作的ネ ルンストスロープ, k'を電極の2点校正から次の式を用い て求める。

$$k' = \frac{E_{\rm S1} - E_{\rm S2}}{pH_{\rm S2} - pH_{\rm S1}},$$
 (2)

ここで, $E_{s1} \ge E_{s2}$ は, それぞれ緩衝液 $pH_{s1} \ge pH_{s2}$ に対する セル電圧を表す。kを用いると, **式(1)**は,

のように表される。

もし、イオン液体塩橋が理想的に働けば、*E*_{j(x)}は*E*_{j(S)}と等 しくなり、**式(3)**は、

$$pH_x = pH_s - \frac{E_{ex} - E_s}{k'}$$
(4)

のようになる。式(4)を用いて, 測定したEから, 試料の pHを求めた。

PUREIL電極との比較のために, KCl型pH複合電極(堀 場製作所製, 9681)を用いて, 同様の手順で硫酸のpH測 定を行った。

希薄硫酸のpH測定結果

Figure 3に, PUREIL電極, KCl型pH電極を用いて 20 µmol dm⁻³の硫酸のpHを測定したときの測定値の時 間変化を示す。●と■は、それぞれPUREIL電極とKCl 型pH電極を用いた場合のpH測定値である。Figure 3中 の赤線は、20 µmol dm⁻³の硫酸のpHの計算値^[20]である。 PUREIL電極は、測定値が安定するまでの時間が早く、 かつ計算値との差が0.03 pH以内で測定できる。一方で, KCl型pH電極は、安定するまでの時間が遅く、安定した ときの測定値は、計算値と0.1 pHほど偏倚している。これ は、KCl型pH電極では、測定中に高濃度のKClが比較電 極の液絡部から流出し、 試料のpHが時間とともに変化す ること、比較電極内部液のKClと試料との液間電位差が 不安定であるためである。このようにPUREIL電極では, 試料への汚染が少なく, 試料との液間電位差が安定であ るため、従来のKCl型pH複合電極では、正確な測定が困 難であった低導電率試料のpHを正確に安定に測定でき る。

Figure 3 The time course of pH at 10 mS m⁻¹ (20 µmol dm⁻³) sulfuric acid solution. ●: PUREIL electrode, ■: KCI-type electrode, red line: the calculated pH value

おわりに

100年来の歴史がある濃厚KClを比較電極の内部液に用いる従来のpH複合電極では,正確な測定が困難であった低導電率試料のpHが,PUREIL電極を用いると,正確にかつ短い応答時間で測定できる。本稿では,測定例として希薄硫酸を挙げたが,雨水や河川水のような環境水や,ボイラー水,純水のような試料でも同様に正確でかつ高安定な測定が可能である。PUREIL電極が,低導電率試料の標準電極となることが期待される。本稿では,紙面の都合上,実験結果の詳細などを割愛したが,それらについては現在投稿中の論文を参照して頂きたい^[22]。

参考文献

- [1] R. G. Bates, Determination of pH, Wiley, New York, 1973.
- [2] R. P. Buck, S. Rondinini, A. K. Covington, F. G. K. Baucke, C. M. A. Brett, M. F. Camoes, M. J. T. Milton, T. Mussini, R. Naumann, K. W. Pratt, P. Spitzer and G. S. Wilson, *Pure Appl. Chem.*, 2002, 74, 2169-2200.
- [3] J. N. Galloway, B. J. Cosby and G. E. Likens, *Limnol. Oceanogr.*, 1979, 24, 1161-1165.
- [4] S. Y. Tyree, Atmos. Environ., 1981, 15, 57-60.
- [5] G. Marinenko and W. F. Koch, *Environ. Int.*, 1984, 10, 315-319.
- [6] A. K. Covington, P. D. Whalley and W. Davison, Pure Appl. Chem., 1985, 57, 877-886.
- [7] W. Davison and C. Woof, Anal. Chem., 1985, 57, 2567-2570.
- [8] W. Davison and M. J. Gardner, Anal. Chim. Acta, 1986, 182, 17-31.
- [9] W. F. Koch, G. Marinenko and R. C. Paule, J. Res. Natl. Bur. Stand(U.S.), 1986, 91, 23-32.
- [10] R. C. Metcalf, *Analyst*, 1987, 112, 1573-1577.
- [11] D. Midgley, Atmos. Environ., 1987, 21, 173-177.
- [12] W. Davison, A. K. Covington and P. D. Whalley, Anal. Chim. Acta, 1989, 223, 441-447.
- [13] R. C. Metcalf, D. V. Peck and L. J. Arent, *Analyst*, 1990, 115, 899-905.
- [14] R. A. Durst, W. Davison and W. F. Koch, Pure Appl. Chem., 1994, 66, 649-658.
- [15] T. Ozeki, Y. Tsubosaka, S. Nakayama, N. Ogawa and T. Kimoto, *Anal. Sci.*, 1998, 14, 749-756.
- [16] R. Kadis and I. Leito, Anal. Chim. Acta, 2010, 664, 129-135.
- [17] Kakiuchi, T.; Yoshimatsu, T. Bull. Chem. Soc. Jpn. 2006, 79, 1017-1024.
- [18] Yoshimatsu, T.; Kakiuchi, T. Anal. Sci. 2007, 23, 1049-1052.
- [19] Sakaida, H.; Kitazumi, Y.; Kakiuchi, T. *Talanta* 2010, 83, 663-666.
- [20] M. Shibata, H. Sakaida and T. Kakiuchi, Anal. Chem., 2011, 83, 164-168.
- [21] M. Shibata, M. Yamanuki, Y. Iwamoto, S. Nomura, H. Sakaida and T. Kakiuchi, *Anal. Sci.*, 2010, 26, 1203-1206.
- [22] M. Shibata, M. Kato, Y. Iwamoto, S. Nomura, and T. Kakiuchi, in preparation.

芝田 学

株式会社 堀場製作所 開発本部 アブリケーション開発センター 液体計測開発部 博士(工学)

Feature Article

Pittcon

Potentiometric Determination of pH Values of Low Conductivity Solutions with the Glass Combination Electrode Equipped with Ionic Liquid Salt Bridge

Manabu SHIBATA

It is difficult to measure accurately and quickly pH of low conductivity solutions by use of pH glass combination electrodes based on a KCI salt bridge (KCISB). The reasons are the variation of the liquid junction potential (LJP) between a KCISB and a sample solution, and the change of pH in the sample solution due to the leakage of the concentrated KCI from the liquid junction. In order to solve the intrinsic problems, a new reference electrode, where an ionic liquid was used as the material of liquid junction, has proposed. The pH glass combination electrode equipped with an ionic liquid salt bridge (PUREIL electrode) enables us to measure accurately and quickly pH of less than 10 mS m⁻¹ sample solutions such as pure water and boiler water. In this paper, we show the pH measurement of 10 mS m⁻¹ sulfuric acid solution by use of PUREIL electrode.

Introduction

Accurate determination of pH is of fundamental importance in not only science and technology but also many facets of our life and environments. Potentiometry by use of an electrochemical cell that consists of a glass electrode and a reference electrode equipped with a salt bridge^{*1} based on a concentrated KCl solution (abbreviated as KClSB) has been used as a reliable and convenient method of pH measurements^[1,2]. However, the potentiometry with KCISB is not accurate enough for solutions of low conductivity. The reasons are the liquid junction potential (LJP) between a KCISB and a dilute solution and the change of ionic strength in sample solution due to the leakage of a concentrated KCl solution. Although the problem was pointed out in many studies^[3-16] conducted in 1970s-1990s, it remains unsolved. A new salt bridge made of an ionic liquid^{*2} (abbreviated as ILSB) was proposed as an alternative to the KClSB^[17-20]. For the working principle of salt bridge, you can refer to p. 59 in

Gelld ionic liquid

Figure 1 The picture of PUREIL electrode

this paper. In this paper, we report that the pH glass combination electrode equipped with ILSB (HORIBA, Ltd. PUREIL, 9600-10D) enable us to measure accurately pH of dilute solutions.

- *1: Salt bridge: The third solution inserted between different two solutions in order to eliminate the liquid junction potential between the two solutions.
- *2: Ionic liquid: the molten salt at the room tempreture

Experimental Reagents

The ionic liquid, tributyl (2-methoxyethyl) phosphonium bis(pentafluoroethanesulfonyl)amide (TBMOEPC₂C₂N) was obtained from Kanto Chemical Co., Inc. and used without further purification. 20 μ mol dm⁻³ (10 mS m⁻¹) H₂SO₄ was prepared by diluting with MilliQ water a

> standardized sulfuric acid solution, which was certified to be $(5.00 \pm 0.01) \times 10^{-2}$ mol dm⁻³ by coulometric titration with NaOH solution (Nacalai Tesque, Inc., Japan). A phosphate standard solution (0.025 mol kg⁻¹ KH₂PO₄+ 0.025 mol kg⁻¹ Na₂HPO₄, pH

= 6.865 ± 0.005 at 25 °C) were obtained from Kanto Chemical Co., Inc. A 0.05 mol kg⁻¹ citrate buffer solution (pH = 3.776 at 25 °C) was prepared by dissolving 11.41 g of KH₂C₆H₅O₇ (Kanto Chemical Co., Inc. 99 %) in pure water and diluting it to 1.0000 ± 0.0004 dm³.

ILSB-Type Combination Electrode (PUREIL Electrode)

Figure 1 illustrates the structure of a combination electrode which consists of a glass electrode and a reference electrode equipped with a ring of gelled ILSB. TBMOEPC₂C₂N was used as the ILSB. The structures of the cation and anion constituting TBMOEPC₂C₂N are given in Figure 2. TBMOEPC₂C₂N was gelled by dissolving 8 g of P (VdF-HFP) and 0.008 dm³ TBMOEPC₂C₂N in 0.1 dm³ acetone. The mixture was dried to remove acetone for one week at room temperature to obtain a membrane of 2.5 mm thickness. The ringshaped membrane was cut out from the membrane. The ring-shaped membrane of the gelled IL was mounted with a silicone O-ring to the cylindrical body of the combination electrode^[21]. In the ILSB-type reference electrode, the inner cell was composed of a Ag/AgCl electrode in a 0.1 mol dm⁻³ KCl saturated with a TBMOEPC₂C₂N and AgCl. In the glass electrode, the inner cell was composed of a Ag/AgCl electrode in a 0.1 mol dm⁻³ KCl saturated with a AgCl and 0.04 mol dm⁻³ $KH_2PO_4 + 0.16 \text{ mol dm}^{-3} Na_2HPO_4$. The composition of the glass was the same as that of the glass electrode (HORIBA, Ltd. 9618).

pH measurement method

The electrochemical cell employed for the pH determination with the glass electrode and the ILSB-type reference electrode is represented as

Tributyl(2-methoxyethyl)phosphonium (TBMOEP⁺)

Bis(pentafluoroethanesulfonyl)amide ($C_2C_2N^-$)

Figure 2 Structure of TBMOEPC₂C₂N

The single vertical bar indicates the phase boundary, and the single dashed vertical bar indicates the liquid junction between two electrolyte solutions of different compositions.

The cell voltage, *E*, i.e., the potential of the right-handside terminal referred to that of the left in cell (A), was measured with a pH meter (Horiba, Ltd., F53, resolution: 0.1 mV) at a sampling rate of 0.3 Hz. The polypropylene container containing 20 dm³ sample solution (V in cell A) was set in a water bath kept at 25.0 ± 0.1 °C. Cell A was calibrated with two pH standard buffers before the measurement of H₂SO₄.

Calculation of pH Values from Cell Voltage

When cell A is calibrated with a standard buffer, pH_s , an unknown pH value of H_2SO_4 solutions, pH_x , in V in cell A is written

$$pH_{x} = pH_{s} - \frac{[E_{ex} - E_{s} - (E_{j(x)} - E_{j(s)})]F}{RT \ln 10} \quad \dots \dots \dots \dots \dots (1)$$

where E_{ex} and E_{s} are the readings of the pH electrode for the H₂SO₄ solution and the standard buffer whose pH values are pH_x and pH_s, respectively, $E_{j(x)}$ and $E_{j(s)}$ are the liquid junction potentials (LJPs) at ILSB | x µmol dm⁻³ H₂SO₄ and ILSB | the standard buffer solution interfaces, *F* is the Faraday constant, *R* is the gas constant, and *T* is the absolute temperature. Glass electrodes may exhibit the pH response smaller than the theoretical value, *RT*ln10 / *F* volts per pH unit. The common procedure is to use the operative Nernst slope, *k*', which is obtained from the two-point calibration of the electrode,

$$k' = \frac{E_{\rm S1} - E_{\rm S2}}{\rm pH_{\rm S2} - \rm pH_{\rm S1}}, \qquad (2)$$

where E_{s_1} and E_{s_2} are the pH cell voltages for the buffers pH_{s1} and pH_{s2}, respectively. When k' is used, eq(1) is represented by

If the ILSB works ideally, $E_{j(x)}$ is equal to $E_{j(S)}$ and eq(3) reduces to

$$pH_{x}=pH_{s}-\frac{E_{ex}-E_{s}}{k'}$$
 (4)

The pH values of the sample solution were obtained from the measured E values with eq(4).

In order to make a comparison between the PUREIL electrode and the KCl type electrode, the pH of H_2SO_4 was measured by use of the KCl-type combination electrode (HORIBA, Ltd, 9681) according to the same procedure.

Result

Figure 3 shows the time courses of pH for 15 min at 10 mS m⁻¹ H₂SO₄ solution. In Figure 3, \bigcirc and \blacksquare are the pH values measured by use of PUREIL and KCl-type electrodes, respectively, and red line is the calculated pH value^[20] of 10 mS m⁻¹ H₂SO₄ solution.

The response time of PUREIL electrode is shorter than that of KCl-type. In the case of PUREIL electrode, the difference between experimental and calculated pH values is within 0.03 pH unit. On the other hand, the pH value measured by use of KCl-type is higher by 0.1 pH unit than the calculated pH value. Two reasons are considered. First, in the case of KCl-type, the pH in sample solution changes with time due to the leakage of a concentrated KCl from liquid junction. Second, the LJP between a KClSB and the low conductivity solution is unstable. Thus, we can measure accurately and quickly pH of the low conductivity solutions with a PUREIL electrode since the contamination of a sample solution is less and the LJP between the ILSB and sample is stable.

Figure 3 The time course of pH at 10 mS m⁻¹ (20 µmol dm⁻³) sulfuric acid solution. ●: PUREIL electrode, ■: KCI-type electrode, red line: the calculated pH value

Conclusions

PUREIL electrodes enable us to accurately and quickly determine the pH values of the low conductivity solution whose pH values can not be accurately measured by use of a KCl-type electrode used over 100 years. In this paper, although we measured the dilute H_2SO_4 solution, the accurate and high stable pH measurements of sample solutions such as rain water, river water, boiler water, and pure water are possible by use of PUREIL electrode. It is anticipated that the PUREIL electrode is certified as the standard electrode for the pH measurement of low conductivity solutions. Although we omitted details of the results due to space limitation, you can refer to our paper in preparation for these details^[22].

References

- [1] R. G. Bates, *Determination of pH*, Wiley, New York, 1973.
- [2] R. P. Buck, S. Rondinini, A. K. Covington, F. G. K. Baucke, C. M. A. Brett, M. F. Camoes, M. J. T. Milton, T. Mussini, R. Naumann, K. W. Pratt, P. Spitzer and G. S. Wilson, *Pure Appl. Chem.*, 2002, 74, 2169-2200.
- [3] J. N. Galloway, B. J. Cosby and G. E. Likens, *Limnol. Oceanogr.*, 1979, 24, 1161-1165.
- [4] S. Y. Tyree, Atmos. Environ., 1981, 15, 57-60.
- [5] G. Marinenko and W. F. Koch, Environ. Int., 1984, 10, 315-319.
- [6] A. K. Covington, P. D. Whalley and W. Davison, *Pure Appl. Chem.*, 1985, 57, 877-886.
- [7] W. Davison and C. Woof, Anal. Chem., 1985, 57, 2567-2570.
- [8] W. Davison and M. J. Gardner, Anal. Chim. Acta, 1986, 182, 17-31.
- [9] W. F. Koch, G. Marinenko and R. C. Paule, J. Res. Natl. Bur. Stand (U.S.), 1986, 91, 23-32.
- [10] R. C. Metcalf, Analyst, 1987, 112, 1573-1577.
- [11] D. Midgley, Atmos. Environ., 1987, 21, 173-177.
- [12] W. Davison, A. K. Covington and P. D. Whalley, *Anal. Chim. Acta*, 1989, **223**, 441-447.
- [13] R. C. Metcalf, D. V. Peck and L. J. Arent, *Analyst*, 1990, 115, 899-905.
- [14] R. A. Durst, W. Davison and W. F. Koch, Pure Appl. Chem., 1994, 66, 649-658.
- [15] T. Ozeki, Y. Tsubosaka, S. Nakayama, N. Ogawa and T. Kimoto, *Anal. Sci.*, 1998, 14, 749-756.
- [16] R. Kadis and I. Leito, Anal. Chim. Acta, 2010, 664, 129-135.
- [17] Kakiuchi, T.; Yoshimatsu, T. Bull. Chem. Soc. Jpn. 2006, 79, 1017-1024.
- [18] Yoshimatsu, T.; Kakiuchi, T. Anal. Sci. 2007, 23, 1049-1052.
- [19] Sakaida, H.; Kitazumi, Y.; Kakiuchi, T. Talanta 2010, 83, 663-666.
- [20] M. Shibata, H. Sakaida and T. Kakiuchi, *Anal. Chem.*, 2011, 83, 164-168.
- [21] M. Shibata, M. Yamanuki, Y. Iwamoto, S. Nomura, H. Sakaida and T. Kakiuchi, *Anal. Sci.*, 2010, 26, 1203-1206.
- [22] M. Shibata, M. Kato, Y. Iwamoto, S. Nomura, and T. Kakiuchi, in preparation.

Manabu SHIBATA

Liquid and Water Quality R&D Dept. Application R&D Center Reserch & Development Division HORIBA, Ltd. Dr. Eng.

Feature Article

Pittcon解説

可搬型蛍光X線分析装置MESA-50

Portable X-ray Fluorescence Analyzer MESA-50 with New Developed Optics and New Spectrum Processing

青山 朋樹 Tomoki AOYAMA 可搬型でありながら、従来の卓上型蛍光X線分析装置と同等以上の性能を有す る蛍光X線分析装置を開発した。特にRoHS分析市場に注目し、近年濃度管理 が求められ始めている元素の高感度測定を実現した。ピーク分離のアルゴリズ ムを見直して、As/Pbのピーク分離精度を向上させた。またX線管ターゲットと して、従来採用していたRhでなく、Pdを採用することで、大気中の環境下でも Clの高感度測定を実現した。本報告では、ハードウェア、ソフトウェア、アルゴ リズムの各要素断面から高感度化について論ずる。

We have developed a portable XRF which has almost same performance as conventional desktop XRF. RoHS, soil and particulate matter are typical application examples for rapid and accurate analysis with portable XRF. Detection limits of several ppms have been achieved with Pb, As, Cd, Br, Se and Hg in plastics and soil. New developed optics has achieved highly accurate and rapid measurement. In addition, new spectrum processing method has reduced the effect of overlaps between peaks. Detail of new developed optics and spectrum processing method are presented.

はじめに

近年,要素部品の小型・省電力化に伴い,エネルギー分 散型蛍光X線分析装置(以下EDXRF)も小型の装置が増 加している。代表的なものはハンドヘルドXRFで,既に 世界中で販売され,通常のEDXRFと同等の販売台数に 達している。一方で,ハンドヘルドXRFは手で持って測 定するため,長時間の測定や,定量精度を要求される測 定には不向きであり,可搬型XRFの市場要求もある。我々 はこの市場要求に向けて,可搬型XRFの開発を行った。 開発した装置は小型でありながら,従来の卓上XRF以上 の測定性能を有し,従来困難であったAs-Ka/Pb-Laな どのオーバーラップピークの分離も可能となった。以下に 開発した装置の構成,アプリケーションを紹介する。

高効率な光学系の開発について

従来のXRFは,高精度ではあるが大型であり,据置き型の装置であった。この従来のXRFと同等の感度,性能を 維持させるために光学系を見直した。装置の小型化のため,小型,小出力のX線管を採用した。X線管の出力が小

569.4

さくなったことにより、照射強度の低下が懸念されるた め、高効率な光学系を開発(Figure 1)した。これにより、 小照射径から大照射径でも有害元素の高感度な分析を 可能にした。X線の照射強度はX線管ターゲットと試料の 距離の2乗に反比例するため、X線の広がりの影響が無視 できる程度まで、X線管を試料に近づけることで照射強 度を増加させることが可能である。同様に検出器と試料 間の距離を短くすることで検出立体角を向上させた。ま た,管球のターゲットを光学系の周辺部品と近い位置に 配置されていることにより、 試料以外の部材から発生す る蛍光X線が検出される、いわゆるシステムピークに関し ても低減した。従来の卓上XRFの蛍光X線強度と開発し た可搬型XRFのX線強度の比較をTable 1に示す。照射 径によって効率の違いはあるが、 φ1.2 mmにおいては10 倍程度で、単位X線管電流あたりのX線強度が得られて いる。

Figure 2 スペクトル処理フロー

Figure 3 ピーク分離結果の比較

Table 1 単位X線管電	流あたりのX線強度比較	unit : cps/µA
	φ1.2 mm	φ3 mm
Conventional	15.7	32.5

119.9

New

当社の従来機種は, 垂直照射であったが, 今回開発した 光学系は, 検出器とX線管に両方に角度をつけて配置す ることにより, X線の検出可能な領域を制限し, 試料厚 みの変化に対するX線強度の変化が少なくなるようにし た。定量用途においては, サンプルの形状, 厚みの影響 は定量誤差の大きな要因となるため, 検出可能領域を狭 めることで, 誤差要因を少なくした。検出器は高分解能・ 高計数率測定が可能なシリコンドリフトディテクタ(以下 SDD)を採用した。SDDは, 高分解能であるため, 後述の As-Ka/Pb-Laなどのオーバーラップピークを正確に分 離することに寄与している。また, 高計数率の測定におけ

> る分解能がよく, 金属中の微量元素を 測定するときなどの高計数率測定時に おいても, 精度の低下なく, 分析時間の 短縮を実現した。

ピーク分離について

XRFのスペクトル処理において, 定量 分析に寄与が大きいのはピーク分離で ある。特にAs-Ka/Pb-Laのようなオー バーラップピークのピーク分離は長年 の課題とされている。今回開発した装 置においては、 試料のマトリクス効果を 考慮して理論スペクトルを生成し.実 際のスペクトルと比較・フィッティング を行う手法を用いた。組成により試料自 身の質量吸収係数が変化するため.ま ずは通常のFundamental parameter method (以下FPM)^[1]によって試料の 概略組成を推定する。推定された組成 での各定性元素におけるピーク強度比 率を計算し、このピーク強度比率を用い て実際のスペクトルと最小二乗法によ るフィッティングを行い. 最終的なピー ク強度を求める。スペクトル処理のフ ローをFigure 2に示す。

Figure 3にピーク分離後のスペクトル

比較を示す。As-Ka/Pb-Laのピーク強度は新・旧どちらのアルゴリズムでも実測スペクトルー致しているが、As-K_Bは新アルゴリズムのみ一致していることがわかる。

Figure 4 プラスチック標準試料測定結果

Table 2 プラスチック標準試料測定条	俏
-----------------------	---

Measurement condition		
Sample	Cu alloy (ZBY921-925)	
Voltage	50 kV	
Current	Auto	
Filter	5 element Filter	
Process time	P2 (2µs)	
Measurement time	100 s	

Figure 5 Cl測定スペクトル比較

RoHS分析

XRFは、RoHS規制により有害元素のスクリーニングに広 く用いられている。RoHS規制の対象である5元素(Cr⁺⁶, Br, Cd, Hg, Pb)に加えて, Cl, As, Sbなどの元素も濃度 管理が始まりつつある。この中で, XRFでの分析が難し い元素はAsである。Asの測定は、As-KaがPb-Laとオー バーラップするため、As-K $_{\beta}$ を用いるのが一般的である。 しかし、As-K $_{\beta}$ もSe-Kaなどのピークと重なるため、関連 する全てのピークの情報(Ka/K $_{\beta}$, La/L $_{\beta}$ など)を用い てピーク分離を行う必要がある。本アルゴリズムでは、マ トリクスを推定してAs-Ka/K $_{\beta}$ の比を正確に算出するこ とができるため、Pb-La/As-Kaのようなオーバーラップ ピークの分離も正確に出来るようになった。プラスチック 標準試料を用いた測定結果を**Figure 4**に示す。測定条件 を**Table 2**に示す。Pb・Asともに濃度と強度が直線関係 にあることから、正確なピーク分離されることがわかる。

従来のCl測定における問題点は, 一般分析用に使われて いるRhターゲットから発生するRh-LaがCl-Kaとオー バーラップすることと、軽元素であるため真空チャンバ あるいは、Heパージが必要であった。前者については一 次X線フィルタを使う手法も考えられるが、励起強度が 下がることにより効果が少ない。後者については可搬型 の装置であるため、煩雑なシステムは採用できない。そこ で、Clをより高感度に分析するために、X線管ターゲット として、Clの蛍光X線の励起エネルギーに近く、オーバー ラップの少ないPdを採用した。このため、大気圧の環境 下でも高感度なClの分析が可能である。Rhターゲットと Pdターゲット、および専用の1次X線フィルタを使用した 場合のスペクトル比較をFigure 5に示す。Rh-LaとCl-K aは非常にエネルギーが近いため、ピーク分離すること が困難であるが、Pd-LaはCl-Kaとの重なりが少ないた め、ピーク分離が可能である。よってClの検出下限は、Pd ターゲットを採用した光学系が最もよくなったと考えら れる。

MESA-50について

以上の要素をMESA-50として製品化した。MESA-50の 仕様を**Table 3**に,外観を**Figure 6**に示す。一般的な卓上 XRFと比較して,サイズも3分の1,質量も6分の1程度の 12 kg,携帯して測定するというよりも,測定現場へ持ち 運んで据え置きで測定することを想定したXRFである。 Table 3 MESA-50の仕様

Model name	MESA-50
X-ray tube	50 kV
Detector	SDD
Measurable elements	AI-U
Signal processor	Digital Pulse Processor
X-ray filter changer	4 position (including open)
X-ray bench (optional)	Atmosphere
Mass and Size	$12 \text{ kg}/202 \text{ (W)} \times 280 \text{ (L)} \times 178 \text{ (H)}$
Radiation area	7 mm, 3 mm, 1.2 mm (Automatic changer)
Sample image	CCD camera
Software	Reporting, Judge OK/NG
Correction algorithm	FPM Thickness, Material, Pb/As peak separation, Residual component estimation
Power supply	Ni-MH battery or AC adapter (100-240 V 50/60 Hz)
Battery life	6 hours (Ni-MH battery)

可搬型であることからバッテリーの搭載は必須であるが、 最大出力で照射し続けても1時間以上,通常使用で4時間 程度動作可能なため、現場で100サンプル程度測定が可 能である。非測定時は省電力モードに遷移し、電力消費 の大きいモジュールへの電源供給を遮断している。

MESA-50ソフトウェア

特定のアプリケーションに関して測定 条件を予め入力し,開始ボタンを押すだ けで定量結果まで表示されるという簡 単測定機能を搭載した。分析対象が決 まっているRoHS分析や土壌分析など においては、ルーチン作業を簡略化す る上で有効な機能である。また、この機 能には試料母材のマトリクス影響を補 正するアルゴリズムを持たせた。通常の 検量線定量では、組成が近いものしか 分析できないが、この機能を使うことに よって、組成の違う材質に関しても母材 の材質を推定し,組成の影響を考慮し

た定量結果を出すことができる。通常のFPMで計算する 場合にも母材が樹脂などであれば、母材の材質を指定し て定量する必要があったが、MESA-50ではその操作も 必要ない。

まとめ

- ・MESA-50は、小型の可搬型XRFで卓上XRFと同等以 上の照射X線強度・検出感度を実現した。
- ・ピーク分離の改良により従来困難であった、As-Ka/ Pb-Laなどのオーバーラップピークが正確に分離可能 になった。
- ・Pdターゲットを採用することによりCl感度が大幅に向 上し、大気中でのCl分析が高感度で行えるようになっ た。

参考文献

[1] 吉良昭道"卓上形蛍光X線元素分析装置(MESA-500)" Readout, 7, 95(1993)

青山 朋樹

Tomoki AOYAMA 株式会社 堀場製作所 開発本部 アプリケーション開発センター 科学・半導体開発部

Pittcon解説

中赤外レーザ吸光法分析装置を用いた 自動車排ガス中N₂Oの測定

原 健児

Montajir RAHMAN

近年, 亜酸化窒素(N₂O)は気候変動に大きな影響を与える温暖効果ガスとし て注目されている。米国運輸省は米国環境保護庁とともに軽量車(LDV)からの N₂O排出量の規制を開始している。LDV用のN₂O計測には, LDV用FTPモード でのバッグサンプリングを用いた測定が定められている。また重量車用エンジ ン(HDE)のN₂O排出基準も0.10 g/bhp-hrと決定した。これらの規制は2017 年式のディーゼルエンジンから適用される。通常, HDEからの排ガスは, バッ グサンプリングではなく生ガスもしくは希釈排ガスの直接測定になる。それゆ え, LDV及びHDEの両方の規制に対応するために, 分析計は希釈排ガスのバッ グ測定または連続測定の両方が可能でなければならない。この研究において は, 自動車排ガスの希釈連続測定とバッグサンプリング測定でのN₂O濃度の比 較を行った。その結果, 中赤外レーザを用いた本排ガス分析装置はバッグサン プリング測定での低濃度検出と連続測定での速い応答時間が両立できること が示された。

はじめに

亜酸化窒素(N₂O)は大気中に300 ppb程度自然に存在す る微量ガスで,これは窒素分子を除いて最も一般的な対 流圏窒素種である。安定した分子であるため,存在期間 が非常に長く,130~170年と言われている^[1]。N₂Oは二酸 化炭素(CO₂)よりも赤外線を吸収しやすいため,N₂Oが 地球の温暖化に大きく影響する可能性がある^[2]。

米国運輸省(DOT)と環境保護庁(EPA)は、国家プログ ラムとして軽量車(LDV)からのN₂O排出量を規制してい る。LDVからのN₂O排出量は0.010 g/mileに制限されて いる^[3]。またLDVにおける、N₂O計測はバッグサンプリン グ法を使用することが義務付けられている。EPAは重量 車用エンジン(HDE)に対しても、0.10 g/bhp-hrの排出規 制を最終決定している^[4]。最新のN₂O規制は2017年式の ディーゼルエンジンから適用される。通常、HDEからの 排ガスは、バッグサンプリングではなく生ガスもしくは希 釈排ガスの直接測定になる。それゆえ、LDVおよびHDE の両方の規制に対応するために、希釈排ガスのバッグ測 定および連続測定が可能な分析計が必要とされる。

自動車排ガス中の超低濃度N₂Oを測定するために,中 赤外量子カスケードレーザー分光法を用いた分析計を 開発した^[5]。この分析計はパルスモード高分解能中赤 外分光計である。この分析計は,検出限界が非常に低く (<5 ppb),優れた直線性を備え,応答時間(t₁₀₋₉₀)が4秒 以内(サンプル流量4 L/min)となっている。実際のエン ジン排ガスを測定し,共存ガスからの干渉影響も無視で きるレベルであることが確認されている^[5]。この研究で は,2008年の日本の排出規制を満たすガソリン車を用い て,自動車排ガスの希釈連続測定(連続測定)とバッグサ ンプリング測定(バッグ測定)でのN₂O濃度の比較を行っ た。

システム構成

Figure 1に分析計のブロック図を示す。主な構成要素は

Figure 1 Block diagram of the N₂O measurement system

ガスセル, レーザユニット, 検出器, 真空ポンプである。 ガスセルは減圧され50 ℃にコントロールされている。セ ル容量は500 mlであり, セル内に光路長30 mを実現する ことによって, 検出感度を高めた。本研究では室温での バッグ測定においてサンプルガス流量は4 L/minとなっ ている。

試験方法

試験に用いた車両は、1.5 Lガソリンエンジン車であり、 後処理システムとして三元触媒(TWC)を装備している。 試験は、シャシダイナモメータに車両をセットし、コー ルドスタート状態またはホットスタート状態からのFTP (Federal Test Procedure)テストサイクルの走行モード を実施した。FTPテストサイクルはEPAが規定している 走行パターンである。コールドスタート試験では、試験開

Figure 2 System schematic for vehicle test on chassis dynamometer with CVS

始前に車両をEPA推奨の手順^[6]に従って準備している。 また,ホットスタート試験は,コールドスタート試験直後 に実施した。試験の概略を**Figure 2**に示す。サンプリン グバッグは事前に窒素ガスにて十分パージした。加えて, サンプリングバッグ内で,NOx成分の変換を最小に抑え るために,全ての試験において,バッグへのサンプリング から測定までの時間を一定にしている。

N₂O測定は、定容量試料採取装置(CVS)からの希釈連続 測定とサンプリングバッグからの測定の両方を実施した。 活性炭フィルタ等を通した室内空気を希釈空気として使 用した。バッググラウンド補正のために、2つのバッグに 希釈サンプルガスと希釈空気をサンプリングした。FTP テストサイクルは、3つのフェーズに分かれている;フェー ズ1:コールドスタート過渡運転、フェーズ2:定常運転、 フェーズ3:ホットスタート過渡運転。またフェーズ2と3 の間は、決められたエンジン停止時間がある。したがっ て、FTPテストサイクルの全てにおいてサンプリングする 場合、各フェーズにつき2つ、合計6つのサンプリングバッ グが必要になる。N₂Oの排出質量はEPAの手順に従って 計算した^[7]。今回、希釈連続測定の際には、バッグサンプ

Figure 3 Real-time N₂O emission of the FTP driving cycle

リングは行っていない。

結果および考察

Figure 3に、コールドスタート試験およびホットスタート 試験でのFTPテストサイクルの各フェーズにおけるN₂O 濃度変化を示す。Figure 3の上から、フェーズ1:コール ドスタート過渡運転、フェーズ2:定常運転、フェーズ3: ホットスタート過渡運転になる。定常運転とホットスター ト過渡運転の間には、一定のエンジン停止時間が設けら れている。

Figure 4はバッグ測定のデータから計算された各フェー ズおよび合計のN₂O排出質量を示す。排出質量の計算は、 「40CFR Part 86 Subpart B」に従って行った^[6]。FTPテ ストサイクルのコールドスタート過渡運転であるフェー ズ1を見ると、コールドスタート試験では多くのN₂Oが排 出されていることが分かり,このフェーズでバッグにサン プリングされた希釈サンプル中のN2O濃度は約600 ppb で、これを排出質量に換算すると約4.50 mg/mileにな る。しかしホットスタート試験では、このフェーズでバッ グサンプリングされた希釈サンプル中のN₂O濃度は約 330 ppbで、排出質量に換算すると約0.17 mg/mileであ る。定常運転であるフェーズ2を見ると、コールドスタート 試験でもホットスタート試験でも、バッグサンプリングさ れた希釈サンプル中のN₂O濃度は290~300 ppbであり, 希釈空気のバックグラウンド濃度は約320 ppbであった。 従って「40CFR Part 86 Subpart B」^[6]で規定された計 算手順によると, 排出質量はほほゼロになる。このフェー ズでのN₂O濃度は、エンジンの型式や運転パターン次第 で、希釈空気のバックグラウンドより著しく低くなる可能 性がある。ホットスタート過渡運転であるフェーズ3では、 ある程度明確なN₂O排出質量を示し、ホットスタート試験

Figure 4 Total and Modal Mass Emission of N₂O

でもコールドスタート試験でもほほ同じ数値になった。

このテスト車両からのN₂O総排出質量は、コールドスタート試験では約0.95 mg/mile、ホットスタート試験では約0.14 mg/mileであることが分かった。このテスト車両からのコールドスタートにおける排出量は、EPAの規制値の10分の1程度となっている。

まとめ

量子カスケード中赤外レーザー分光自動車排ガス分析計 を使用し, FTPテストサイクルでの車両試験を行った。こ の分析計を用いることで,連続測定での高速応答と, バッ グ測定での超低濃度N₂O測定が両立されることが示され た。試験結果より以下のことが明らかになった。

- ガソリンエンジンとTWCを装備した車両から排出されるN₂Oは非常に低レベルで,バッグ内の希釈サンプル中のN₂O濃度は環境大気レベルを下回ることがある。試験車両のN₂O排出レベルは規制値の約10分の1となる。従って,このような低排出車両の認証試験では、検出限界値のより低い超高感度分析計が必要とされる。
- ガソリンエンジンとTWCを装備した今回の試験車両 において、コールドスタート試験の場合では、ほとんど のN₂Oが最初の100~200秒の間に排出される。車両が 暖機されているホットスタート試験の場合では、N₂O はほとんど排出されない。
- 3. この研究で使用された中赤外量子カスケードレーザー 分光分析計は、バッグからの超低濃度N₂O測定に対し て十分な検出能力を有している。また希釈連続測定に おいて応答時間も速くなっている。バッグ測定の濃度 と連続測定からの計算した濃度との間に、よい相関が 見られる。
参考文献

- [1] Ballantyne, V., Howes, P., and Stephanson, L., "Nitrous Oxide Emissions from Light Duty Vehicles," SAE Technical Paper 940304, 1994, doi: 10.4271/940304.
- [2] IPCC/UNEP/OECD/IEA. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Paris: Intergovernmental Panel on Climate Change, United Nations Environment Programme, Organization for Economic Co- Operation and Development, International Energy Agency(1997).
- [3] Environmental Protection Agency, "Electronic Code of Federal Regulation, Title 40, Parts 85, 86, 600, 1033, 1036, 1037, 1039, 1065, 1066, and 1068.
- [4] Environmental Protection Agency, "Electronic Code of Federal Regulation, Title 49, CFR Parts 523, 534, and 535.
- [5] Montajir, R., "Development of an Ultra-Low Concentration N₂O Analyzer Using Quantum Cascade Laser (QCL)," SAE Technical Paper 2010-01-1291, 2010, doi: 10. 4271/2010-01-1291.
- [6] "Electronic Code of Federal Regulation, Title 40: Protection of Environment, Part 86: Control of Emission from New and In-Use Highway Vehicles and Engines, Subpart B, Section 86-132-00.
- [7] "Electronic Code of Federal Regulation, Title 40: Protection of Environment, Part 86: Control of Emission from New and In-Use Highway Vehicles and Engines, Subpart B, Section 86. 144-94.

原 健児

株式会社 堀場製作所 開発本部 アプリケーション開発センター エナジーシステム計測開発部 博士(理学)

Montajir RAHMAN HORIBA Instruments Incorporated, Ann Arbor Facility Ph. D

Feature Article

Pittcon

Measurement of Automobile Exhaust N₂O by Mid-IR Laser Spectroscopy

Kenji HARA Montajir RAHMAN

Nitrous Oxide (N₂O) emission reduction has gained large prominence recently due to its contribution to the climate change as a greenhouse gas. The United States Environment Protection Agency (EPA) together with the United States Department of Transport (DOT) has already regulated the N₂O emissions from Light-Duty Vehicles (LDV). For LDV, N₂O measurement should be done from sample storage bags over the light-duty FTP drive cycles. N₂O emission standard of 0.10 g/bhp-hr for Heavy-Duty Engines (HDE) is also finalized. The final N₂O standard becomes effective in 2017 model year for diesel engines. Usually raw or diluted exhaust is measured for HDE emission testing. Therefore, an analyzer capable of measuring N₂O from bag and from diluted sample continuously is required to support both LDV and HDE regulations. In this study, comparative measurement of automobile exhaust N2O in continuous dilute and in sample storage bag has been attempted. A modern vehicle meeting 2008 Japanese emission standards has been evaluated. In this letter, it is found that the laser based exhaust gas analyzer has sufficient detection capability for bag measurement and fast response for continuous dilute measurement.

INTRODUCTION

Nitrous oxide (N₂O) is a trace gas that exists naturally in the atmosphere with a level of about 300 ppb. It is the most common tropospheric nitrogen species aside from molecular nitrogen. Because it is a stable molecule, it has very long life time which has been recorded as being from 130 to 170 years.^[1] Since N₂O has an even greater propensity for absorbing infrared radiation than CO₂, there is concern that N₂O contributes significantly to global warming.^[2]

The US-EPA together with the DOT has already regulated the N₂O emissions from Light-Duty Vehicles (LDV) under a harmonized and consistent National Program. Under the national program, automobile manufacturers will be able to build a single light-duty national fleet that satisfies all requirements while ensuring that consumers still have a full range of vehicle choices. N₂O emission from light duty LDV has been limited to 0.010 g/mile.^[3] For LDV, N₂O measurement should be done from sample storage bags. Similar to the CO₂ standard approach, the N_2O emission level of a vehicle would be a composite of the light-duty FTP cycles. The US-EPA is also finalizing a N_2O emission standard of 0.10 g/bhp-hr for heavy-duty engines (HDE).^[4] The final N_2O standard becomes effective in 2017 model year for diesel engines. Usually raw or diluted exhaust is measured for HDE emission testing. An analyzer capable of measuring N_2O from bag and from diluted sample continuously is required for supporting both the LDV and HDE regulations.

An instrument based on mid-infrared quantum cascade laser spectroscopy had been developed for measuring ultra-low level N₂O in automobile exhaust gas sampled in a sample storage bag.^[5] This instrument is a pulsed-mode high-resolution narrow band mid-infrared analyzer. It was reported that it has very low detection limit (<5 ppb), excellent linearity, and the response time (t_{10} - t_{90}) is shorter than 4 second (sample flow rate of 4 L/min). Negligible amount of interference from co-existing gases was also confirmed by using real engine exhaust.^[5] In this study, the instrument is applied for measuring N₂O emission from a modern gasoline vehicle that meets 2008 Japanese emission standards. Correlation between N_2O measurement from sample storage bag hereafter called as "bag measurement" and continuous N_2O measurement from CVS hereafter called as "continuous dilute measurement" has been attempted.

Figure 1 Block diagram of the N₂O measurement system

SYSTEM CONFIGURATION

Figure 1 shows the block diagram of the analyzer. It mainly consists of a gas cell, a laser unit, a detector, and a vacuum pump. The gas cell is maintained at 50 °C and under high vacuum. The cell volume is about 500 ml where a total optical path length of about 30 m was achieved by multiple reflections between two mirrors in order to achieve low detection limit. The sample gas flow rate is maintained at about 4 L/min at room temperature for bag measurement in this letter.

VEHICLE TEST PROCEDURE

The test vehicle is equipped with a 1.5 L port injection gasoline engine and with dual-TWC after treatment

Figure 2 System schematic for vehicle test on chassis dynamometer with CVS system. The tests were performed on a chassisdynamometer under FTP test cycles under cold start and hot start condition. In the cold start test, the vehicle was preconditioned and soaked in similar way every time before the test according to the EPA recommended procedure.^[6] The hot start test is the test started immediately after completion of a cold start test without any preconditioning and soak. The schematic of the test system is shown in Figure 2. The sample storage bag was purged with nitrogen gas well in advance. In addition, sampling-to-measurement time was also kept constant in all test conditions in order to minimize the variation in bag environment under which transformation of NOx components in the sample storage bag occurs.

Measurement of N_2O was attempted both from CVS for continuous dilute measurement and from sample storage bag. The dilution air was supplied from ambient through a charcoal plus HEPA filter unit. Diluted sample and dilution air was sampled in two separate bags for background correction. The full FTP driving cycle is separated into 3 phases; phase-1: Cold Transient, phase-2: Stabilized, and phase-3: Hot Transient. In between phase-2 and phase-3 there is a predetermined soak period. Therefore a total of six bags were sampled, 2 bags for each phase in the full driving cycle. Calculation of N_2O

Figure 3 Real-time N₂O emission of the FTP driving cycle

mass emission of was done according to EPA procedure.^[7] Only continuous dilution measurement was performed without any bag sampling in this case.

RESULTS AND DISCUSSIONS

Figure 3 shows the real-time N_2O emission in different phases of the FTP driving cycle under cold and hot start condition. The upper side graph shows the real-time N_2O emission in the cold transient phase (Phase-1) while the bottom side graph shows the real-time N_2O emission in the hot transient phase (Phase-3). The graph in the middle shows the real-time N_2O emission in the stabilized phase (Phase-2). There is a predetermined soak period between the stabilize phase and the hot transient phase.

Figure 4 shows the total and individual phase based mass emission of N₂O calculated from the bag measurement data. Calculation of mass emission was done according to the "40CFR Part 86 Subpart B.^[6] It shows that during cold start condition most of the N₂O is emitted in cold transient phase of FTP driving cycle. Concentration of N₂O in diluted samples stored in Bag-1 during this phase is about 600 ppb which gives mass emission of about 4.50 mg/ mile. However when the test is done under hot started condition, concentration of N₂O in diluted samples stored in Bag-1 during this phase is about 330 ppb which gives a mass emission of about 0.17 mg/mile.

Phase-2 (stabilized phase) shows no N_2O emission at all even if the vehicle is started at either cold or hot condition. Concentration of N_2O in diluted samples stored in Bag-2 during this phase is within 290 to 300 ppb while the ambient background is about 320 ppb. Therefore it gives almost zero mass emission according to the calculation procedure proposed in the "40CFR Part 86 Subpart B.^[6] Concentration of N_2O in the Bag-2 may become significantly lower than dilution air background depending on the engine type and driving pattern. Phase-3 shows some positive N_2O mass emissions and hot start condition has almost the same N_2O mass emissions

Figure 4 Total and Modal Mass Emission of N₂O

as that of cold start condition. It shows that the total mass emission of N_2O from this test vehicle is about 0.95 mg/ mile under cold start condition while it is about 0.14 mg/ mile under hot start condition. The cold start emission from this test vehicle is one tenth of the EPA regulatory value.

CONCLUSION

A modern clean vehicle has been tested under FTP test cycles. A quantum cascade mid-infrared laser spectroscopic motor exhaust gas analyzer is used to measure the N_2O emission. The analyzer showed promising potential for ultra-low concentration N_2O measurement from bag as well as faster response for continuous dilute measurement. Results revealed the following:

- 1. Vehicle equipped with conventional port injection gasoline engine and TWC emits very low level of N₂O and concentration of N₂O in diluted samples stored in bag sometimes goes below ambient level. N₂O emission level of the test vehicle is one tenth of the regulatory value. Therefore, compliance test of such low emission vehicle requires very sensitive analyzer with low detection limit.
- 2. For vehicle equipped with conventional port injection gasoline engine and TWC, most of the N₂O is emitted during first 100 to 200 seconds of any driving cycle if started from cold condition. There is almost no N₂O emission when the vehicle is warmed up.
- 3. The mid-infrared quantum cascade laser spectroscopic analyzer used in this study has sufficient detection capability for measurement of very low concentration of N₂O from bag. The analyzer has fast response for continuous dilute measurement from CVS. There is excellent consistency between bag measurement and continuous dilution measurement by the analyzer used in this study.

References

- Ballantyne, V., Howes, P., and Stephanson, L., "Nitrous Oxide Emissions from Light Duty Vehicles," *SAE Technical Paper* 940304, 1994, doi: 10.4271/940304.
- [2] IPCC/UNEP/OECD/IEA. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Paris: Intergovernmental Panel on Climate Change, United Nations Environment Program, Organization for Economic Co- Operation and Development, International Energy Agency (1997).
- [3] Environmental Protection Agency, "Electronic Code of Federal Regulation, Title 40, Parts 85, 86, 600, 1033, 1036, 1037, 1039, 1065, 1066, and 1068.
- [4] Environmental Protection Agency, "Electronic Code of Federal Regulation, Title 49, CFR Parts 523, 534, and 535.
- [5] Montajir, R., "Development of an Ultra-Low Concentration N₂O Analyzer Using Quantum Cascade Laser (QCL)," SAE Technical Paper 2010-01-1291, 2010, doi: 10.4271/2010-01-1291.
- [6] "Electronic Code of Federal Regulation, Title 40: Protection of Environment, Part 86: Control of Emission from New and In-Use Highway Vehicles and Engines, Subpart B, Section 86-132-00.
- [7] "Electronic Code of Federal Regulation, Title 40: Protection of Environment, Part 86: Control of Emission from New and In-Use Highway Vehicles and Engines, Subpart B, Section 86. 144-94.

Kenji HARA

Energy System Analysis R&D Dept. Application R&D Center, Research & Development Division HORIBA, Ltd. Ph. D

Montajir RAHMAN Ann Arbor Facility, HORIBA Instruments Incorporated, Ph. D

Feature Article

アプリケーション

パワーデバイス向けSiCウェハの非破壊評価 光分析技術を用いたマイクロ~ナノスケールの欠陥検出

Non-Destructive Evaluation of SiC wafer for Power Device Defect detection in µm~nm scale using optical analytical technique

中庸行 Nobuyuki NAKA

清水 智也 Tomoya SHIMIZU

馬場 洋樹 Hiroki BABA

<mark>沼田 朋子</mark> Tomoko NUMATA

青山 淳一 Junichi AOYAMA

一一一二五

粟田 正吾 Shogo AWATA

畑山 智亮 Tomoaki HATAYAMA 省エネルギーを実現する半導体パワーデバイス向け材料の1つであるシリコン カーバイド(SiC)は,結晶欠陥の少ない高品質なウェハが量産されていないこと からHVやEVへの導入が進んでいない。本研究の目的は,この課題に対して分 析から検査にわたる最適なソリューションを提供することである。本稿では,堀 場製作所の有する様々な技術をSiCウェハ中の結晶欠陥評価に適用した。レー ザ散乱式欠陥検出により,約3 minで4 inchウェハ全面のサブミクロンオーダ の表面欠陥・異物を検出可能である。カソードルミネッセンス(CL)によるパン クロマティック像測定により,多岐に亘るウェハ最表面の結晶欠陥を確認し, フォトルミネッセンス(PL)寿命測定ではキャリア寿命に関して有効なデータを 得た。さらに,CL像により検出された欠陥周辺の応力分布をラマン分光により 評価できることを示した。

Power devices using Silicon Carbide (SiC) were already commercialized and stepping into mass production. But commercial SiC wafers have a problem which several types of defects still exist. Analysis techniques for a variety of defects are important because these defects make yield ratio of SiC device worse. In this work, we carried out complex analysis for sub-millimeter and nanometer scale defect and stress in epitaxial/bulk SiC wafer. Laser scattering method is able to detect defects of submicron size on a whole surface of wafer about 3 min / 4 inch wafer. Our original CL imaging system is capable of evaluating crystal defects of nanometer-size by sub-millimeter scale panchromatic image acquired in short time and Photoluminescence (PL) lifetime measurement helps us to understand career lifetime. Moreover, we reveal that Raman spectroscopy can evaluate stress distribution around defects detected in CL image non-destructively.

はじめに

シリコンカーバイド(Silicon Carbide:SiC)は、その耐熱 性や優れた電気特性により、今までシリコンが一般的で あった半導体デバイスの中でも、電気自動車、スマート グリッドなど耐熱性・大電流動作が必要な機器、高変換 効率が重要な設備向けパワーデバイスへの適用が期待 されている^[1]。しかし、市販のSiCウェハには**Figure 1**に 示す模式図のような積層欠陥(Stacking Fault:SF)、基

Figure 1 Schematic diagram of defect type in SiC wafer.

底面内転位(Basal Plane Dislocation: BPD), 貫通転 位(Threading Dislocation: TD)などの結晶欠陥が高 密度で存在している。これら欠陥は, デバイス動作中の 絶縁破壊を引き起こす原因となることもあるため, 産業 上重要と考えられるMetal-Oxide-Silicon Field-Effect Transistor (MOS FET)などへの適用などは本格的に なっていない。結晶欠陥密度を低減し, 様々なタイプのデ バイスへSiCウェハを使用するためには, より詳細な欠陥 評価結果を結晶成長プロセスにフィードバックすること によって, ウェハ作製条件やデバイス作製条件などを最 適化する必要がある。

我々の目的は、SiCウェハの結晶品質およびデバイス生産 の歩留まり向上のために、新しい評価装置およびその手 法を提供することである。SiCウェハ評価, とくに欠陥評 価には、光を用いた分析技術が有効であることが知られ ているが^[1], HORIBAグループは数多くの光をベースと した分析技術を有しており, SiC評価のニーズに対して 様々な分析技術を提供できるポテンシャルがある。本報 告ではSiC評価、とくに4H-SiCのエピタキシャル膜付き ウェハおよびバルクウェハの欠陥を,様々な非破壊分析 手法で評価した結果を紹介する。具体的には, mm~µm オーダの表面欠陥・異物に対してはレーザ散乱式欠陥検 出技術、µm~サブµmオーダの結晶欠陥にはカソードル ミネッセンス(Cathodeluminescence; CL), 格子欠陥や キャリア濃度など平均的な原子レベル欠陥にはフォトル ミネッセンス(Photoluminescence: PL)寿命測定, さら にラマン分光による結晶欠陥部の応力評価結果である。 中でも、これまで非破壊欠陥評価の報告が少ないSiCエ ピタキシャル膜および、バルクウェハのCL像測定による nmオーダの転位欠陥観察に関しては有効なデータが得

られた。いずれの測定手法も,特殊なサンプル準備が不 要であり,それぞれを組み合わせることによって非破壊 で様々なスケールの結晶欠陥評価が可能となる。

評価方法および測定サンプル

評価方法 レーザ散乱式欠陥検出

特に、半導体プロセスのリソグラフィ工程で用いられるレ ティクル/マスク上の異物や欠陥を検出するために開発 された株式会社 堀場製作所製 異物検査測定装置(PR-PDシリーズ)^[2]の光学系を,SiCウェハの欠陥検査測定に 適用した。Figure 2にPR-PD2の外観を示す。本装置では、 波長が488 nmのArレーザを用い, このレーザ光を測定 面上にf
θレンズを用いて収束させながら、ガルバノメー タを用いて測定面上で一次元走査し(Y方向),同時に走 査に垂直な方向(X方向)に一定速度で測定対象を移動さ せることで,測定対象物全面の測定を行っている。このと き,測定面上にレーザ光を散乱する物体があれば散乱光 が発生するが、散乱光は集光レンズを用いて光電子増倍 管(PMT)に集光される。PR-PD2はこのPMTの電気信 号の変化を異物あるいは欠陥として検知している。本測 定に用いた光学系は、ガラス面上クロム膜に形成された 0.3 µm以下のピンホールを感知できる性能を有する。

カソードルミネッセンス(CL)

電子線励起による物質の発光現象をカソードルミネッセンス(CL)と呼ぶ。このCL光は分光器を用いてスペクトルとして測定することで、物質の構造や結晶欠陥を評価することができる^[3]。ハードウェアは、走査型電子顕微鏡(Scanning Electron Microscopy: SEM)のサンプル室

Figure 3 Imaging CL system(DF-100) and light emitting by electron beam irradiation.

である真空チャンバ内に、集光光学系とともにチャンバ ポートに分光器および検出器を取り付けた構成が一般的 である。サンプル自動駆動ステージを用いたCLマッピン グ測定では、欠陥部と未欠陥部との発光スペクトル強度 が異なることを利用し、二次元的に欠陥部を特定できる。 本稿で用いたCL装置は, Figure 3に示す株式会社 堀場 製作所製 Imaging CL DF-100である。本CL装置は, スペクトル測定用CL装置と比べて、比較的高速にパンク ロマティック(分光せずにすべてのCL光を検出する)画像 を取得することで、 欠陥のない領域とある領域との発光 強度の違いにより欠陥位置やその種別を短時間で評価で きる。これは、信号処理速度を向上させた電気系の採用 により、電子走査における1 pixelあたりの電子線照射時 間を10 ns以下と短く設定できることによる。また、電子 線照射時間を短くすることで、キャリア拡散を押さえて発 光領域を小さくし、高い測定空間分解能による測定を可 能とした。本装置は測定条件によるが、0.5 mm角領域を サブumオーダの空間分解能で数10分で測定することも 可能である。本測定は、加速電圧10 kV. 電流値1.0 nA、 室温にて実施した。なお、CLスペクトル測定には分光測

Figure 4 Apparatus of fluorescence life time measuring system (FluoroCube 5000U).

定が可能な株式会社 堀場製作所製 MP-Micro-Sを用いた。

フォトルミネッセンス(PL)寿命

ピコ秒レーザ光により励起するPL強度 の時間変化を測定して得られる電子-正孔対再結合寿命測定は、半導体中の 残留キャリア濃度や欠陥密度等の半導 体の結晶性評価に有効である。PL寿 命測定では、時間電圧変換器(Time-to-Amplitude Converter : TAC)方式を

採用したHORIBA Jobin Yvon製FluoroCube 5000Uを 用いた。Figure 4は装置の外観である。TAC方式とは、 光源からパルス光が発生されたタイミングをスタート、そ の励起光子によって発生したPL光子が検出器に到達し たタイミングをストップとし、その時間に蓄積された電荷 量を電圧に変換する方式であり、この時間をヒストグラム 化し、得られた発光の減衰曲線に対応するフィッティン グカーブを求めてPL寿命を算出する。本稿の測定は、波 長355 nm、パルス幅592 psのパルスレーザを光源とし、 室温、低注入とみなせる条件にて行った。

ラマン分光

分子あるいは結晶振動に起因して得られるラマン散乱光 を測定することにより,物質の構造や性質を評価する分 析手法をラマン分光法と呼ぶ。励起光としてレーザを物 質に照射した際に,そのレーザ光の波長(エネルギー)と 異なる波長の光が放出される現象がラマン散乱であり, この散乱光を分光器を用いてスペクトルとして測定する ことで,物質の分子格子構造に関する知見を得る事がで きる。半導体のラマンスペクトルは,比較的鋭いピークを 有する形状となり,そのピークシフトの相対位置から物質 内の応力・ひずみを評価することができる。

Figure 5は顕微レーザラマン分光装置であるHORIBA Jobin Yvon製LabRAM HR Evolutionの外観である。

Figure 5 Appratus of Raman scattering measuring system (LabRAM HR Evolution).

	Wafer type	Surface	Crystal axis	Dopant conc. (cm ⁻³)	Polished surface	Thick- ness (µm)
Sample A	4H-SiC Epitaxial film on bulk	Si	[11-20] 8° off	4×10 ¹⁴	One side	20
Sample B	4H-SiC bulk	Si	[11-20] 4° off	>1×10 ¹⁸	Both side	-
Sample C	4H-SiC bulk	Si	[11-20] 8° off	>1×10 ¹⁸	One side	-

Table 1 Main specification of SiC wafer(Size : 4inch).

Bright image

Figure 6 Partice/Defet detection result of Sample B(Bulk wafer).

Figure 7 Partice/Defet detection result and CL image of Sample C(Bulk wafer).

Figure 8 CL image and CL spectrum for stacking fault of Sample A(Epitaxial wafer).

本測定では励起光にArレーザ(488 nm)を用いて室温, 後方散乱配置にて行った。

測定サンプル

測定サンプルは, Sample A, BおよびCとして4H-SiCエ ピタキシャルウェハ, および2つの4H-SiCバルクウェハを 用いた。ウェハ仕様を**Table 1**に示す。いずれもウェハサ イズは4インチである。

結果と考察

表面欠陥および結晶欠陥評価

Figure 6に、レーザ散乱式欠陥検査装置PR-PD2による 欠陥測定結果を示す。サンプルはバルクウェハSample Bであり、本データは4インチウェハ全面を3分で測定した ものである。同Figureより、数μm~数10 μmサイズのマ イクロパイプ、パーティクルやスクラッチといった欠陥、 異物が検出され、検出された欠陥、異物の総数は73個で

> あった。さらに、バルクウェハSample C のPR-PD2による欠陥測定結果および CL像測定結果をFigure 7に示す。本サ ンプルでは, Sample Bの欠陥に加えて 数µmサイズの表面上ピットが観察され た。また、本サンプルに対してピット周 辺のCL像測定を実施し、ウェハ表層部 の欠陥観察を試みた。同Figureより表 面の欠陥のみならずピット周辺のウェ ハ内部には、SEM像では観察されな かったピットを起点とした線状の欠陥 が多数存在することがわかる。また,同 じウェハ内でSEM像ではまったく欠陥 が見られなかった領域においても、CL 像では結晶粒界と考えられるラインや 欠陥が観察された。

> このようなCL像による欠陥評価は、次 に示すようなスペクトル強度の変化を 捉えることで得られる。

> Figure 8(a)および(b)に, エピタキシャ ルウェハSample AのCL像測定結果お よびCLスペクトルを示す。同Figureに 示すように, SEM像では何も観察され

なかった領域において, CL像では台形状の像が存在す ることが確認された。これは表面近傍に存在する積層欠 陥と推定される。Figure 8(b)に示すこの領域のCLスペ クトルから, 欠陥のない領域では385 nm付近のバンド端 発光と, 500 nm付近から残留不純物および点欠陥に起 因すると推定される強い発光を確認できるのに対して, 積層欠陥領域ではスペクトル強度が弱いことがわかる。 すなわち, これらのスペクトル強度の違いが欠陥像とし

(a) Panchromatic CL image

Figure 10 Defect evaluation result of Sample B(Bulk wafer).

(b) Optical image after KOH etching

20 // m

20 *µ* m

20 // m

(a) Panchromatic CL image

(b) Optical image after KOH etching

Figure 11 Defect evaluation result of Sample C(Bulk wafer).

Figure 12 Evaluation result in depth direction for stacking fault of Sample B(Bulk wafer).

て得られていると言える。

Figure 9(a)および(b)にエピタキシャルウェハSample A のCL像および溶融塩KOHエッチング後の明視野像を示 す。なお、KOHエッチング後に表面観察するエッチピッ ト法は、SiCウェハの精度の高い欠陥評価方法として知 られている^[4]。SEM像ではスクラッチ等が観察されな かった平滑な領域において、CL像ではダークラインおよ びダークスポットが観察された。このCL像におけるダー クラインの起点において、エッチング後の明視野像では シェルピットが観察された。また、CL像におけるダーク スポットと同一箇所において、エッチング後の明視野像 では六角形ピットが観察された。溶融塩KOHエッチング によって形成されるシェルピットは基底面内転位(BPD) に、六角形ピットは貫通転位(TD)に対応していることが 報告されており^[4], CL像におけるダークラインはBPDに, ダークスポットはTDに対応していることが確認された。 これまでにPL像測定による転位欠陥観察像は報告され てきたが^[5], CL像測定による転位欠陥観察像は報告され ていなかった^[6]。本CL像測定では,測定時の信号処理速 度を向上させ電子線照射時間を短くしたことにより、電 子線照射部で拡散されるキャリアが少なく発光領域が小 さくなるため、BPD、TDに関して高いコントラストで転 位欠陥観察像が得られたと考えられる。

Figure 10(a)および(b)にバルクウェハであるSample B のCL像および溶融塩KOHエッチング後の明視野像を示 す。SEM像ではスクラッチ等が観察されなかった平滑な 領域において、CL像ではダークラインが観察された。CL 像におけるダークラインの起点において、エッチング後 の明視野像ではシェルピットが観察された。すなわち、こ のダークラインはBPDに対応していると言える。これま で非破壊欠陥評価の報告が少ないSiCバルクウェハにつ いても、本CL像測定では高いコントラストにてBPD観察 が可能になったと考えられる。一方、エッチング後の明視

> 野像の六角形ピットと同一箇所におけ るCL像においてダークスポット, すなわ ち, TD観察像は得られなかった。

> Figure 11(a)および(b)にバルクウェハ であるSample CのCL像および溶融塩 KOHエッチング後の明視野像を示す。 SEM像およびCL像では何も観察されな い領域において,明視野像では,BPD,

TDが観察された。これまでに、高密度の点欠陥Z_{1/2}セン ターは、キャリア寿命減少の原因となり、PL像測定にお ける欠陥観察像のコントラストを低下させることが報告 されている^[6]。今回のCL像測定においても、バルクウェ ハであるSample BおよびSample Cは不純物濃度が高く キャリア寿命が短かったため、転位欠陥観察像のコント ラストが低く、CL測定により観察が困難な欠陥が存在す ることが推定される。

つづいて、CL測定における深さ方向分解能を検討した 結果を示す。バルクウェハSample Bに電子線の加速電 圧を変えてCL像測定した結果および本ウェハのCLス

Figure 13 Fluorescence spectrum of Sample A, B and C.

Figure 14 Lifetime cureve of Sample A, B and C.

Figure 15 Raman spectrum of Sample B(Bulk wafer).

ペクトルを**Figure 12**に示す。同**Figure**は加速電圧5 kV および15 kVのCL像と,積層欠陥領域で高い強度を有 する417 nm付近のスペクトル^[7]の一次元強度分布であ る。ダークエリアの(112-0)方向の長さから,電子線の侵 入深さを求めると,5 kVのときで0.7 µm,15 kVのときで 1.8 µmとなった。すなわち,加速電圧を変えることで得ら れる深さ方向を制御することが可能と言え,本データは CL測定はサブµmオーダの表層欠陥観察について有効で あることを示している。

レーザ散乱式の欠陥検出技術やCL測定技術はSiCの非 破壊欠陥評価方法として有効であることが分かる。特に, 本CLイメージング装置を用いたサブµmオーダの測定空 間分解能の測定により,結晶欠陥位置およびその種別を 正確に特定できる。一方で,エピタキシャルウェハとバル クウェハで明瞭に確認できる欠陥種別が異なることも確 認された。これは,不純物濃度の違いに起因すると考え られ,他手法を用いた不純物濃度評価などとの組み合わ せた考察が重要と考えられる。

キャリア寿命評価

前節で考察されたウェハの違いすなわち、不純物濃度 によるCL発光の違いを詳細に検討するために, PL寿命 測定によるキャリア寿命評価をおこなった。Figure 13 にサンプルA, B, CのPLスペクトルを示す。サンプルA では主に390 nmのバンド端発光. サンプルBおよびCで は、バンド端発光に加え、500 nmをピークとする長波長 側にブロードなスペクトルが観察された。サンプルA. B. Cの390 nmバンド端発光におけるPL寿命測定の結果を Figure 14に示す。同Figureより、サンプル間で明らかに 異なる寿命成分が観察でき,破線部分内の領域にて1/e キャリア寿命を算出すると、サンプルAでは300 ns, サン プルBでは100 ns, サンプルCでは10 nsとなった。今回の 測定は,低注入条件にて行っており,得られた値は少数 キャリア寿命とみなせる。これまでにKleinらにより、キャ リア寿命と点欠陥Z_{1/2}センター密度との相関が報告され ており. キャリア寿命がサンプルAの300 nsからサンプル Cの10 nsと短くなると、Z1/2センターの密度が高くなって いると推定される^[8]。

欠陥周辺の応力評価

本節では、CL像で確認された欠陥部をラマン分光により

(a) Panchromatic CL image (b) Raman peak shift map

Figure 16 CL image and stress evaluation result of Sample B (Bulk wafer)

応力評価した結果について示す。4H-SiCバルクウェハB のラマンスペクトルを**Figure 15**に示す。ラマンスペクト ルのピークシフトは格子に印加されている応力と相関関 係があり、フォノン(FTO_{2/4})ピークのシフト量を求めるこ とで、結晶中の応力変化を調べることができる^[4]。

Figure 16(a)および(b)に、バルクウェハSample BのCL 像およびこの領域においてラマン分光測定を実施して 得られたフォノン(FTO_{2/4})ピークシフト分布を示す。同 Figure 16(a)CL像より、Sample Bには直径10µm以上の 空孔を伴う欠陥およびその周辺に線状の欠陥が観察さ れた。空孔を伴う欠陥はマイクロパイプ(MP)であり、線 状の欠陥は結晶粒界(Grain Boundary:GB)と考えられ る^[9]。このGB部分と対応した位置にフォノンピーク周波 数変化が生じていることが同Figure 16(b)からわかる。 MP近辺には強い引張応力や圧縮応力が生じており、MP 近傍のGBには急峻な応力分布があると言える。この結果 は、SEM像で欠陥が観察されない領域においても、内部 で欠陥がある場合にはウェハ内部で応力分布が存在す る可能性があることを示唆している。

まとめ

HORIBAグループが有する様々な光分析技術を用いた SiCの欠陥評価について紹介した。SiCの本格的な市場導 入には、とくに欠陥検査技術のさらなる高感度化が必要 になると考えられる。今回はウェハレベルの評価につい て紹介したが、高信頼性が求められるパワーデバイスと いう観点からは、今後デバイスレベルでシリコンデバイ スとは異なる物性評価や欠陥検出についても重要な技術 になる。HORIBAグループは、SiC研究やデバイス開発 に関係する方々と連携を取りながらSiCの本格導入に寄 与できる技術開発を行い、パワーデバイスの発展に寄与 したいと考えている。

参考文献

- [1] 松波弘之,他:半導体SiC技術と応用(日刊工業新聞社,2011)
- [2] 神崎豊樹: HORIBA Technical Reports Readout(2005)
- [3] R. Sugie, et al., *Mater. Sci. Forum*, 600-603, **353**(2009).
- [4] H.Matsuhata, et al., *Mater. Sci. Forum*, 600-603, **309**(2009).
- [5] G.Feng, et al., J. Appl. Phys., 110, 33525(2011).
- [6] S.I.Maximenko, et al., *Appl. Phys. Lett.*, 94, 92101(2009).
- [7] B.Chen et al., Appl. Phys. Lett., 93, 33514(2008).
- [8] P.B.Klein, et al., Appl. Phys. Lett., 88, 52110(2006).
- [9] M.Tajima, et al., Appl. Phys. Lett., 86, 61914(2005)

中 庸行 Nobuyuki NAKA

株式会社 堀場製作所 開発本部 アプリケーション開発センター 科学・半導体開発部 マネジャー 博士(工学)

清水 智也 Tomoya SHIMIZU

株式会社 堀場製作所 開発本部 アプリケーション開発センター 科学・半導体開発部

馬場 洋樹 Hiroki BABA

株式会社 堀場製作所 開発本部 アプリケーション開発センター 科学・半導体開発部

沼田 朋子 Tomoko NUMATA

青山 淳一

株式会社 堀場製作所 開発本部 アプリケーション開発センター 科学・半導体開発部

粟田 正吾 Shogo AWATA 株式会社 堀場製作所 開発本部 先行開発センター 博士(工学)

畑山智売 Tomoaki HATAYAMA 奈良先端大学院大学 博士(工学)

Feature Article

アプリケーション

リチウムイオン電池の研究開発・製造プロセスに おける分析評価

Analytical Evaluation for Research & Development and Manufacturing process of Lithium ion battery

廣瀬 潤 Jun HIROSE リチウムイオン電池の高出力・高容量化や安全性を高めるためには,様々な要因で劣化すると言われている電池構成部材の特性評価が必要であり,分析技術の果たす役割は大きい。本稿では,リチウムイオン電池の研究開発・製造プロセスにおいて,劣化要因の解明に有用な分析手法とそのアプリケーションを紹介する。

To promote the performance or security of Lithium ion battery, it is very important to evaluate the property of it's parts using analysis methods. In this paper, I introduce the useful analytical methods to solve the deterioration mechanism for Research & Development · Manufacturing process of Lithium ion battery and their applications.

はじめに

リチウムイオン電池は、高エネルギー密度、高サイクル特 性という利点を活かして、これまで、ノートパソコン、携 帯電話に代表される情報通信機器のモバイル用電源と して大きく発展してきた。近年、省エネルギーの促進・環 境負荷の低減などの目的から、ハイブリッド自動車(HV)、 プラグイン・ハイブリッド自動車(PHV)、電気自動車 (EV)など電気自動車用蓄電池、再生可能エネルギー発 電用蓄電池、家庭用蓄電池への用途が拡大している。こ のため、高出力かつ高容量のリチウムイオン電池の開発 と導入が緊急の課題となっている。

リチウムイオン電池の高出力・高容量化,また安全性を 高めるためには,様々な要因で劣化すると言われている 電池構成部材の特性評価が必要であり,分析技術の果た す役割は大きい。本稿では,リチウムイオン電池の研究 開発・製造プロセスにおいて,劣化要因の解明に有用な 分析手法とそのアプリケーションを(1)電極板・セパレー タの元素分布,(2)電極板の結晶性評価・化合物分布の 観点から紹介する。

リチウムイオン電池の原理

リチウムイオン電池は、一般的に正極にはリチウム金属 酸化物系材料、負極にはグラファイトなどLiイオンを取り こむことができる層状炭素系材料を用いており、充放電 に伴い層状炭素系材料の隙間へのLiイオンの挿入・脱 離(インターカレーション)が起こる。このグラファイト負 極材料とコバルト酸リチウム(LiCoO₂)正極材料との組み 合せで、平均電圧約3.6 Vのリチウムイオン電池が実用化 されている。一般的な負極材料と正極材料の構成におけ るリチウムイオン電池の充放電メカニズムをFigure 1に 示す。負極材料(還元剤)と正極材料(酸化剤)との電位の 差が電池の起電力となり、起電力を発生させる物質が活

Figure 1 Charge-discharge mechanism of lithium ion battery

 Figure 2 Cross-sectional SEM and element mapping images of LiFePO₄ system positive active material.(F-K, Fe-L)
 (a)SEM and normal element mapping images at 10 kV, (b)SEM and normal element mapping images at 3 kV, (c)SEM and element mapping images by TruMap at 3 kV,

物質である。電池を構成するには、電極の他にも負極と 正極の間でイオンを運ぶ電解質、正極と負極が直接接触 することを防ぐセパレータが必要となる。負極材料(還元 剤)と正極材料(酸化剤)は、それぞれの化学種に基づく 酸化還元電位を有しており、電位の低い材料は還元力が 強く、電位の高い材料は酸化力が強いので、二つの電極 を組み合わせると電池を構成することができる。電池を 充電する際は、放電とは反対に、負極上では還元反応が、 正極上では酸化反応が行われる^[1, 2]。

劣化要因と分析装置

リチウムイオン電池は、様々な要因で劣化しサイクル特 性や安全性に影響すると言われている。その原因を究明 し、よりいっそうの高出力・高容量化、また安全性を高め るためには、リチウムイオン電池構成部材の分析解析技 術を用いた特性評価が必要である。電極評価としては、 サイクル特性に影響を与える活物質やバインダーの偏在 はエネルギー分散型X線分析装置(EDX), 微小部蛍光X 線分析装置(u-XRF)、グロー放電発光分光装置を用いる ことができる。Liイオンの挿入脱離による結晶性や結晶 構造変化は顕微ラマン分光装置を用いて評価できる。安 全性の観点では,発火につながるセパレーター上の金属 異物を微小部蛍光X線分析装置(u-XRF)を用いて分析 できる。今回は紹介していないが、リチウムイオン電池の 高容量化には製造プロセスにおけるリチウム金属酸化物 の粒子径分布管理が重要であり、粒子径分布測定装置を 用いて管理できる。また、電極材料の高温状況下での酸

素放出特性を酸素・窒素・水素分析装置を用いて測定 できる。

電極板・セパレータの元素分布 EDXによるバインダー成分の分布確認

LiMPO₄(M:金属元素)の組成式で表されるオリビン系 材料の中でも、リン酸鉄リチウム(LiFePO4)は、安価で化 学的にも安全で安定性が高いため、電気自動車(EV)用 リチウムイオン電池の正極材料として開発が進められて いる。高速充放電を可能にするため、数10 nmの粒径ま で微細化したLiFePO4正極材料により電極表面および. 内部へのLiイオンの拡散速度と電子導電性を向上させる ことで充放電速度を改善している^[3]。今回, このLiFePO4 系正極活物質断面の元素マッピング分析をEDXを用い て行った。EDXは電子顕微鏡(SEM)に装着して、電子 線を照射した領域から発生する特性X線のエネルギーを 検出して微小領域の元素分析を行う装置である。近年、 EDXの分野では大面積のシリコンドリフト検出器(SDD) を用いた低加速照射条件により、高空間能分析がトレン ドになっている。Figure 2(a), (b)は, それぞれ加速電圧 10 kVと3 kVで分析したときの電子顕微鏡像と元素マッ プ像である。加速電圧3 kVでは, 試料内部での電子線拡 散領域が小さくなるため, 空間分解能が向上し明瞭に元 素分布を確認できる。しかし、低加速照射条件での分析 では、特性X線ピークのオーバーラップにより、元素定性 が難しくなる問題がある。LiFePO』系正極活物質を加速 電圧3 kVで分析する場合、Feの特性X線(Fe-La)とバ インダー成分であるFの特性X線(F-Ka)のピークがオー バーラップするため、通常の元素マップ像では、FeとFの

Figure 3 Depth profile and cross-sectional element mapping image of fluorine(F-K)on LiFePO₄ system positive active material.

分布が同じように見えてしまう。この問題に対して最近 のソフトウェアでは、スペクトルのバックグランド減算処 理、ピーク分離処理を行うことによって、オーバーラップ しているピークでも正しくその元素の分布が反映された 元素マップ像を得られるようになっている。株式会社 堀 場製作所製 EDX (EMAX)の最新ソフトウェアでも、分 析中でもリアルタイムでスペクトルのバックグランド減 算,ピーク分離処理を行う機能がありTruMapと呼んで いる。Figure 2(c)に示すように、TruMapによる元素マッ プでは、バインダー成分であるFの分布を正確に反映し ていることがわかる。Figure 3は, LiFePO4系正極活物 質断面の元素マッピングデータ(F-Ka)の縦方向ピクセ ルを列ごとに積算して得られたFのライン分析結果であ る。集電体と活物質の密着性を保つためにバインダー成 分のFが集電体付近に偏在していることが確認できる。 また、Fは電極の表面付近にも偏在していることがわか る。

X線分析顕微鏡(XGT)による セパレータ上の金属異物分析

リチウムイオン電池の製造工程において, 電極材料やセ パレータに金属粉が混入すると, 充電時に金属がイオン として負極側に到達して析出し, セパレータを貫通して 内部ショートを引き起こす。最悪の場合には, 熱暴走し て発火することもあるため, 製造工程管理では, 効率的 に微小金属異物を見つけ出して分析することが求めら れている。ここでは、μ-XRFの一種であるXGTを用いて セパレータ上の微小金属異物分析を行った事例を紹介 する。XGTは、モノキャピラリーのX線ガイドチューブに よって全反射させながらX線強度の減衰を最小限に抑え て、X線を最小10 μmのビーム径に集光できるため、微小 金属異物の元素組成分析や元素マッピングが可能であ る。一般的なリチウムイオン電池のセパレータの厚みは 約25 μmであるので、セパレータ上の金属異物分析では 約25 μm以上の大きさの粒子が対象とする場合が多い。 Figure 4は、セパレータ上の約35 μmの大きさのFeの金 属粉(a)をXGTを用いて分析した事例で、約50 mm角の 大面積領域の元素マッピング(b)から異物候補を探し出 し、異物周辺の拡大元素マッピング(c)、異物のスペクト ル測定(d)までを1台の装置で全て行なうことができる。

XGTによる電極表面の付着元素分布

XGTは, リチウムイオン電池の電極表面の大面積元素 マッピングにも有効である。Figure 5は, 充放電サイクル 後のラミネート型リチウムイオン電池の負極表面の元素 マッピング結果である。約100 mm角の負極板表面に付 着している元素の分布状態を明瞭に確認でき, 表面の染 みがある領域から, 正極からの溶出成分と考えられるMn や電解質成分のPが検出された。

Figure 4 Analysis result of foreign material (Iron powder in 35µm size) on separator using XGT
(a) Optical image of separator, (b) Element mapping image in 50 mm square (100µm beam / measurement time: 30 min), (c) Focused element mapping image (10µm beam / measurement time: 10 min) (d) Spacetrum (measurement time: 10 min)

measurement time: 10 min), (d)Spectrum(measurement time: 10 sec) $\,$

Figure 5 Elemental mapping image of laminated lithium ion battery negative electrode after charge-discharge cycle using XGT

Figure 6 Depth profile of LiCoO₂ system lithium ion battery negative electrode after chargedischarge cycle using GDS

(a)Depth profile from surface of negative electrode to collector electrode,(b)Depth profile around surface of negative electrode

Figure 7 Raman spectrum changes of $\rm LiCoO_2$ system positive active material with charge-discharge cycle

Figure 8 Cross-sectional Raman image and Spectrum of Li(Co,Mn,Ni)O₂ system lithium ion battery positive active material
(a)-1 Raman spectrum before charge-discharge cycle test,
(a)-2 Raman image based on A1g peak intensity before charge-discharge cycle test,
(b)-1 Raman spectrum after charge-discharge cycle test,
(b)-2 Raman image based on A1g peak intensity after charge-

山 最表面・深さ方向分析

GDSによる雷極の

EDXやXGTを用いて,リチウムイオン 電池電極の深さ方向の元素分析を行 うためには,電極の断面試料を作成す る必要がある。これに対して,GDSは, 試料の表面から,深さ方向の元素分析 を行うことができる表面分析・深さ方 向元素分析装置で,Arプラズマにより 試料をスパッタリングさせ,スパッタさ れた原子を原子発光させることで元素 分析を行う。二次イオン質量分析装置 (SIMS)など他の深さ方向分析装置に比 べ,スパッタリングレートが速く,現実 的な時間で電極板の最表面から集電体

界面までを分析できることやリチウムを高感度に検出で きるため, リチウムイオン電池の電極板への適用が試み られている。

Figure 6は、LiCoO₂系リチウムイオン電池の充放電サイ クル後の負極板の深さ方向分析結果で、負極表面に電極 表面皮膜(SEI)が存在しているか調べたものである。SEI は、主に電解液の還元分解によって負極上に形成される 膜で、イオン伝導性を持つ一方で、電子伝導性を持たな いことで、Liイオンの挿入脱離を可能にするとともに電解 液の過剰分解を抑制する。ただし、このSEIにLiが固定化 されるため、SEIの膜厚が厚くなると容量低下を起こし、 また内部抵抗の上昇により出力特性も低下する。このた め、SEIの成分と被膜量を調べることは、性能低下要因の 解明に重要な情報となる。GDSによる深さ方向分析の結 果から、負極最表面にSEI由来のLiが数10 nm程度存在 していることが示唆された。

電極板の結晶性評価・化合物分布

ラマン分光による正極断面の 活物質の結晶性評価

ラマン分光では、物質を構成する分子の振動モードから 分子構造に関する情報を得られ、分子の微細構造変化を 非常に敏感に検出できる。すなわち、特定波長のレーザー 光を試料に照射すると、ラマン散乱という非弾性衝突を 経て、その分子構造固有のスペクトルが得られる。リチウ

discharge cycle test

Figure 9 Surfacial Raman image and spectrum of LiCoO₂ system lithium ion battery positive electrode after charge-discharge cycle (a)Raman image, (b)-1 Raman spectrum in red (Lithium cobalt oxide including Cobalt oxide), (b)-2 Raman spectrum in green (Carbon), (b)-3 Raman spectrum in red(Lithium cobalt oxide),

ムイオン電池の場合にも,正極活物質の分子構造によっ てラマンスペクトルが異なるため,スペクトルデータを利 用することにより,充放電過程に伴う結晶構造の変化に 関する情報を得ることができる。Figure 7は,充放電に伴 うLiCoO₂系正極活物質のラマンスペクトル変化を示した ものである。充電(Liイオンの脱離)により,六方晶系構造 のA_{1g}振動モード, E_g振動モードが変化し,強度低下・波 数位置のシフト・半値幅が増大することがわかる。

Figure 10 In-situ cell for Raman analysis

Figure 8は、充放電サイクル試験前後の三元系リチウム イオン電池断面の正極活物質Li(Co, Mn, Ni)O₂のラマン スペクトルとラマンイメージングである。充放電サイクル 劣化に伴い、A1。振動モードのピーク強度が低下し、E。振 動モードのピーク強度が相対的に増加していることがラ マンスペクトルより確認できる。また、このA1g振動モード のピーク強度をプロットしたラマンイメージングにより、 サイクル劣化した活物質の分布を可視化することも可能 である。更に, ラマン分光は, リチウムイオン電池の負極 の解析においても非常に有用で, 負極活物質のカーボン の構造や結晶性の違いを敏感に検出することができる。 カーボン材料の1590 cm⁻¹付近と1350 cm⁻¹付近に検出 される振動モードは、それぞれGバンド、Dバンドと呼ば れているが、このGバンド/Dバンドのピーク強度比や半 値幅を比較することにより、カーボン材料の結晶性や配 向などを評価できる。同じカーボンでも結晶構造が異な るグラファイトとアモルファスカーボンのラマンスペクト ルは異なるため, 導電助剤と活物質を識別してイメージ ングすることも可能である。

ラマン分光によるサイクル後正極表面の 化合物分布

Figure 9は、充放電サイクル後のLiCoO。系リチウムイオ ン電池の正極表面をラマン分光分析した結果で、マッ ピングのスペクトルデータを多変量解析して分類した 三つの相, すなわち, 活物質であるコバルト酸リチウム (LiCoO₂), 導電助剤であるアモルファスカーボンおよび 酸化コバルト(Co₃O₄)を含むコバルト酸リチウムのラマン イメージングとラマンスペクトルをそれぞれ青.緑.赤で 示している。青のスペクトルには、コバルト酸リチウム由 来の二本のピーク(約480 cm⁻¹, 約590 cm⁻¹), 緑のスペ クトルには、カーボン由来の二つのピーク(約1350 cm⁻¹, 約1590 cm⁻¹)が確認できる。また、サイクル劣化に伴い、 コバルト酸リチウム(青)とアモルファスカーボン(緑)に加 えて、コバルト酸リチウムが変質して生成したと考えら れる酸化コバルト由来の二本のピーク(約520 cm⁻¹,約 690 cm⁻¹)を確認できる。Figure 10は, in-situラマン分 析用のセルである。このセルは大気非暴露測定だけでは なく、密閉した状態で充放電をしながら電極のラマン分 光分析が可能である。

まとめ

本稿では、リチウムイオン電池の研究開発・製造プロセスにおける劣化要因の解明に有用な分析手法について、 電極板やセパレータの元素分布,結晶性評価,化合物分 布などの観点からそのアプリケーションを交えて紹介した。モバイル用途以外にも電気自動車用蓄電池や再生可 能エネルギー発電用蓄電池などへの用途が拡大してい る今、リチウムイオン電池構成部材の性能評価,劣化解 析において分析技術への期待は益々大きくなっている。 今後も、我々が持つ様々な分析技術を駆使して、リチウ ムイオン電池の研究開発や品質管理に役立つ新しい分 析アプリケーションの開発を目指したい。

参考文献

- [1] 小久見善八編書,「リチウム二次電池」,(株)オーム社,(2008)
- [2] 吉野 彰,「二次電池材料の開発」, シーエムシー出版, (2008)
- [3] B. Kang and G. Ceder, "Battery materials for ultrafast charging and discharging" *Nature*, 458, p.190-193(2009)

廣瀬 潤 Jun HIRO 株式会社 開発本部 科学・半導

Jun HIROSE 株式会社 堀場製作所

株式云社 堀物衆FFが 開発本部 アプリケーション開発センター 科学・半導体開発部 マネジャー 博士 (医学) アプリケーション

カビ毒分析用前処理カラム「SmartColumn」の開発

Development of an Immunoaffinity Column "SmartColumn" for Mycotoxin Analysis

内ヶ島 美岐子 Mikiko UCHIGASHIMA 食品中のカビ毒アフラトキシン、オクラトキシンを分析する際に必要な前処理 用カラム「SmartColumn」シリーズを開発した。「SmartColumn」は、抗体を利 用したイムノアフィニティーカラムであり、カラムの性能は抗体に依存すると ころが大きい。抗体から自社で開発、作製することにより、従来のイムノアフィ ニティーカラムよりも有機溶媒耐性の高いカラムを開発することができた。そ の結果、食品から有機溶媒を用いて抽出した抽出液を、少ない希釈でカラムに 負荷することができ、希釈により濁りが生じて分析の難しかった試料について も分析できるようになった。アフラトキシン用カラム「AFLAKING」、オクラトキ シン用カラム「OCHRAKING」、どちらもアセトニトリル濃度20%まで使用可能 である。

"SmartColumn" products consisting in "AFLAKING" and "OCHRAKING" were developed for mycotoxin analysis. This product is an immunoaffinity column whose performance depends on the antibody used. The newly developed IAC was the best regarding organic solvent-torelance at the time the product was lounched.Both "AFLAKING" and "OCHRAKING" can be used for acetonitrile having a concentration of up to 20%.

はじめに

カビ毒とは、カビの二次代謝物として産生される化学物 質のうちで、ヒトや家畜、魚類などに対して有害な作用を 示す物質の総称であり、現在300種類以上のカビ毒が報 告されている。これらのカビ毒は自然毒であるため、食品 への汚染を防止することは困難であり、また、比較的熱に 強いため、通常の加工・調理ではカビ毒に汚染された食 品から除去することは困難である。そこで、健康被害の 予想されるカビ毒に対しては国が規制値を策定すること により、カビ毒の摂取を最小限に抑えている。現在、国内 では、アフラトキシン(Aflatoxin:AF)、パツリン、デオ キシニバレノールに規制値が設定されており、それぞれ に通知法として、妥当性評価された試験方法がある。カ ビ毒の分析には主に高速液体クロマトグラフィー(Highperformance liquid chromatography:HPLC)を用い るが、食品そのままでは分析できないため、溶媒を用い て食品から抽出した溶液をHPLCで分析することになる。 この抽出溶液には様々な夾雑物質が含まれるため、精製 しなければならず、この精製に用いるのがイムノアフィ ニティーカラム(Immunoaffinity column: IAC)であり、 AF分析用の前処理カラム「AFLAKING」は、AF分析の 通知法に掲載されたIACである。

IACは、アガロースゲルに目的物質に対する抗体を結合 させたカラムで、抽出液中の目的物質を特異的に捕捉す ることにより、精製、濃縮することができる。しかし、IAC は、たんぱく質である抗体を利用しているため、一般的に 有機溶媒に弱い^[1]。例えば、AF分析では、食品からAF を抽出する際に有機溶媒を使用するため、カラムに負荷 する際には水での充分な希釈が必要であるが、希釈によ る液量の増加や沈殿物の発生などが問題となる。そこで、 有機溶媒耐性の高い抗体を作製することで、従来のIAC よりも少ない希釈で使用できるIACを開発できた。

アフラトキシン用 イムノアフィニティーカラム

AFは天然物中で最強の発がん性物質とされており、日本でも規制値が設定されている。2011年10月に、それまでAFB1のみの規制であったのが、トータルAF(Total Aflatoxin:TAF)として類縁体であるAFB1,B2,G1,G2を合わせた総量規制となった。このため、IACに使用する抗体もこれらのすべてのAF類縁体に同等に反応し、さらに有機溶媒耐性も高い抗体が必要である。Figure 1にその4種類のAF類縁体の構造を示す。

Figure 1 Structures of TAF

抗AF抗体作製

AFは低分子化合物であり, それ自体に免疫原性がない ため, 免疫原としてAFB2とたんぱく質であるKLH*1との 結合体を調製し^[2,3], これをマウスに免疫した。AFに対 する抗体価の上がったマウスの脾臓細胞を取り出し, マ ウスミエローマ細胞と細胞融合し, ハイブリドーマを得 た。その中から, Figure 1のすべてのAFに反応し, 有機 溶媒耐性の高いものをスクリーニングし, スクリーニン グによりハイブリドーマを選択した後, 細胞クローニング し, モノクローナル抗体産生細胞を得た。さらに, この中 からもっとも反応性が高く, かつ有機溶媒耐性が高かっ

Figure 2 Reactivity of the antibody with AF in ic-ELISA

た抗体産生細胞を,マウスの腹腔内に接種し採取された 腹水からモノクローナル抗体を精製し,以降の実験に用 いた。

調製したモノクローナル抗体のAFに対する交差反応性 を間接競合ELISA*²によって調べた。固相化抗原には AFと牛血清アルブミン結合体を用いて,抗体と各AFと の競合反応を行った。Figure 2は,その結果であるが, IC50値*³は,B1が1.9 ng/mL,B2が2.1 ng/mL,G1が 2.1 ng/mL,G2が2.4 ng/mLとなり,すべてのAFに対し て同等の反応性を有した抗体であることがわかった。次 に,この抗体の有機溶媒耐性について調べた。AF分析 の通知法では,抽出液がアセトニトリルであるため,ここ でもアセトニトリル耐性を調べた。Figure 3は,AFB1に おける間接競合ELISAの結果であるが,アセトニトリル 耐性は,10%→20%→30%→40%と濃度依存的に低下し たが,40%まで反応性が認められ,50%ではほとんど反 応性はなかった。このことから,アセトニトリル40%まで はAFと反応する抗体が得られたことがわかる。

- *1:Keyhole Limpet Hemocyanin:スカシ貝ヘモシアニン
- *2: Enzyme-Linked ImmunoSorbent Assay:抗原あるいは抗体を 固相に結合し,液相の抗原あるいは抗体に酵素を標識して抗原抗 体反応させ,反応後に洗浄することによって未反応物を除去し,固 相に結合した酵素の活性を検出する測定法
- ***3**:50% of inhibition concentration value:吸光度を50%阻害する 濃度

IACの作製

目的の抗体が得られたことがわかったので、次にこの抗体を用いてIACを作製した。ゲルは、活性化済みアガ

Figure 3 Acetonitrile tolerance of MoAb2-3 reactivity with AFB1 in ic-ELISA : 1, 10, 20, 30, 40, and 50% acetonitrile.Acetonitrile percentages are the final acetonitrile concentrations in the competitive reaction mixture.

ロースゲルを使用し、カップリングバッファーは、PBS、 ブロッキンッグバッファーはモノエタノールアミン、洗浄 バッファーは、0.1 M酢酸ナトリウムを用いた。まず、ゲル を1 mMの塩酸で洗浄後、抗体と4 ℃で4時間反応を行っ た。4 ℃で一晩ブロッキング後、洗浄し、このゲルをエン プティーカラムに詰め、IACとした。作製したIACのアセ トニトリル耐性は**Figure 4**の通りである。アセトニトリル 濃度20%まで、すべてのAFに対してほぼ100%の回収率 が得られた。B1、B2については、アセトニトリル濃度40% まで100%の回収率が得られた。

次に, 実サンプルでの添加回収試験を行った。AFは主に 熱帯地方で産生されるため, 汚染は輸入食品に多く, とう もろこし, ピーナッツ, はとむぎ, スパイス類などがある。 この中でもスパイス類は, HPLC分析において, 夾雑物の 影響が大きく正確に測れない, また, 精製にIACを使用 すると, 抽出液を希釈した際に懸濁してしまい回収率が 悪くなるという問題があり, 分析が難しいとされている。 そこで, 今回作製したIACを用いて, スパイス類の分析 方法について検討したところ, HPLCのクロマトグラムに おいても各AFピークへの夾雑物の影響はなく, **Table 1** に示したような良好な回収率が得られた。

これらの結果から,開発したカラムは,高濃度の有機溶 媒でも使用することができ,抽出液の希釈が少なく,迅 速・簡便にクリーンアップすることができることを確認で きた。また,これまでクリーンアップが難しいとされてい たターメリック,黒こしょうなどのスパイス類でも問題な く使用できることがわかった。

オクラトキシン用 イムノアフィニティーカラム

海外では、FAOとWHOの下部組織であるコーデックス

Figure 4 Acetonitrile tolerance of the prepared IAC : AFB1, AFB2, AFG1, and AFG2

委員会が規制値を設定しており^[4], TAF, オクラトキシン ((Ochratoxin)以降OT), AFM1などに規制値が設定さ れている。日本もコーデックス委員会に従って, 規制値を 設定していく方針であり, 今後TAF以外のカビ毒にも規 制値が設定されていくと思われる。そこで, この規制値設 定予定に沿って, SmartColumnのシリーズ化を目指し, OT用IACを開発した。

抗OT抗体作製

AF用IACと同様,まずは抗体の開発を行った。OT分析 でもアセトニトリルやメタノールなどの有機溶媒を用い て食品からOTを抽出しなければいけないため、OT用 IACでも、AFと同様、有機溶媒耐性が必要である。また、 OTには類縁体化合物であるOTA, OTBがある。そこで、 有機溶媒耐性の高く、また、OTAにもOTBにも同等に反 応する抗体の開発を目指した。抗体作製方法はAFと同 様に、OTAとKLHとの結合体を調製し、これをマウスに 免疫した。このマウスの脾臓細胞を取り出し、マウスミエ ローマ細胞と細胞融合し、ハイブリドーマを得た。ハイブ リドーマをスクリーニングし、最もOTA, OTBとの反応 性が高く, 有機耐性の高い抗体を産生するクローン細胞 を樹立した。得られた抗体の反応性を間接競合ELISAに よって調べた結果, IC50値は, OTAが27 ng/mL, OTB が17 ng/mLとなり、OTAにもOTBにも反応する抗体が 得られた。また、抗体の有機溶媒耐性は、アセトニトリル 濃度が20%まで、メタノール濃度が30%まで耐性があり、 有機溶媒耐性の高い抗体が得られたことがわかった。

IACの作製

得られた抗体を用いて、AFと同様の方法で、IACを作製 した。市販されているOT用IACは、試料からの抽出液を カラムに負荷後、PBSで洗浄し、さらに10 mM酢酸アン モニウム溶液で洗浄する必要がある。洗浄時に精製水が 使用できると、10 mM酢酸アンモニウム溶液を準備する 手間が省けるが、精製水で洗浄すると回収率が下がって

Table 1 Mean total TAF recoverie extracted with 90% acetonitrile from spiked food samples by means of the prepared IAC cleanup

	パプリカ	白胡椒	唐辛子	シナモン	ターメリック	コリアンダー
B1	91	97	97	78	101	92
B2	89	98	98	82	92	91
G1	99	88	99	87	89	91
G2	99	86	99	89	90	92

しまうため,精製水は使用できない。一方,今回作製した IACは,酢酸アンモニウム溶液で洗浄しても精製水で洗 浄しても回収率に差はなく,どちらも使用可能であるこ とがわかった。以降の実験はすべて精製水で洗浄を行っ た。

作製したIACの有機溶媒耐性について調べた。OTの汚 染は広い地域に分布しており、AFよりも多くの種類の食 品が汚染されるため、抽出溶液も食品によって、メタノー ルを使用したりアセトニトリルを使用したりしなければい けない。そこで、メタノールとアセトニトリルについてそ れぞれ耐性を調べた。その結果、メタノール耐性につい て、OTAではメタノール濃度70%まで、OTBではメタノー ル濃度60%まで、ほぼ100%の回収率が得られ、アセトニ トリル耐性について, OTAではアセトニトリル濃度40% まで、OTBではアセトニトリル濃度20%まで、ほぼ100% の回収率が得られた。以上のことから、今回得られた抗 体で作製したIACは、OT抽出に用いられる有機溶媒で あるメタノール,アセトニトリルに耐性が高いことがわ かった。次に、作製したIACでの実サンプルの添加回収 試験の結果をTable 2に示す。小麦は60%アセトニトリル で抽出後, PBSで2倍希釈, ココアは70%メタノールで抽 出後、0.01%Tween20含有PBSで2.3倍希釈した。ワイン は1%ポリエチレングリコール・5%炭酸水素ナトリウム 溶液で希釈するだけで、IACに適用した^[5]。

Table 2 Recovery of OTs in spiked food samples by the prepared IAC.

	小麦	ココア	赤ワイン
ΟΤΑ	100	102	95
ОТВ	91	103	99

おわりに

開発したIACは、AF用IAC「AFLAKING」、OT用IAC 「OCHRAKING」として販売中である。有機溶媒耐性抗 体を作製し、それをIACに使用することで、従来の製品よ りも高濃度な有機溶媒をカラムに負荷することができる ようになった。その結果、今まで難しいとされてきた試料 についても分析することができるようになり、また、前処 理の簡便化、時間短縮にもつながった。

AFLAKINGは,総アフラトキシン分析の通知法にも収 載され,検疫所をはじめ,食品メーカーでの品質管理部 門,受託分析施設等でご使用いただいている。

食に対する関心が高まる中, 今後もカビ毒分析を通じて

食の安心・安全に貢献していきたいと考える。

参考文献

- Scott, P. M.; Trucksess, M. W. Application of immunoaffinity columns to mycotoxin analysis, J. AOAC Int., 1997, 80, 941-949.
- [2] Chu, F. S.; Ueno, I. Production of antibody against aflatoxin B1 Appl, *Environ. Microbiol.* 1977, 33, 1125-1128
- [3] Chu, F. S.; Hsia, M. T. S.; Sun, P. S. Preparation and characterization of aflatoxin B1-1-(O-carboxymethyl)oxime, J. AOAC 1977, 60,791-794.
- [4] Codex general standard for contaminants and toxins in foods, CODEX STAN 193-1995, 24
- [5] Y. Sugita-Konishi, M. Nakajima, S. Tabata, E. Ishikuro, T. Tanaka, H. Norizuki, Y. Itoh, K. Aoyama, K. Fujita, S. Kai, S. Kumagai, J. Food Prot. 69(2006)1365-1370.

内ヶ島 美岐子 Mikiko UCHIGASHIMA

株式会社 堀場製作所 開発本部 アプリケーション開発センター 医用開発部

Selected Article

一般論文

イオン液体塩橋を用いたpHの正確な決定

Accurate Determination of pH by Use of Ionic Liquid Salt Bridge

芝田 学 Manabu SHIBATA 電気化学計測において、塩橋は欠かせない重要なデバイスである。その発明以 来、1世紀にわたって濃厚KCIがその役割を果たしてきた。しかし、濃厚KCI塩 橋のすぐれた性能は、常に満足のいくものではない。KCI塩橋が長く使用され てきた主な理由は、他に良いものがなかったからである。新たに現れた中程度 に疎水性のイオン液体に基づいた塩橋は、KCI塩橋が抱える本質的な問題を 解決し、pH計測のみならず電気分析化学に新たな展開を引き起こすものと期 待される。本稿では、イオン液体塩橋の基礎からpH計測への応用を紹介する。

A salt bridge is a device indispensable in electrochemical measurement. Since the invention of that, a concentrated KCI solution has fulfilled the role over 100 years. The excellent performance of a concentrated KCI salt bridge (KCISB), however, does not always work satisfactory. The reason why a KCISB has been used for a long time is mainly the lock of better alternatives. It is anticipated that a newly proposed salt bridge based on moderately hydrophobic ionic liquids solves the intrinsic problems of a KCISB and bring a new dimension to not only pH measurement but also electroanalytical chemistry. In this paper, we introduce the fundamental property of an ionic liquid salt bridge and the application of it to pH measurements.

はじめに

Towerが, 電池の溶液相にKCl水溶液を挟むことで液 間電位差をゼロにできることを示したのが1896年であっ た^[1]。それ以来, 電気分析化学の分野では, 100年以上に わたってKCl塩橋が用いられてきた。本稿で紹介する技 術は, この塩橋に関するものである。ここでは, 本技術の 応用として最も重要であるpH計測に限って説明する。

信頼性の高いpH計測は,環境から生体に至るまでの広 範な被験体において重要である。ガラス電極を用いた電 位差測定^[2]が,その発明以来1世紀にわたって,pH計測 法として広範に使用されている。電位差測定は,pHに応 答するガラス電極と,電位差の基準となる比較電極(参 照電極とも呼ぶ)の2本の電極の間の電位差を測定する。 しかし,この方法には,比較電極の内部液と被験溶液と の間に発生する液間電位差の変動という問題がある。こ の問題の解決のために、塩橋と呼ばれる異種の溶液の間 の液間電位差を安定化する溶液が用いられる。この塩橋 に高濃度KCl水溶液を用いる方法(以下,KCl塩橋)が、 世界的に最も広く採用されてきた解決法である。しかし ながら,KCl塩橋には、雨水やボイラー水などの低導電率 試料の正確なpH測定が困難であることに加え,KClの流 出による試料の汚染および比較電極の劣化など、高濃度 KClを用いる以上避けがたい本質的な問題がある。

本技術は,水溶液との間に熱力学的に安定な電位差を発 生する疎水性イオン液体を塩橋として用いることにより (以下,イオン液体塩橋),原理的に新しい素材と方法で, これらの問題点の解決を図る。揮発性がなく耐熱性,電 気伝導性などの優れた物性を有するイオン液体の特性 を最大限に活かした高精密高安定なpH計測技術である。 本稿では、従来のKCl塩橋では解決できなかった課題が、 イオン液体塩橋を適用することにより解決されることを 紹介する。

KCI塩橋の役割と限界

電位差測定ポテンショメトリーを用いて, pHを測定する ためには、ガラス電極は試料溶液中の水素イオン濃度に 応答するのに対し、比較電極の電位は水素イオンを含め 試料溶液の組成によって変化しないことが求められる。2 本の電極間の電気的導通を図るために、比較電極の内部 液は、試料溶液と接触する必要がある。この内部液と試 料溶液との接合部を液絡部と呼ぶ。しかし、組成の異な る電解質溶液が接触すると、一般にその界面には液間電 位差が発生する。ポテンショメトリーで測定される電位 差への液間電位差の寄与をできるだけ小さくするために 工夫されたのが、二つの溶液間に別の第3の溶液を挿入 するという方法である。この第3の溶液を塩橋と呼ぶ(た だし、pH測定用に用いられている塩橋は、比較電極の内 部液と塩橋を同一の溶液にしている)。この塩橋として, 高濃度KCl溶液その発明以降,1世紀にわたって広く使用 されてきた。 塩橋に高濃度KClが使用される理由は、

- (1)水溶液中でのK⁻とCl⁻の移動度が等しいため,K⁻と Cl⁻の移動による拡散電位が小さいこと。
- (2)KCl濃度が高いためにK⁻とCl⁻の移動が液間電位差を 支配し,他のイオン種の液間電位への寄与を小さくす るためである。

しかしながら, KCl塩橋による液間電位差の除去は, 必ずしも万能ではない。Table 1は, 希薄水溶液とKCl塩橋間の液間電位差の推定値を示したものである^[3]。電解質溶液の濃度が低下するとともに, 液間電位差が大きくなることが分かる。濃度が10 µM以下では, 液間電位差が6 mV程度に達するが, これはpHにして0.1に相当する。しかも, 実際には液間電位差は時間的に変動し, 安定し

ない。したがって, KCI塩橋の働きは, 低イオン強度試料 のpHを±0.1 pH以上の精度で測定するためには, 十分で はない。また, KCI塩橋を用いたpH複合電極の実用的な 面においても, 液絡部の目詰まりや, 内部液の補充が必 要などの問題がある。雨水や河川水, 純水やボイラー水 の正確なpH測定を阻害する最大の要因が, KCI塩橋のこ のような動作であることは, pH計測や環境計測に関わる 研究者, 技術者の間ではよく知られている。

イオン液体塩橋

イオン液体塩橋の原理

垣内は、KClの代わりに疎水性のカチオンとアニオンから なる適度に疎水性のイオン液体を用いた塩橋(イオン液 体塩橋)を提案した^[4]。疎水性イオン液体と水相が接触 すると、2相に分離するが、イオン液体を構成するイオン は、水相に僅かに溶け出す。水も幾分かイオン液体相に 溶解してくる。2相が分配平衡の状態にあるときは、水相 とイオン液体相の間に分配平衡が成立し、界面には分配 電位差が生じている。水相に含まれているイオンが親水 性であれば、水相とイオン液体相の間の界面電位差 $\Delta \phi$ は、イオン液体構成イオンの分配で決まる。以下のように、 二つの水相の間にイオン液体を挿入すると、イオン液体 の右側と左側の界面での $\Delta \phi$ は、値が(ほぼ)同じで符号 が逆であるから相殺されて、結果として水相1と2の間の 液間電位差は(ほぼ)ゼロになる^[5]。

水相1 | 塩橋 | 水相2

これが、イオン液体を塩橋に用いることができる理由である。

イオン液体塩橋の特長

イオン液体塩橋では、水相側のイオン濃度が低くなれば

Table 1 Liquid junction potentials between dilute solutions and a saturated KCI solution at 25 °C in millivolts.

Molarity	Equimolar Na acetate + acetic acid	Potassium hydrogen phthalate	Sodium acetate	HCI	кон	KCI
10 ⁻²	3.20	3.49	3.23	2.85	1.92	2.78
10 ⁻³	4.15	4.06	4.21	3.97	3.22	3.93
10 ⁻⁴	5.00	4.87	5.27	4.77	4.48	5.02
10 ⁻⁵	5.80	5.78	6.29	5.69	5.75	6.10
10 ⁻⁶	6.72	6.71	7.23	6.70	6.88	7.07

なるほど,水相側のイオンのイオン液体 相への移動が少なくなるため,水相側 のイオンの妨害影響が抑制される。し たがって,イオン液体塩橋は,希薄水溶 液の測定に適している。イオン液体塩 橋には,水への溶解度が数百µMから数 mM程度のものが適している。イオン液 体の溶解度が限られているので,試料 の汚染が少ない。KCl塩橋では、低イオン強度試料への 高濃度KClの流入で、試料のpH自体が変化してしまう。 血液や生体試料では、KClの流出によってタンパク質成 分などが変化する、などの問題があるが、イオン液体塩 橋にはそのような問題は生じない。イオン液体塩橋の原 理や特徴についての詳細は、垣内の塩橋に関する総説^[6] に詳しく記述されているのでそちらを参照頂きたい。 以下では、イオン液体塩橋の性能や、pH測定への応用を 紹介する。

1-Methyl-3-octylimidazolium (C₈mim⁺)

Bis (trifluoromethanesulfonyl) amide $(C_1C_1N^-)$

Figure 1 Structure of $C_8 mimC_1C_1N$

Figure 2 Schematic view of the ionic liquid-type reference electrode. 1, lead wire; 2, cap; 3, plastic tube; 4, 3.3 mol dm⁻³ KCl aqueous solution; 5, Ag/AgCl electrode; 6, O-ring; 7, gelled ionic liquid; 8, cylindrical cap

pH標準液中での イオン液体塩橋の安定性

この節では、pH測定に用いられるpH標準液中でのイ オン液体塩橋の安定性を示す^[7]。pH標準液中でダブ ルジャンクション型KCl比較電極を基準として、ゲル 化したイオン液体, 1-methyl-3-octylimidazolium bis (trifluoromethanesulfonyl)amide $(C_8mimC_1C_1N)$ を用いた比較電極の電位を測定した。Figure 1,2に C_smimC₁C₁Nのカチオンとアニオンの構造とイオン液体 型比較電極の構造をそれぞれ示す。電位差測定は、リン 酸塩標準液,フタル酸塩標準液,クエン酸塩標準液,ホ ウ酸塩標準液の順に、リン酸塩からホウ酸塩までをひと つのシリーズとし、3回繰り返し測定した。Figure 3に、 各標準液中でのダブルジャンクションKCl型比較電極 を基準に測定したイオン液体型比較電極の電位を示す。 Figure 3の各点は、測定開始から3分後の値である。フ タル酸塩標準液を除いて, 各標準液での電位の変動は, 1mV以内である。また、同じ標準液の3回の繰り返し測 定での標準偏差は、0.4 mVであった。イオン液体塩橋の 液間電位差の変動は、フタル酸塩標準液を除いてKCl塩 橋と同等であることが分かる。フタル酸塩標準液では、 液間電位差が4 mVほど変動している。その原因は、フタ ル酸塩標準液に含まれるフタル酸水素イオンが疎水性 であるため、フタル酸水素イオンがイオン液体相側への 移動し、イオン液体の分配平衡で決まる電位をシフトさ せるためでる。このようにイオン液体塩橋は、 試料溶液に 疎水性イオンが含まれていると、液間電位差が変動する。

Figure 3 *E* of IL-type and KCI-type electrodes after 3 min for measurements of pH standard solutions. open circle, IL-type; open aquare, KCI-type.

これは、イオン液体塩橋の本質的な弱点である。この疎 水性イオンによる変動は、完全に除去はできないが、イオ ン液体構成イオンの疎水性を調節することで、疎水性イ オンの影響を減少できる^[8]。

イオン液体塩橋を用いた 希薄溶液のpH決定

イオン液体塩橋の得意とする試料のうちのひとつが、純 水、ボイラー水、雨水や河川水などの低イオン強度試料 である。イオン液体塩橋を実装したガラス複合電極を用 いて,希薄硫酸のpHを正確にかつ短い応答時間で測定 できることは、本号のp. 22でも紹介しているので、そち らを参照して頂きたい。ここでは、水素電極とイオン液 体塩橋, tributyl(2-methoxyethyl)phosphonium bis (pentafluoroethanesulfunyl)a mide(TBMOEPC2C2N) 塩橋,からなる電気化学セル(Figure 4)で、イオン液体 塩橋の正確さを示した報告を紹介する^[9]。Table 2は, Figure 4の電気化学セルを用いて20-200 µmol dm⁻³硫 酸溶液のpHを測定した結果である。**Table 2**中のpH_{ex}が 測定値で, pH_{cal}が計算値である。20-200 µmol dm⁻³の 濃度範囲で測定値と計算値の差が0.01 pH以内であった。 Metcalfは、KCl塩橋型ガラス複合電極を用いた50 umol dm⁻³硫酸のpHの測定値と計算値との差が0.06 pHと報 告している^[10]。このように、イオン液体塩橋は、KCl塩橋 よりも正確に低イオン強度試料を測定できる。この結果 は地球化学や環境科学だけでなく産業にも新たな展開を 招くと予想される。

位差を抑制し,また試料への汚染が少ないため,血液や 体液のpH測定に有用であると期待される。

本稿では、イオン液体塩橋を用いて、生理学的な溶液の pH測定のためのイオン強度、*I*=0.16 mol kg⁻¹、の参照 標準液のpH測定を紹介する。TBMOEPC₂C₂Nのイオ ン液体塩橋と水素電極から成る電気化学セルを用いて、 参照標準液のpHを測定した結果を**Table 3**に示す^[8]。

イオン液体塩橋を用いた 生理学的溶液のpH決定

血液や血漿の正確なpH測定は,臨床診断において重要不可欠である。KCl塩橋型ガラス複合電極を用いた血漿のようなイオン強度,*I*=0.16 mol kg⁻¹,の等張食塩水溶媒のpH測定において,KCl塩橋と等張食塩水溶媒間の液間電位差は,0.03-0.05 pHに達する誤差を生む^[11]。臨床化学者や生物学者は,血液や体液のpH測定に対して,体液と適合性のあるイオン強度,*I*=0.16 mol kg⁻¹の参照標準液を用いてきた。イオン液体塩橋は,等張食塩水溶媒との液間電

Table 2 The experimental and calculated pH value of 20-200 μ mol dm⁻³ H₂SO₄.

Molarity of H₂SO₄ ∕µmol dm ^{−3}	Molarity of H ₂ SO ₄ /µmol kg ⁻¹	$m_{ m H^+}$ /µmol kg ⁻¹	γ _H +	рН _{саl}	Mean pH _{ex} ±95% confidence interval	pH _{ex} -pH _{cel}
20	20.06	40.04	0.9910	4.401	4.410±0.021	0.009
50	50.15	99.85	0.9860	4.007	4.008±0.018	0.001
100	100.30	198.87	0.9804	3.710	3.713±0.026	0.003
150	150.45	297.12	0.9762	3.538	3.543 ± 0.020	0.005
200	200.59	394.67	0.9727	3.416	3.421 ± 0.029	0.005

Table 3 Experimental pH values obtained by use of ILSB and pH values by use of a Harned cell or KCISB at reference buffer solutions studied at 37 °C.

buffer solution	pH_{Hamed}	рН _{ксізв}	Mean pH _{ex} ± 95% confidence interval	рН _{ксіѕв} -рН _{наrmed}	pH_{ex} - pH_{Harmed}
1:3.5 phosphate	7.297	7.267	7.282 ± 0.012	-0.030	-0.015
1:3 Tris	7.427	7.381	7.395±0.015	-0.046	-0.032
1:2 HEPES	7.661	7.631	7.613±0.008	-0.030	-0.048
1:2 TES	7.535	7.503	7.484±0.017	-0.032	-0.051

Table 3中の参照標準液の組成は、次の通りである。1: 3.5phosphate : KH₂PO₄(0.005217), Na₂HPO₄(0.018258), NaCl (0.1); 1.: 3 Tris: Tris-HCl (0.05), Tris (0.01667), NaCl(0.11); 1:2 HEPES: HEPES(0.02), NaHEPES (0.04), NaCl(0.12); 1:2 TES: TES(0.02), NaTES(0.04), NaCl (0.12). 括弧内の数字は, 質量モル濃度 mol kg⁻¹を 表す。実験方法の詳細は,著者の博士論文を参照頂き たい^[8]。Table 3のpH_{Harned}, pH_{KCISB}, pH_{ex}は, それぞれ Harnedセル, KCl塩橋, イオン液体塩橋を用いて得られ たpH値である。Harnedセルは、 塩橋のない電気化学セ ルであり、Harnedセルを用いて得られたpH値が液間電 位を含まない値として、ここでは真値に最も近い値と考 える。**Table 3**を見ると、1:3.5 phosphateと1:3 Trisで は、イオン液体塩橋がKCl塩橋よりもHarnedセルで得ら れた値に近い。しかし、1:2 HEPES、1:2 TESでは、イ オン液体塩橋の方が、KCl塩橋よりHarnedセルの値から 偏倚している。これは、HEPES⁻やTES⁻がイオン液体側 に移動するためと考えられる。これらの影響を低減する には、イオン液体構成イオンの疎水性や溶解度を調節す る必要がある。

おわりに

pH計測において, KCl塩橋ではうまく測定できなかった 試料を,イオン液体塩橋を用いることで,実用的に満足 できる精度で測定可能となった。また,本稿では取り扱わ なかったが,イオン液体ゲルをAg|AgCl電極に直接コー トすることで比較電極の小型化も可能である。イオン液 体の最適化と,電極の小型化を推進し,イオン液体型電 極のバリエーションを増やすことで,液体計測の多様な ニーズにお応えできれば幸いである。

謝辞

本研究は,科学技術振興機構(JST)先端計測分析技術・機器 開発プログラムの一環として京都大学と共同して行われまし た。本研究に際し,終始懇切丁寧なご指導を賜りました,京都 大学大学院 工学研究科 名誉教授 垣内隆先生に深く感謝申 し上げます。

参考文献

- [1] Tower, O. F.; Z. phys. Chem., 1896, 20, 198-206.
- [2] Haber, F.; Klemensiewicz, Z. Z. phys. Chem. 1909, 67, 385.
- [3] Picknett, R.G. Trans. Faraday Soc. 1968, 64, 1059-1069.
- [4] Kakiuchi, T.; Yoshimatsu, T. Bull. Chem. Soc. Jpn. 2006, 79, 1017-1024.
- [5] Kakiuchi, T. Transactions of The Research Institute of Oceanochemistry, 2012, 25, 24-29
- [6] Kakiuchi, T. J. Solid State Electrochem. 2011, 15, 1661-1671
- [7] Shibata, M.; Yamanuki, Y.; Iwamoto, Y.; Nomura, S.; Sakaida, H.; Kakiuchi, T.; Anal. Sci., 2010, 26, 1203-1206.
- [8] Shibata, M. Ph. D. Thesis, University of Kyoto, 2012
- [9] Shibata, M.; Sakaida, H.; Kakiuchi, T.; Anal. Chem., 2011, 83, 164-168.
- [10] Metcalf, R. C. Analyst 1987, 112, 1573-1577.
- [11] Bates, R. G.; Vega, C. A.; D. R. White, J. Anal. Chem. 1978, 50, 1295-1300.

芝田 学 Manabu SHIBATA

株式会社 堀場製作所 開発本部 アプリケーション開発センター 液体計測開発部 博士 (工学)

Selected Article

一般論文

SEMを用いた原子分解能ホログラフィー: 逆X線光電子ホログラフィー

Atomic Resolution Holography with SEM: Internal-Detector Electron Holography

上坂 彰朗 Akio UESAKA 林 好一

Kouichi HAYASHI

松下 智裕 Tomohiro MATSUSHITA

新井 重俊 Shigetoshi ARAI

はじめに

科学の分野において, 電子顕微鏡を用いた分析は必須 の技術である。例えば, 走査型電子顕微鏡(SEM)では, 試料に電子線を照射し, 試料から発生する二次電子, も しくは反射電子を測定することで, その試料表面の観察 が可能である。また, 試料からは, 反射電子, 二次電子 以外に, 特性X線やカソードルミネッセンスが発生する (Figure 1)。例えば, 特性X線を測定することで, 試料の 定量・定性分析が行える。また, カソードルミネッセン スを測定することで, 試料の結晶欠陥や不純物の観察 が可能である。筆者らが発見した逆X線光電子ホログラ フィー^[1-5]は, 試料から発生する特性X線を測定すること

Figure 1 Sample Surface irradiated by Electron

逆X線光電子ホログラフィー (Internal-Detector Electron Holography)とは, 走査型電子顕微鏡(SEM)を用いた原子分解能ホログラフィーである。本技術 を用いることで,実験室レベルで容易に特定原子周辺の局所構造解析が可能 になる。本項では,逆X線光電子ホログラフィーの原理と標準試料の測定結果 (バルク試料: SrTiO₃,薄膜試料: Pt)について述べる。

Internal-Detector Electron Holography, which is one of the Atomic Resolution Holography, can be proved with Scanning Electron Microscope. With Internal-Detector Electron Holography, we can analyze the local structure around the specific atoms in the laboratory. In this paper, I explain the theory of Internal-Detector Electron Holography and the measurement results of a bulk sample (SrTiOe₃) and a thin film sample (Pt).

で, 試料表面の原子構造解析を行う方法である。

この測定法は、最近、注目されている局所原子構造解析 技術である原子分解能ホログラフィー^[6]の一つである。 原子分解能ホログラフィーはいくつかの種類があるが、 基本的には試料中の特定の元素を励起し、発生した量子 線(光電子^[7,8]や蛍光X線^[9,10])を利用してホログラム生 成を行う。フーリエ変換等を用いた解析を行うことによ り、試料中の目的原子周辺の3D原子像を半径数nmの範 囲で再生できる。従来の構造解析において一般的に用い られるX線回折とは異なり、結晶の単位格子による束縛も 無いため、より多くの情報が得られる。原子分解能ホログ ラフィーでは、例えば、結晶中の不純物の構造、混晶の構 造、半導体表面の吸着子などが測定できる。しかしなが ら、従来の原子分解能ホログラフィーはSPring-8(Super Photon ring-8 GeV)などの大型実験施設が必要であっ た。一方, 逆X線光電子ホログラフィーでは, 汎用的な SEMにX線検出器を取り付けるだけで計測可能である。 SEMの電子銃から照射された電子は、試料中の原子配列 に依存して散乱する。したがって、散乱した電子線によっ て励起された特性X線を測定することで、その原子配列

を解析可能である。この手法により、広く利用されている SEMを使用した局所原子構造解析を容易に行うことが 可能となる。本稿では、逆X線光電子ホログラフィーの原 理の説明を行い、本手法の有効性を示す測定結果(バル ク試料:SrTiO₃、薄膜試料:Pt)の紹介を行う。

原理^[3-5]

原子分解能ホログラフィーには、ノーマル法とインバース 法の2種類があり、どちらの手法も目的原子周辺の原子配 列情報を持ったホログラムを測定できる。Figure 2(a)に 示すノーマル法では、試料に光や電子などを照射し、目 的原子から励起された量子線(励起波)を測定する。励起 後、励起波面の一部は、試料中の原子で弾性散乱し、物 体波を形成する。散乱しなかった波は参照波となり、物 体波と干渉した状態となり、このまま試料の外に放出さ れる。この干渉状態は励起波の放出角度分布として表れ

Figure 2 Principle of the Atomic Resolution Holography. (a)Normal Method(b)Inverse Method.

るため、これを測定することによりホログラムが得られ る。ノーマル法の例として、光電子ホログラフィーや、蛍 光X線ホログラフィーがある。一方、Figure 2(b)に示す インバース法では、試料に波動性を持った量子線(入射 波)を照射し、目的原子から励起されたX線などを測定す る。入射波を試料に照射すると、試料内で入射波の一部 は原子によって弾性散乱され物体波となる。非散乱波(参 照波)と物体波が目的原子周囲で干渉する。入射波の入 射方位と入射角度を変えることで、この干渉強度に変調 が生じる。その結果、目的原子で励起される励起波にも 強度変調が生じるため、ホログラムが得られる。インバー ス法の例としては、インバース蛍光X線ホログラフィーや、 逆X線光電子ホログラフィーがある。

得られたホログラムから, 3D原子像の再生を行うには, 光波を利用した場合はフーリエ変換によって原子像再 生ができる^[11]。しかしながら,電子波を利用した場合は 多重散乱や位相シフトの影響があり,フーリエ変換では 原子像は得られない^[12]。そこで,これらの影響を考慮し た新しい計算方法として,新たにScattering Pattern Extraction Algorithm using the Maximum-Entropy Method (SPEA-MEM)を提唱した^[13]。これは,計算した ホログラムと実験で得られたホログラムとでフィッティン グを行うことにより,実空間上に原子像を求める手法で ある。これにより,高精度かつ鮮明に原子像を再生させる ことが可能となる。

測定条件のシミュレーション

逆X線光電子ホログラフィーの場合,インバース法を利 用し,照射した電子線により試料から発生する特性X線 を測定する。入射電子の一部は,弾性散乱し,非散乱の 電子と干渉することで,ホログラムを形成するための特 性X線に寄与する。一方,入射電子の一部は非弾性散乱 する。非弾性散乱電子が励起した特性X線はホログラム のバックグラウンド信号となる。そこで,電子線のエネル ギーに対する特性X線の発生確率とホログラムの振幅か ら,ホログラムの測定効率を表す関数f(E)を定義した。 モンテカルロシミュレーションを用いてf(E)の計算を行 うことにより,逆X線光電子ホログラフィーの測定におけ る最適な電子線のエネルギーを算定した^[14]。

Figure 3 f(E) of Ti-K α for the electron energies.^[14]

Figure 4 f(E) of Pt-M α for the electron energies.^[14]

Figure 5 The adequate thickness for various energies and IMFP.^[14]

Figure 6 Measurement setup.

SrTiO₃バルクに対するシミュレーション

Figure 3に, SrTiO₃バルクを試料とし, Ti-k 特性X線を 測定した場合のf(E)を示す。f(E)が, 5.5~6.0 keV付近 で最大になっているため, そのエネルギーの電子線で測 定を行えば,最も効率よく測定できることがわかる。

Pt薄膜に対するシミュレーション

Figure 4に, Pt薄膜を試料とし, Pt-M線を測定した場合 のf(E)を示す。薄膜試料の場合, 発生する特性X線強度 は, 膜厚に依存するため, 複数の膜厚に対して, シミュ レーションを行った。薄膜の場合, バルクとは異なり, 明 確なピークが存在しないことがわかる。したがって, 薄膜 では, 高エネルギー部分においても, f(E)の値が減少し ないため, 多重エネルギーのホログラム測定が容易とな る。次に, エネルギーに対して, 最もf(E)の値が大きくな る膜厚をプロットした結果をFigure 5に示す。また, 合わ せて, 各エネルギーでの非弾性散乱自由行程(IMFP)の プロットも示す。各エネルギーの最適なPt薄膜の膜厚は, IMFPとほぼ同じ値であることがわかる。

ホログラム測定および原子像再生

Figure 6に測定配置図を示す。SEMには、日立ハイテク ノロジーズ社製の走査型電子顕微鏡 S-3400Nを用いた。 また、X線検出器には、CANBERRA社製のエネルギー 分散型Ge検出器 GUL0055Pを用いた。試料には、フルウ チ化学社製のSrTiO₃(100)とMgO(100)上に成膜を行っ たPt薄膜を用いた。本研究では、SEM中の試料ステージ を利用して、試料に対する電子線の照射角度を変えなが ら、各点での特性X線の強度を測定し、ホログラムを得 た。

SrTiO₃バルクの測定結果

SEMの加速電圧(AccV)を6.00 kVとして, SrTiO₃から 得られたホログラムをFigure 7(a)に示す。逆X線光電子 ホログラフィーでは, インバース蛍光X線^[13]ホログラム で観察されるX線定在波線に類似した構造が見られる。 我々はこれを電子定在波線(Electron Standing Wave Line)と名付けた。また,目的原子周辺の原子が電子レン ズとして振舞うことに由来する前方散乱ピーク(Forward Focusing Peak)が特徴的に観察される。これらの2つの

Figure 7 (a)Measured Hologram(AccV=6.00 kV).(b)Simulated Hologram(6.00 keV, 25 Å). $^{[4,\,5]}$

Figure 8 Reconstructed atomic image with measured holograms.^[4, 5]

Figure 9 Measured Hologram.(a)AccV=4.00 kV(b)AccV=10.00 kV.

Figure 10 Reconstructed atomic image with measured holograms.

特長は, Figure 7(b)に示すシミュレー ション^[15]によるホログラムや, 従来の光 電子ホログラフィーによるホログラムで も見られる。

SPEA-MEMを用いて, Figure 7(a)に 示すホログラムから再生させた原子像 をFigure 8に示す。緑色はSr原子,赤色 はTi原子,青色の原子はO原子をそれ

ぞれ示しており, 各原子が理想位置に鮮明に再生されて いる。Tiの原子番号がOよりも大きいため, 散乱強度が大 きくなり, Ti原子の方がO原子よりも高強度で再生されて いる。また, 球形に近い形で再生されているTi原子やSr 原子と違い, O原子は横に広がっている。これは, O原子 の位置ゆらぎに基づくものである。このように, 軽元素の 微細なゆらぎも観察できることから, 逆X線光電子ホログ ラフィーは, 軽元素にも非常に敏感な測定手法であると いえる。

Pt薄膜の測定結果

次に, Pt薄膜を試料としてホログラム測定を行った。前 章で述べたように, 薄膜の場合, 高エネルギーにおいて

> も, f(E)の値が劣化しないので, 広い 範囲での多重エネルギーホログラム測 定が可能となる。Figure 9(a)にAccV =4.00 kVで測定されたホログラムを, Figure 9(b)にAccV=10.00 kVで測定 されたホログラムを示す。両Figureにお いても, 逆X線光電子ホログラフィーの 特徴(Electron Standing Wave Line, Forward Focusing Peak)が観察され ている。また, シミュレーション結果で

も示唆されたように,加速電圧が高くなっても,ホログラ ムのコントラストが劣化していないことがわかる。Figure 10に, AccV=4.00~10.00 kVで測定したホログラムから 再生させた原子像を示す。Pt原子が理想位置に鮮明に再 生されていることがわかる。

おわりに

本稿では、SEMを用いた新しい局所構造解析技術であ る逆X線光電子ホログラフィーの解説を行い、SrTiO₃バ ルクとPt薄膜の測定結果の紹介をした。本手法は、精密 な3D原子像による高度な構造解析技術を提供できるた め、新しいSEM周辺技術としての将来性は有望である。 今後は、強磁性半導体薄膜等の応用試料の測定を行い、 更なる技術確立を目指したい。

謝辞

本研究は、独立行政法人新エネルギー・産業技術総合開発機 構(NEDO)の平成20年度大学発事業創出実用化研究開発事 業の一環として行われた。

参考文献

- [1] S. Y. Tong, and H. Huang, Surf. Rev. Lett., 5, 971(1998).
- [2] J. C. H. Spence, and C. Koch, Phys. Rev. Lett., 86, 5510(2001).
- [3] K. Hayashi, T. Matsushita, and E. Matsubara, J. Phys. Soc. Jpn., 75, 053601(2006).
- [4] A. Uesaka, K. Hayashi, T. Matsushita, and S Arai, Phys. Rev. Lett., 107, 045502(2011).
- [5] 上坂彰朗, 林好一, 松下智裕, 新井重俊, 顕微鏡, 46, 4, 270(2011).
- [6] K. Hayashi, Advances in Imaging and Electron Physics 140, 119 (2006).
- [7] A. Szöke, in Short Wavelength Coherent Radiation: Generation and Applications, ed. D. T. Attwood and J. Bokor (AIP, New York, 1986) AIP Conf. Proc. No. 147, p. 361.
- [8] J. J. Barton, Phys. Rev. Lett., 61, 1356(1988).
- [9] M. Tegze and G. Faigel, Nature, 380, 49(1996).
- [10] T. Gog, P. M. Len, G. Materlik, D. Bahr, C. S. Fadley and C. Sanchez-Hanke, Phys. Rev. Lett., 76, 3132(1996).
- [11] J. J. Barton, Phys. Rev. Lett., 67, 3106(1991).
- [12] P. M. Len, J. D. Denlinger, E. Rotenberg* and S. D. Kevan, B. P. Tonner, Y. Chen and M. A. Van Hove, and C. S. Fadley, Phys. Rev. B, 59, 5857(1999).
- [13] T. Matsushita, F. Z. Guo, M. Suzuki, F. Matsui, H. Daimon, and K. Hayashi, Phys. Rev. B, 78, 144111(2008)
- [14] A. Uesaka, K. Hayashi, T. Matsushita, and S Arai, e-J. Surf. Sci. Nanotech.(to be pubished).
- [15] T. Matsushita, F. Matsui, H. Daimon, and K. Hayashi, J. Electron Spectrosc. Relat. Phenom., 178-179, 195(2010).

上坂 彰朗

Akio UESAKA 株式会社 堀場製作所 開発本部 アプリケーション開発センター

東北大学 金属材料研究所

科学・半導体開発部

松下 智裕 Tomohiro MATSUSHITA 公益財団法人高輝度光科学研究センター 博士 (理学)

新井 重俊

Shigetoshi ARAI 株式会社 堀場製作所 開発本部 アプリケーション開発センター 科学・半導体開発部

林好一 Kouichi HAYASHI 博士 (工学)

Selected Article

一般論文

レーザ回折/散乱法による 粒子径計測の演算精度向上に関する研究

Study of the Improvement of Calculation Method for Particle Size Distribution Using a Laser Diffraction Method.

伊串 達夫 Tatsuo IGUSHI 本稿は、学位論文"レーザ回折/散乱法による粒子径計測の演算精度向上に関 する研究"の要旨を表したものである。本研究は、レーザ回折/散乱法における 粒子径分布計測の高精度化のため、粒子径分布演算に与える要因と受ける影 響を定量的に明らかにすることを目的とした。そのため、非線形反復演算アル ゴリズムや異なる検出器数を有する光学系を用いて、アルゴリズムやそのパラ メータ検出器数の影響についてコンピュータシミュレーションや実験的手法に よって得られた知見をまとめている。さらに、最大(最小)粒子径が途切れた分 布における誤差範囲の検討で得られた知見をまとめている。その結果、本研究 がレーザ回折/散乱法において、測定精度の検証や高精度の光学モデルや演 算アルゴリズムの開発が期待される。

The paper is a summary of thesis titled "Study of the Improvement of Calculation Method for Particle Size Distribution Using a Laser Diffraction Method". A motivation of the study is to investigate the influence of optical model and inversion problem on results of the particle size distribution by the laser diffraction method. The final goal of the study is to improve accuracy of particle size distribution by laser diffraction method. the effect on the kinds of inversion algorithm and these parameters, the number of detectors with same optical models, and theoretical calculation of fundamental uncertainty region based on the maximum and/or the minimum size in the preparation of standard reference particles ware researched in the study, respectively. As the results, the research is extremely useful for improving the accuracy of merriment with new design of optics and inversion algorithm for the laser diffraction method.

はじめに

レーザ回折/散乱法は,測定範囲の広さ,操作性の簡便 さや再現性の高さなどの特徴から最も広く使用されてい る粒子径計測装置の1つである。本方式は,粒子群の散 乱光強度角度分布から逆演算手法を用いて粒子径分布 を間接的に計算で求める原理のため,光学モデルや演算 アルゴリズムが異なると測定結果も影響を受ける。その ため,装置構成の違いが測定精度に与える影響は,ほと んど研究されていなかった。本研究は,より高精度の装 置を開発するために,レーザ回折/散乱法の装置構成や 逆演算手法が粒子径分布演算に与える要因とその影響 を定量的に明らかにすることを目的として研究に着手し た。

レーザ回折/散乱式粒子径分布計測に 関する既往の研究と課題

レーザ回折/散乱法は、Shifrinら^[1]が1972年に散乱光強 度の角度分布から粒子径分布の可能性を示したのが最 初である。1974年には市販の装置が使用され始めた。当 時のデータ処理技術では、ミー散乱を短時間で精度良く

計算することが困難であったため、計算が容易なフラウ ンホーファ回折を近似として用いて演算処理時間の短縮 を行っていた。ミー散乱による演算が普及しはじめたの は、サブミクロン領域がレーザ回折/散乱法で測定する ようになった1980年代後半からである。また、1980年前 半までの市販レーザ回折/散乱装置は、数umから数百 μmの粒子径分布測定範囲を複数の集光レンズで切り替 えて測定していた。しかし、1988年、世界に先駆けて株式 会社 堀場製作所が, 測定範囲を0.1µmまで拡大した単 一測定レンジの装置が販売されてから、単一測定レンジ で1µm以下の粒子径も測定できる装置が主流となり、多 くの製造業者からそれぞれ特徴を有した装置が市販され ている^[2]。広い粒径分布の計測を行うために、光源波長、 検出器レイアウトや検出器数が異なる各種光学系と粒子 径演算法が開発されている。しかし, 光学系や解析法が 異なると算出される平均粒径値や標準偏差が一致しない 場合があることは既知^[3]であり、本原理最大の課題であ る。この課題を解決するために、光学系と演算法の定量 的解析が本原理の高精度化への鍵であると考えた。

レーザ回折/散乱法の原理

レーザ回折/散乱法測定装置構成の概略をFigure 1(a) に示す。多くの装置は、検出部と試料前処理部から構成 されている。光学系の詳細図をFigure 1(b)に示す。小角 散乱光を測定するアレイ検出器を有するフーリエ変換光 学部と広角散乱光を測定する光学部から構成されてい る。レーザ回折/散乱法の検出器は、粒子径に対して検 出感度に広がりを持つ。このような検出感度の広がりは、 感度交差と呼ばれている。こうした感度交差をもった測 定法による観測値群から元の物理量の分布を推定する 方法は, 逆問題と呼ばれている。レーザ回折/散乱法の 場合, 散乱光強度角度分布値g(x)と粒子径分布f(y)との 関係は,

 $g(x) = \int K(x, y) f(y) dy$ (1)

の積分方程式で表すことができる。ここでxは検出器の散 乱強度,yは粒子径で,K(x, y)は核関数とよばれる粒子 の散乱強度分布と粒子径との関数である。ミー散乱の場 合,核関数は散乱光波長と屈折率の関数でもある。測定 値g(x)は通常真の値 $g^*(x)$ に誤差 ε を含み

で表される。式(1)は、核関数と粒子径分布とで線形性が ないため、解の一意性や観測データg(x)に対するf(y)の 連続性が一般に成立しない。さらに測定結果に誤差が含 まれているため、解はさらに不安定になる。そのため、解 の安定化をはかる各種方法が提案されている^[2,4]。 レーザ回折/散乱法の詳しい原理については、引用文 献^[2,5]を参照願いたい。

本研究の目的

近年の半導体加工技術向上によりレーザ回折/散乱法 の検出器数は、20年で10倍以上増加し、より多くの検出 器を用いて粒子からの散乱光強度角度分布が測定でき るようになった。しかし、本原理は、散乱光強度分布から 逆演算で粒子径分布を求めているため、検出器数の増加 にともなう散乱光強度情報の増加が、逆演算の解である 粒子径分布の精度に線形で反映しないのは自明である。

Figure 1 (a)Schematic block diagram of instrument for the laser diffraction method. (b)Schematics of a Fourier optics used in laser diffraction method and array detector.

しかし, 測定光学系の多様さと粒子径逆演算の複雑さから, 光学モデルの変化が粒子径分布精度に与える影響の 体系的な研究はほとんど行なわれていない。本研究では, レーザ回折/散乱法において, 光学モデルが粒子径分布 の測定精度に与える影響を定量的に評価することを目的 とした。とくに以下の問題点に注目した。

- a)各アルゴリズムの違いによる粒子径分布逆演算の精度 変化については、定量的な解析が行われていない。
- b)異なる光学モデルや逆演算アルゴリズムの測定結果を 比較しても、どの要因が粒子径分布精度に影響を与え ているかどうか分離できない。
- c)精度が保証された粒子径分布が既知の試料は限られ ているため,実験手法では,幅広く検証を行うことがで きない。そのため,実試料測定だけでは粒子径精度の 一般性が検討できない。
- d)実際に測定されている試料は、単峰性だけでなく二峰 性の粒子径分布を有するものも多いが、二峰性の粒子 径分布における粒子径分布の精度がほとんど検討さ れていない。
- e)ガウス分布の粒子径分布は(両)端は無限になるが。実 試料の粒子径分布の(両)端は切り取らとられた分布に なる。こうした分布に対する確からしさの範囲が明確 でない。
- こうした粒子径演算に影響を及ぼす要因をコンピュータ シミュレーションで検討し, 実験手法でシミュレーション

Figure 2 Schematic of the computer simulation process.

結果の検証を行った。

主な研究成果

レーザ回折/散乱法における 非線形反復アルゴリズムの特性評価^[6, 7]

レーザ回折/散乱法における逆演算の評価法として, 粒 子径分布を仮定し, その分布から仮想散乱光強度パター ンを作成したものを入力信号とし, 入力信号から逆演算 アルゴリズムを用いて粒子径分布を求め, 仮定した分布 との一致度を確認するシミュレーションで検討を行った (Figure 2)。逆演算アルゴリズムは, 構造が単純で精度 が高いTwomeyのアルゴリズムを改良した非線形反復 法を用いた。シミュレーション結果は, 精度が保障された

Figure 3 Comparison of simulated inversed particle size distributions.(a) Expected particle size dispersion, (b) results of the conventional method, and (c) results of the iteration method.

単分散ポリスチレンラテックス(PSL)ならびに一般的な 多分散試料であるアルミナを用いた実験的手法を用いて 検証した。また,非線形反復法の有用性を検討するため に,一般的な手法である拘束法との比較を行った。一般 的な拘束法と比較して,本研究で用いた非線形反復法は 分布幅が狭い粒子径分布でも信頼できる結果が得られ ることが判明した。広がりをもつ粒子径分布の場合,非 線形反復法は拘束法と同様に信頼できる粒子径演算結 果が得られた(Figure 3)。実測定のモデルとして,散乱 光信号にノイズを重畳させたシミュレーションの結果,非 線形反復法は,拘束法より信号ノイズの影響を受けにく いことが判明した。

これらの結果から、レーザ回折/散乱法において非線形 反復法は、拘束法と比較して代表粒子径のみならず分布 の標準偏差値でも同等かより高い精度が得られた。

レーザ回折/散乱法の光学系検出器数が 粒子径分布の演算結果に及ぼす影響^[8,9]

光学モデルと逆演算アルゴリズムを固定した条件で,検 出器数だけを変化させることにより,検出器数変化以外 の要因を粒子径分布演算からとり除き,検出器数が粒子 径分布に及ぼす影響を,コンピュータシ

ミュレーションと実試料測定とで比較 検討した。実試料には、精度が保障され た0.199µmから398µmまで12種類の単 分散PSL試料と対数正規分布をもつガ ラスビーズ試料とを用いた。シミュレー ションの結果、検出器数の変化による検 出器数が粒子径分布演算に与える影響 は、対数的に変化することが判明した。 また, 単峰性粒子径分布では, 標準偏差 値が増加するとより少ない検出器数で 同等の精度が得られることが判明した (Figure 4)。単分散や多分散試料の測 定でもシミュレーション結果とほぼ同等 の結果が得られた。同じ平均粒子径で も単分散と多分散の分布とでは、散乱 光強度の角度分布絶対値が異なること から、物理的な検出器数ではなく一定の 散乱光強度値を観察する検出器(有効 検出器)数が粒子径分布演算に影響を 与えることが判明した。そのため、同一 検出器数の光学系でも粒子径分布の標 準偏差値が異なると粒子径分布への検出器数影響が異 なると考えられる。さらに,滑らかな核関数値を示すフラ ウンホーファ回折近似領域の粒子径(直径約50µm以上) では,それ以下の粒子径より粒子径分布演算結果の誤差 値が低い値を示すことから,絶対粒子径が粒子径分布測 定精度に影響を与えていることが判明した(Figure 5)。

二峰性分布の場合,単分散粒子径で構成された粒子径 分布のほうが多分散粒子径で構成された粒子径分布よ り,より少ない検出器数で同じ測定精度が得られる傾向 があることが判明した。また,それぞれの粒子径分布の 標準偏差値が低い分布がより少ない検出器で同じ測定 精度になる傾向があることが判明した。

以上の結果から,検出器数が増加すると検出器素子数の 影響が急速に減少することを粒子径分布の平均径の数 値から見出した。また,レーザ回折/散乱法では,検出器 素子数だけでなく核関数値の滑らかさや粒子径分布の広 がり,一定値以上の信号を検出する有効検出器数が粒子 径演算の結果に影響を与え,測定精度が変化することを 示した。

Figure 5 Relation between the number of detectors and the error ratio of calculated and expected signal with log-normal distribution of mono disperse (SD of 0.01) with bimodal PSD. The first mode of mean diameter at(a)0.546µm with SD of 0.01 and(b) 48.1µm with SD of 0.01, respectively.
対数正規分布の(両)端が切り取られた 分布の誤差範囲^[10]

最大もしくは最小粒子径が既知の対数正規分布をもつ 粒子径分布の不確からしさの範囲について,新しい理論 式と最大もしくは最小粒子径が既知の粒子径でのコン ピュータシミュレーションとシリカ粒子の計測から理論 式の評価を行った。その結果,最大あるいは最小の粒子 径が既知の場合,不確からしさの範囲は完全な対数正規 分布より減少する可能性があることが判明した。0.1µm から1µmの最大あるいは最小の粒子径が既知の正規対 数分布をコンピュータシミュレーションで発生させた結 果,求めた理論式と同じ傾向を示した。対数正規分布を 持つシリカ粒子を用いて,株式会社 堀場製作所製レー ザ回折/散乱法粒子径分布測定装置LA-950型を用いた レーザ回折/散乱法の測定結果と顕微鏡法の結果,比較 した結果とが理論誤差範囲内でよく一致することを示し た(Figure 6)。

おわりに

本研究で得られた検証結果は、レーザ回折/散乱法の光 学モデルや演算アルゴリズムのさらなる高精度化や粒子 径分布標準試料の作成に適用できるため、測定差の影響 が十分小さい絶対粒子径測定のレーザ回折/散乱法の 装置の開発が期待される。

謝辞

本研究に際し,終始懇切丁寧なご指導を賜りました広島大学 大学院工学研究科教授吉田英人先生に深く感謝申し上げま す。

Figure 6 Measured particle size distribution of silica glasses beads with uncertainty region (solid lines). Open circles show count base distribution measured by TEM images. Filled circles show volume base distribution calculated from count base distribution. Open squares show PSD of the silica particles measured by laser diffraction method.

参考文献

- [1] K. S.Shifrin, V. F.Truchin, L. S.Turovtseva, and V. A. Gashko, Atmos. Oceanic. Physics., 8, 739(1972).
- [2] R. Xu, "Particle characterization: Light scattering methods", Kluwer academic publishers, Dordrecht(2001).
- [3] Y. Mori: *Huntai to Kogyo*, 38 B, 35(2006)
- [4] S. Tohno, Earozoru Kenkyu, 12, 281(1997).
- [5] ISO13320: 2009 International Organization of Standardization, Geneva(2009).
- [6] T. Igushi, and H. Yoshida: Rev. Sci. Inst., 82, 015111-1(2011)
- [7] T. Igushi, and H. Yoshida: *Adv. Part. Tech.*, **23**, 682(2012)
- [8] T. Igushi, and H. Yoshida: Rev. Sci. Inst., 83, 055103-1(2012)
- [9] H. Yoshida, T. Igushi, T. Yamamoto and H. Masuda: Adv. Part. Tech., 22, 43,(2010)
- [10] Proceeding of the 8th international conference on measurement and control of granular materials (MCGM2009), Shenyang, China, 110(2009)

伊串 達夫 Tatsuo IGUSHI

株式会社 堀場製作所 開発本部 アプリケーション開発センター 医用開発部 マネジャー 博士 (工学)

Product Introduction

新製品紹介

次世代統合排ガス計測プラットフォーム HORIBA ONE PLATFORM

Integrated Emission Measurement Instrument Platform HORIBA ONE PLATFORM

浦谷 勝己 Katsumi URATANI HORIBA ONE PLATFORMは, 排ガス計測分析装置(MEXA)や希釈サンプリ ング装置(CVS)を中心とする排ガス計測システムの統合計測プラットフォー ムとして, 2012年5月にMEXA-ONEと共に同時リリースされた。現行市場に 約5000台販売実績のあるMEXA-7000の後継機種としてのMEXA-ONEは, このHORIBA ONE PLATFORM上に構築された排ガス分析アプリケーショ ンである。高い拡張性を装備することで多様な計測システムを実現し,予防保 全などの充実による稼働率の高い計測システムを提供する。それが, HORIBA ONE PLATFORMである。

HORIBA ONE PLATFORM is the integrated measurement instrument platform for exhaust gas measurement system, which includes exhaust gas analyzer, constant volume sampler and other instruments. This has been released in May 2012 at the same time with MEXA-ONE. MEXA-ONE is the successor of MEXA-7000 which has been recorded more than 5000 sales in the world. MEXA-ONE is one of the instrument application created on the HORIBA ONE PLATFORM. MEXA-ONE application was developed using the concept of HORIBA ONE PLATFORM and takes advantage of its functionalities and features. This integrated measurement instrument controller provides full support for daily operation such as auto start-up sequence, etc. And furthermore, HORIBA ONE PLATFORM can provide higher test cell efficiency and availability by integrating preventive maintenance functions and self-diagnostic function such as monitoring core parameter of analytical devices, etc.

はじめに

近年,自動車開発を取り巻く環境が大きく変化してきている。ハイブリッド車,電気自動車およびクリーンディー ゼルエンジン車に加え,エンジン排気量のダウンサイジ ング,低燃費への関心が高まっている。さらに大気環境 問題への対応,排気浄化技術の開発,地球温暖化防止へ の対応は重要課題であり,その影響により,未規制とさ れていた物質(温室効果ガスN₂O等)の計測が注目を集め ている。我々の主要顧客である自動車・自動車関連メー カにおいて,これらは必要不可欠な課題となり,様々な計 測・規制に対応できる汎用性と拡張性の高い計測システ

ムが求められている。

これらの市場変化や環境変化における課題に対して, 我々計測器メーカとして計測器を開発・提供するだけで なく,試験担当者の立場にたった計測アプリケーション の提供,さらに設備管理者の立場にたった設備管理アプ リケーション等を提供し,それらの仕組みや機能を持続 的に拡張していく。そのために以下の3点に着目する。

- ① 柔軟なシステム構成や拡張が可能な装置
- 2)設備の稼働率向上
- ③ ユーザビリティ向上

これらを実現させるために、HORIBA ONE PLATFORM

(統合計測プラットフォーム)の開発を行った。以下にその 特徴を紹介する。

HORIBA ONE PLATFORMの特徴

HORIBA ONE PLATFORM (次世代統合排ガス計測プラットフォーム)とは?

HORIBA ONE PLATFORMは,各種排ガス測定装置 をフレキシブルに統合し,使いやすさにこだわったユー ザインターフェイスを提供する。設備稼働率アップのた めの管理機能など,充実した機能と優れた操作性がこれ までにない革新的な計測環境を実現する。

今日,多くの計測現場ではTAS(Test Automation System)を用いた試験自動化システムが導入されてい る。TASは各装置に対して適切なタイミングで適切な機 能をコントロールすることで試験準備から試験開始,計 測,そしてデータ演算・解析までを自動化することがで きる。これにより,オペレータのテスト作業における負荷 はかなり軽減できる。しかし,実際の計測現場における 日常操作に着目すると,オペレータの作業負荷軽減につ いて未だ十分でないことがわかる。一日の作業開始時の 計測設備の立ち上げや暖気,事前の調整作業などは,装 置の設置環境や日々の装置の状態を加味した上で,手動 や目視による作業・確認が行われている。現場の状況に よって作業の大小は様々であるが,いわゆる"現場のノウ ハウ"としてオペレータの運用による作業が実施されて

いる。多くの場合,装置毎に操作や作法 は異なっておりオペレータはその作法 を個別に熟知する必要があり,これらの "現場ノウハウ"を世代ごとに継承して いかなければならない。HORIBA ONE PLATFORMは、ユーザインターフェイ スを考える上で、これらの"現場ノウハ ウ"を可能な限りシステム化し、初心者 でも計測設備を操作・管理できる柔軟 で使いやすい計測システムを提供する。

機能概要 (Function Overview)

HORIBA ONE PLATFORMの概略機能をここに挙げる。

統合GUI(操作画面)

複数装置の統合操作の実現

実際の現場において,既設の装置も有効的に活用するために,新設される装置の他に複数の異なる既設装置との 柔軟な組み合わせが求められる。計測に必要な装置の操 作を,新・旧・他メーカを問わず一つの画面に統合し,日 常操作やアラームシューティングなどの作法を統一する ことで,オペレータに優しい,拡張性の高いユーザイン ターフェイスを提供する。

Wider Application/Flexible System

様々な計測アプリケーション構築のための, 柔軟な仕組みと装置の効率的運用

Plug in/Out操作画面において,装置の接続,切り離し(以 後Plug in/Out)が可能となる(Figure 1)。例えば,一つ の装置を複数ラボで共有することも,この機能によりワン ボタン操作で可能となる。これにより,必要な装置を必要 なときに必要な場所で使用できることで装置の効率的運 用が可能となる。※設置状況により電気的な配線やガス 配管などは別途必要となる。

Figure 1 Plug in/out Operation screen

Figure 2 Multi-point Measurement(MEXA-ONE+3*OVN+QL-NX)

Figure 3 Multi-point EGR Measurement(MEXA-ONE+2*EGR)

また,近年複雑化が進んだパワートレインや最新の後処 理装置の評価には,従来よりも複雑な計測設備が要求さ れる。例えば, Figure 2に示す様な後処理装置は,複数

Figure 4 Integration device(s)& Data Management

の触媒により構成されており、それぞれの触媒性能を評価するためには、複数のポイントのガス計測が必要となる。これに対し、MEXA-ONEでは、必要に応じてOVN (NO/NOx/THC/CH4)ユニットを組み合わせることにより、最大5ラインの計測が可能になった。そこで、必要な計測に応じた各ユニットのPlug in/outを手軽に行えるように柔軟な操作と制御を実現した。※従来のコントローラでは、一度設定したユニットのPlug in/out不可。また、最近のダウンサイズ高過給エンジンで多用されるEGR についても、Dual-EGRに対応し、EGR率計測(CO2-IN/CO2-EX)ユニットを柔軟に複数組み合わせることで、多段によるEGR率同時計測を可能とする。※従来のシステムでは、Plug in/outによる柔軟な組み合わせや多段によるEGR率同時計測は不可。(Figure 3)

装置とデータの統合(Figure 4)

多様な計測に対応するべく, 手軽に装置をシステムに統 合/分離(Plug in/out)可能であることは先に述べたが, 同様に各装置の管理データの統合も可能にする。拡張機 能として集中データ管理システム(2013/3現在計画中)を 統合することで総合的な計測システムの運用・管理が実 現する。集中データ管理システムにより, 1)ネットワーク 経由で品質管理データや計測データを閲覧・印字できる。 2)装置情報の自動バックアップにより, 万が一システムダ ウンした場合でも速やかに復旧が可能になる。3)SPAN ガスなどの共通登録データの集中管理により, 複数装置 への一括設定・管理が可能となる。また, TASで生成さ

> れる試験結果データや車両情報などの 試験データも同様に集中データ管理シ ステムに拡張できる。これにより,オペ レータの管理PC(ネットワーク上)から 遠隔操作にて,装置が計測中であって も,品質管理データや試験結果データ 等へのアクセス(閲覧・印刷)が可能と なる。また,これらのデータ管理システ ムは,新規システムとしての構築のみな らず,可能な限りお客様の既存のデー タ管理システムにも対応できるような柔 軟性も考慮している。

System Control

複数設備の一括シーケンス操作で 日常操作をサポート(Figure 5)

HORIBA ONE PLATFORMには、接続されている装置全体に対する一括シーケンス処理機能がある。この

Figure 5 System Cotrol-Auto Sequence Operation for Daily work

Figure 6 Status View for System Device(s)

IEXA-ONE-						Regula	ation :	Standar	rd
	Line Quality C	heck							_
Line	ID	v Name	Ŧ	Range	Notification Status v				
	QC1-2	ANA Response Time Check			Not Tested Yet	Test	•	History	•
	QC10-1-1	Line Response Time Check (Standard)		Remain 332 Days	Test	0	History	0
Component	Component Q	Jality Check		Rango	Notification Statur V				
Component	10	* regilie		Kaliga	Notification Status +				_
0(L)	QC1-1	ANA Linearize Check		1000 ppm	Not Tested Yet	Test		History	
O(H)	QC1-1	ANA Linearize Check		10000 ppm	Not Tested Yet	Test	•	History	•
002	QC7-1	NOx Converter Efficiency Ch	eck		Not Tested Yet	Test	0	History	•
02	QC7-2-1	CLD CO2 and H2O Quench Check	(Standard)		Remain 338 Days	Test		History	
пно									
CH4									
NO/NOx									

Figure 7 Self Notification-Periodic inspections/adjustments

機能は日常的なシステム立ち上げや暖気処理,日常点検 処理などの自動シーケンスの実行を可能とする。この機 能により,各装置での個別操作は不要となる。また,スケ ジューラ機能と組み合わせることで,予め指定した時刻 に自動実行することが可能となる。その機能により,全て の計測機器の立ち上げや暖気,事前調整,自己診断処理 等をオペレータの出社前に終えることが可能となる。 また,各装置の状態を俯瞰的に表示する(Figure 6参照) 機能を備えることで,トンネルライン,冷却ファン,CVS ブロワ等の動作状態を明示化することで,オペレータの ミス操作を防ぐとともに,火災などの重大な問題につな がる誤操作を事前に回避することを実現する。

予防保全

"設備を適切に管理する" -365日安定稼働を管理・サポートする機能

計測設備は、使用環境や使用状況により装置自身の状態 は常に変化する。例えば、消耗部品の劣化、分析計の感 度劣化、排ガスサンプリングラインの汚れ状態などが挙 げられる。日々変化する計測設備を適切に監視し、メイン テナンスや消耗部品の計画的な交換作業を促すことで、 計測設備の安定運用と高い稼働率を促進する。以下に具 体的な機能を挙げる。

定期メインテナンス -Notification(事前通知)(Figure 7)

排ガス分析計の場合,例えばNDIR分析計であれば, Linearize(検量線)を6ケ月に一度定期的なチェックの実施を推奨している。これは一例であり,分析計毎にチェッ ク項目がリスト化されており,1つの計測ラインを搭載する排ガス分析計に20~30項目の定期チェック項目が存在 し,実行周期もチェック項目によって異なる。また,複数 の分析計や他の計測装置も必要となるため,数十項目, もしくは100項目を超えるチェック項目をオペレータは管 理することになり,実施にも時間を要するため,これらを 計画的に実施することは,計測設備を効率的に稼働させ るのに重要であり,オペレータの責任と負担は非常に大 きい。そのため実施時期や各項目の状況を可視化し,オ ペレータへ事前通知(Notification)することで"うっかり" による予期しない設備非稼働を防止する。

		Mainten	ance - Hour Meter					
MEXA-ONE-D1-FT-OV-E	GR				Line/Component	Dev	ice	
	Line H	lour Meter						_
Line	Ch	Name	Life Time	Working Time	Status			
	1	Sample Meas	0 h	0 h		Detail		-
EGR	2	CAL Meas	0 h	0 h		Detail		
-	Comp	opent Hour Meter	••			[n		*
Component	Ch	Name	Life Time	Working Time	Status			
02	1	Elapsed Time	70 h	59 h	Remain 10 Hours	Detail		4
THC	2	Standby Time	20 h	1 h	Remain 18 Hours	Detail		
CH4	3					Detail		
NO	4					Detail		-
NOx	5					Detail		
	6					Detail		*

Figure 8 Self Notification-Replacement of consumable parts

Figure 9 Precaution-Flow rate Monitoring

Figure 10 Self Precaution-Analyzer Sensitivity Monitoring

消耗部品交換 -Notification(事前通知)(Figure 8)

各装置には消耗部品が存在し、オペ レータは交換時期につき管理しなけれ ばならない。これらは各部品ごとに、稼 働着算時間による交換時期の管理を行 うことにより、メインテナンス時期の自 動通知を行っている。稼働時間の積算 タイミングについては各部品ごとに異 なっており、あるサンプリングポンプは、 計測またはPurge動作でON/OFFが連 動する。また、ある冷却ファンは、 ラック の電源ON状態に連動するなど、各部品 ごとに稼働積算時間を管理できる。1つ の計測ラインを構成する排ガス分析計 だけでも約50項目の消耗部品項目が存 在する。複数の分析計や他の計測装置 も網羅すると、一つの計測システムで、 数100項目の消耗部品項目を管理するこ とになる。オペレータにとって、これら の消耗部品の交換時期についての管理 を的確に行うのは困難といえる。そのた めに各項目の稼働時間状況を可視化し オペレータへの事前通知(Notification) により, 計画的な, 交換部品の準備や交 換作業を実施することで、計測装置の 安定稼働の促進する。

アラームのPrecaution(事前通知) (Figure 9, 10)

センシングによるデータの継時変化を 監視することで、オペレータにアラーム 発生の事前通知(Precaution)を行うこ とで、予期しないトラブルを事前に回避 する。

MEXA-ONEでは、分析計感度ドリフト、 サンプル流量値、バキュームポンプ圧力 値の継時変化を監視している。

Trouble Shooting

迅速なトラブルシューティングが可能な機能

アラームが出力された場合, Figure 11に示すように, シ ンプルなボタン操作によるアラームの詳細やトラブル シューティング内容が確認できる。また, ハイレベルユー ザ向けに, ハードウェアの電磁弁ON/OFFを直接操作 できる画面(I/Oモニタ)も用意している。この機能により, 直観的にハードウェアとの動作チェックが可能となる。同 じ画面でアラームの内容確認からトラブルシューティン グ操作画面が連続して表示されるため, 従来システムに 比ベスムーズなトラブルシューティングが可能となる。

アラーム詳細(トラブルシューティング)

装置の状態確認(1/Oモニタ)

現在の装置の電磁弁やポンプの動作状態をリアルタイムにモニタ できます。

1/0モニタ画面

Figure 11 Extension for Trouble Shooting

おわりに

統合排ガス計測プラットフォーム HORIBA ONE PLATFORMのビジョンとその特徴・機能概要について 記述した。

現在,本プラットフォーム上に排ガス計測システムに必要な装置や設備管理機能について順次拡張を行っている。また,既存装置との接続も可能とすることで,新・旧・他メーカを問わない統合計測プラットフォームとして顧客の構築してきた計測システムの有効活用を行い,『必要な装置を必要な場所で必要な時に使う』を可能とし,業界における計測コントローラのデファクトスタンダードを目指す。今後もオペレータの立場にたち,計測現場と使用状況に適した計測システムを実現するために,持続的に機能拡張し続ける。また,効率的・能率的なテストを実現するHORIBA Test Automation System(TAS)とのコンビネーションによる,設備管理からテスト管理,そしてデータ管理までの一貫した,顧客志向型-自動車・エンジン統合計測テストシステム開発を目指していきたい。

補足: HORIBA ONE PLATFORM Architecture(構造)

数十年にわたり自動車・排ガス計測システムの構築に携 わってきた。今後さらに変化する市場環境や様々な計測 に持続的に対応するため、本プラットフォームの構造設 計において、特に拡張性に着目した。画面(GUI)を構築す るプラットフォーム(OGP)と装置機能を構築するプラッ トフォーム(OAP)の2つのプラットフォームから構成され る。(Figure 12)

Figure 13 GUI elements parts

Figure 12 HORIBA ONE PLATFORM Architecture Overview

HORIBA ONE PLATFORM 2つのプラットフォーム

① Open Gui Platform(以後OGP)

② Open Application Platform(以後OAP)

OGPは, 統合GUIとしてより柔軟な画面デザインを実現 させるため, 実際の操作画面の見栄えの仕組み(色, 形, レイアウト)として1)画面要素の部品化を行う。

画面要素の部品化により, 他製品への流用も可能になり, 見た目や操作性の統一を図る。さらに, 全ての装置の表 示データを2)データバス化することにより, 画面上での データの取扱いを容易にすることが可能となる。これら の機能により様々な画面デザイン要求に柔軟に応えられ るGUIプラットフォームを実現した。さらに, TCP/IP通 信を用いて, 物理的に別PCにデータバスをブリッジする ことを可能とした。これにより, 装置データのデータバス を別PCに拡張することが可能となり, 別の画面を容易に 構築することが可能となる。例えば, 本体の性能や品質 に影響させず, "カスタマイズ計測画面"を提供することも 技術的に可能となった。OGPは, 独自に開発した拡張型 統合GUIプラットフォームであり, 今後様々な装置操作・ 計測画面のプラットフォームとしての使 用を検討している。(Figure 13)

一方, OAPは新・旧・他メーカ問わず 統合GUI (OGP)にインテグレートし, 予 防保全などのアプリケーションを同様 に機能させるために, 1)Multi OS対応 による装置コントローラの様々なソフト ウェアOSのサポート, 2)アプリケーショ ンフレームワークによる予防保全など の機能を, 接続する他装置への横展開 を容易にする。これらによりOAPは, 今 後様々な主機能コントローラ(既設, 他

メーカ装置 等)とHORIBA ONE PLATFORMの統合 GUIとの接続を可能にする汎用型アプリケーションプ ラットフォームとして有効となる。

HORIBA ONE PLATFORMは, これら2つのプラット フォームOGPとOAPを有することで, ONEシリーズとし て今後開発する装置に限らず, Linux系OSで動作してい るMEXA-7000シリーズや, Windows系OSで動作してい るMEXA-6000FTシリーズなどの既存製品でも, OSの 種類に依存せずONEシリーズと同等の機能を統合GUI で実現する, 汎用性と拡張性に優れた構造(Architect) を持つことが可能となった。

浦谷 勝己 Katsumi URATANI 株式会社 堀場製作所 開発本部 設計センター ソフトウェア設計部 マネジャー

Product Introduction

新製品紹介

加熱NDIR計を用いた 過渡運転時のEGR率計測装置の開発

Development of Transient EGR Ratio Analyzer Utilizing Heated NDIR

吉村 友志 Tomoshi YOSHIMUBA ディーゼルエンジンは高効率・高耐久性という特性に加えて燃料の適用範囲 が広いことから、地球環境問題やエネルギー問題の対策として有効である。し かし、ガソリンエンジンと比較して、規制対象物質であるPMやNOxの低減が 課題である。NOxの低減技術として、燃焼室からの発生量自体を抑えるEGR (排気再循環)技術がある。近年のエンジンの精密な制御に伴って、EGR率の 制御も複雑化してきている。それに伴い、EGR率計測装置にはエンジンが過渡 運転状態の場合にも対応できる性能が必要とされている。つまり、高速応答、 また水分含有ガスでも精度よく測定できる性能が必要となる。そこで過渡運転 状態時にEGR率が計測できる装置の開発を行い従来装置との比較試験を行っ た結果、EGR率を応答良く、かつ高精度で測定することができたので報告する。

Most of the recent clean diesel engines are generally equipped with exhaust gas recirculation (EGR) technology in order to meet the strict criteria of NOx emission regulations. In the field of emission control, accurate and fast transient EGR ratio operation is becoming very critical. In this study, a transient EGR analyzer has been developed and evaluated to confirm the advantage of the transient EGR analyzer by comparing it to a conventional exhaust gas analyzer system. A faster response has been observed from the transient EGR analyzer without significant transient error during transient test cycles. Furthermore, there was a high correlation between the EGR valve behavior and the EGR ratio measured by the transient EGR analyzer. These results show the advantages of the transient EGR analyzer when measuring the EGR ratio during the transient cycle.

はじめに

ディーゼルエンジンは、高効率・高耐久性という特性に 加えて燃料の適用範囲が広いことから、環境問題やエネ ルギー問題の対策として有効である。その一方、課題と してガソリンエンジンよりも高いNOxやPMの排出レベル の低減を求められている。

NOxの低減には,エンジン燃焼室からの発生量自体を制 御する方法と発生したNOxを後処理で除去する方法が ある。ただ,後処理を用いる場合でも,エンジン燃焼室内 でのNOx発生量を可能な限り減らしておくことが望まし い。そのような燃焼過程でのNOx低減法のひとつに,排 気再循環(Exhaust Gas Recirculation: EGR)技術があ る。EGR用のバルブの制御により燃焼後のガスを吸気側 に戻し,燃焼室内温度の低減やポンピングロスの低減を 実現する。EGRはすでに実用化されている技術であるが, 近年のエンジン制御の複雑化に伴い,エンジン過渡運転 状態における精密な制御が重要になってきている。一方, 過渡状態のEGR率計測ができる装置は一般的ではない。 本稿では,過渡EGR率計測を目的として著者らが新たに 開発したEGR率計測装置(Figure 1)について,従来装置 と比較した性能検証結果を報告する。

Figure 1 Transient EGR Analyzer

EGR率の演算式

EGR率は,吸気側流量に対するEGR流路のガス流量の 比で定義される。EGR率は,エンジンの吸気側と排気側 のガスを採取し,それぞれのCO2濃度測定値から以下の 式を用いて算出することができる。

EGR=	$\frac{[CO_2]_{int} - [CO_2]_{amb}}{[CO_2]_{exh} - [CO_2]_{amb}} \times 100 \dots (1)$)
ここで、		

EGR: EGR率(%) $[CO_2]_{int}$:吸気側のCO₂濃度(vol%) $[CO_2]_{exh}$:排気側のCO₂濃度(vol%) $[CO_2]_{amb}$:大気中のCO₂濃度(vol%)

CO₂をトレーサとして利用するEGR率計測法は, 簡便で あるのに加え, 計測技術が確立しているために信頼性が 高い。そのため、広く用いられているが基本的に定常状 態での測定を目的している。また、水分干渉影響を避け るために除湿機を備えたものが多く、水分分圧補正など のデータ処理が必要となる。

装置構成

Figure 2に, 性能試験で比較対象とした従来型のエンジン排ガス測定装置(MEXA-7100DEGR)の構成を示す。この従来装置は, エンジンから排出される主要ガス成分(CO₂, CO, O₂, THC, NOx)の濃度を同時に計測する。さらに, EGR率算出のため, 吸気側のガス測定用のCO₂分析計を備えている。CO₂分析計へのサンプルガスは, 水分干渉影響を低減するために除湿機を通した後, 分析計に導入される。装置は, 分析計に対するエンジンの振動や熱の影響を避け, 操作者の安全性を確保するために, 測定対象エンジンから離れた制御室内に設置するのが一般的である。そのため, 応答時間に大きく影響するサンプルライン長は20 m程度になることが多い。

Figure 3に,新たに開発したEGR率計測装置の構成を示 す。エンジンの吸気,排気ライン内のガス測定用に加熱 NDIR分析計を2式備えており,サンプルラインは水分凝 結が発生しない加熱ラインとしてある。これにより,除湿 機を省略してサンプルラインおよび分析部の構成を簡素 化できる。さらに,振動影響を受けにくい焦電素子を検 出器として用い,装置架台もコンパクトな設計とした。そ のため,振動が発生しやすく装置の混み合うエンジン近 傍にも設置することが容易で,分析計までのサンプルラ インは従来装置よりも短くできる。また,吸気側と排気側 のサンプルラインを同じ構造とし,ライン間の応答時間差 が発生しないように考慮している。水分干渉については,

Figure 2 Schematic diagram and general installation of conventional system

Figure 3 Schematic diagram of new EGR analyzer

Figure 4 Analyzer response comparison

Figure 5 Comparison under step change of EGR valve

水分測定用の検出器を搭載し常時補正を有効にしてい るため,測定対象ガス内の水分濃度が変化してもCO2濃 度への影響は最小限にとどまる。これらの装置を用いた 実排ガス比較試験には、シリンダ容量2.0 L,ターボチャー ジャ付き、コモンレール噴射式のディーゼルエンジンを用 いた。排気管は直径150 mmの配管で、後処理装置はな いため、排気側での圧力損失はない。エンジンはダイナ モメータと接続されており、回転数とトルクは任意に制御 できる。EGRバルブの開度とスロットル開度も、エンジン コントロールユニットから任意に制御が可能である。

スパンガスによる応答時間評価結果

Figure 4に, 従来装置, 新EGR率計測装置の吸気, 排気 ラインそれぞれの応答波形を示す。この試験では, サン プルライン入口において, サンプルガスをゼロガスから スパンガスに切り替えて濃度指示値を測定している。新 EGR率計測装置では, 吸気, 排気ラインの応答波形はよ く一致しており, 遅延時間の差もない。一方, 従来装置で は, ライン間での応答時間の差が大きい。また新EGR率 計測装置と比較して応答時間が長い。**Table 1**に, ガス切 り替え時点を T_0 としたときの応答時間を示す。新EGR率 計測装置の T_0 - T_{gol} は8秒前後で, 従来装置(24秒以上)の 約1/3に短縮されていることがわかる。

このように,新EGR率計測装置は従来装置よりも応答が 速くライン間の差も少ない。従来装置の場合,ライン間の 応答差を補正するため,ソフトウェア上で,応答の速い データを遅いデータに合わせるように遅れ時間を補正す る処理を行わなければならない。新EGR率計測装置では この処理が不要になり,信号処理も簡素化できるメリット がある。

実排ガス試験結果 (EGRバルブのステップ変化時)

エンジンベンチで、EGR率計測を行った。運転条件は、ア

Table 1 Response time of each line

Analyzer	New EGR	Analyzer	Conventional System				
Line	Intake	Exhaust	Intake	Exhaust			
T ₀ -T ₁₀	3.4	3.4	11.1	12.5			
T ₁₀ -T ₉₀	2.0	2.0	2.1	2.4			
T_0-T_90	5.4	5.4	13.2	14.9			
T ₀ -T ₉₉	8.4	7.8	24.0	25.6			

Unit : seconds

クセル開度38%, エンジン回転数2000 rpm, 正味トルク 140 Nm, 正味平均有効圧力は0.88 MPaであった。

試験時, ターボチャージャが有効になっており, 吸気マニ ホールドの内圧は約70 kPaまで上昇していた。EGRバル ブの開度は, Figure 5(a)に示すように5%ずつステップ 状に変化させた。

Figure 5(b)に、このときのCO2濃度、Figure 5(c)にEGR 率を示す。新EGR率計測装置はサンプルガスを除湿せず に測定しているのに対し、従来装置のCO2濃度は除湿し た状態で測定している。従来装置では除湿により減少し た水分分圧に応じて見かけのCO2濃度が変化するため、 その分の補正を行っている。さらに、従来装置は、吸気と 排気のライン応答時間差について、スパンガスによる応 答試験のデータを元に補正している。

Figure 5(b)のCO2濃度の測定結果では、ライン応答差 補正を行っているにもかかわらず, 従来装置の吸気側の CO。が排気側より約4秒遅くなっている。この遅れは、吸 気側のマニホールドの内圧が上昇していたことが影響し ていると推測できる。サンプルガス採取部の内圧が上が ると、計測装置のサンプルライン内のガス密度も高くな り、ライン内のガスの置換に時間がかかる。サンプルライ ンが長いほどライン内の容積が増え、この影響は大きく なる。従来装置ではサンプルラインが20 mと長い。その ため、サンプル入口部の内圧上昇の影響も大きく、 ライン 応答時間差が発生し, Figure 5(c)に示すEGR率にもそ れによる誤差(トランジェントエラー)が発生している。一 方,新EGR率計測装置では、この試験条件下ではほとん ど影響が見られない。これは、サンプルライン長が3 mと 短く、サンプルラインの容積が小さいことで、内圧上昇時 の影響も小さく抑えられているためと考えられる。

これにより, サンプルラインの体積の小さい新EGR率計 測装置の方が, 従来装置と比較して, トランジェントエ

Figure 6 Engine speed of ETC test

ラーが発生しにくくなることが実際の試験で確認できた。

実排ガス試験結果(過渡状態下)

European Transient Cycle (ETC)でのEGR率計測の 比較試験を行った。ETCのエンジン回転数を**Figure 6**に 示す。180秒から330秒の区間で大きくEGRバルブ開度が 変わるため, 解析時はその区間に注目した。

Figure 7(a), (b), (c)に, 新EGR率計測装置と従来装置 について, EGRバルブの開度, CO₂濃度とEGR率の結果

Figure 7 EGR measurement comparison under ETC test

をそれぞれ示す。Figure 7(b)のCO。濃度は、従来装置で は立ち下がり時に遅れが見られるものの,全体の傾向は おおむね一致している。ところが, Figure 7(c)のEGR率 では、250秒、255秒、275~285秒の付近で結果に大きな 差が出ていることがわかる。CO2濃度やEGRバルブの動 きから判断して、該当区間は燃料カットの状態でEGRバ ルブも閉じているため、従来装置では正しいEGR率の値 が得られていないことがわかる。このような結果となっ た要因として、EGR率の計算法の問題があげられる。燃 料カットの状態では、排気側のCO。濃度は大気レベル近 くまで減少する。そのため、式(1)の分母がゼロに近づき、 ライン間の応答時間差や応答遅れによるCO。濃度値の少 しの誤差が、EGR率としては大きく影響する。この影響 を極力排除するため、排気側CO。濃度が下限値を下回っ た場合, 燃料カットの状態として判断してEGR率をゼロ とみなすアルゴリズムを導入した。本試験においては, CO。濃度の下限は700 ppmに設定した。これにより、新 EGR率計測装置で計測されるEGR率は, 250~290秒の 間で正しくゼロとなっている。一方, 従来装置では, 同じ アルゴリズムを適用したにもかかわらず、上述のようにゼ ロではない不正確な計算結果を示している。これは従来 装置のCO₂応答が新EGR率計測装置ほど速くないため、 EGRバルブが閉じてもサンプルラインにガスが残留して おり,700 ppmよりも高いCO2濃度を示していたためであ る。このように、応答の速い新EGR率計測装置では、CO2 濃度に下限を設けるアルゴリズムとの組み合わせで、燃 料カットを伴う過渡状態のEGR率もより正確に測定でき ることが確認できた。

まとめ

以上,本稿では,過渡状態でのEGR率計測を目的として 開発したEGR率計測装置について報告した。スパンガス および実排ガスを用いた従来装置との比較評価より,以 下の結果が得られた。

- (1)サンプルライン入口でゼロガス,スパンガスを切り替 えたときの応答時間*T₀-T₉₉について*,従来装置では24 秒であったが,新EGR率計測装置では8秒と,1/3の応 答時間であった。
- (2)従来装置では、吸気ラインの内圧上昇時に発生したラ イン応答時間差により、過渡状態においてトランジェ ントエラーが発生した。これに対し、新EGR率計測装 置では、従来装置と比較してサンプルラインの容積が

小さくなっているため,同条件においてもこの影響は ほとんど見られなかった。

(3)新EGR率計測装置では, 排気側CO2濃度に下限値と して700 ppmを設定することにより, 燃料カット時に 発生する不正確なEGR率演算結果を排除することが できた。

おわりに

本装置によって、本社が所有する特許技術を活かした上 で新しいアプリケーションをお客様に提案することがで きた。本稿で述べたエンジン過渡運転状態でのEGR率計 測のみならず、近年用いられている多段EGR技術の評価 計測にも適用可能である。また、CO₂トレーサ流量計とし ての適用も可能である。さらなるアプリケーションをお客 様に提案できる装置として育てていきたい。

吉村 友志 Tomoshi YOSHIMURA 株式会社 堀場製作所 開発本部 アプリケーション開発センター エナジーシステム計測開発部

Product Introduction

新製品紹介

新ドライブレコーダーシステム (DRT-7000 DR-2000 HssE)

New Drive Recorder Systems (DRT-7000, DR-2000, HssE)

石倉 理有 Masatomo ISHIKURA 佐渡 泰之 Yasuyuki SADO 橋本 明浩 Akihiro HASHIMOTO 交通安全に関する個人の基準はそれぞれであり、従来は特に基準はなく個人の 感性や一般論で評価されることが多かった。この問題を解決するために運転を 定量的に記録する装置としてドライブレコーダーが開発され、記録されたデー タを評価するシステムが開発されてきた。本稿では、これらの最新の運行管理 装置とシステムを紹介する。

Personal standards on road safety vary among individuals. Previously there were no definite road safety standards; as a result, many evaluations have been done on the basis of personal senses or common belief. As a solution to these problems, Drive Recorder^{*1} have been developed to obtain quantitative records of driving, and systems for data evaluation have accordingly been pursued. In this report we introduce the most recent models of these devices and systems.

*1: Drive Recorder: An Drive Recorder is a device to record driving data and picture images on a memory card or other storage media when triggered by an impact shock or sudden braking caused by an accident or a near-miss incident. The driving data contains records on acceleration, braking ,speed, turn signals and GPS while the picture images shows the moments before, during and after the shock.

はじめに

日本の2012年の交通事故死者は4411人で,前年比201人 減,4.4%減となり,12年連続で減少した。近年,衝突安全 技術の向上や救命救急制度の充実などにより,交通事故 死亡者数は減少傾向にある。しかし,これらの傾向は技 術やシステムによるところが大きい。運輸部門では,2008 年から運輸安全マネジメント制度が創設されており, ISO9000シリーズを参考として,運輸事業者が,経営トッ プから現場まで一丸となって,いわゆる「PDCAサイクル」 の考え方を取り入れた形で安全管理体制を構築し,その 継続的取組みを行ってきた。最近では運輸事業者に限ら ず,組織として交通事故による死傷者を減らすことを目 的に,さまざまな企業や組織が取り組むべきマネジメント システムの要求事項を定めた国際規格ISO39001が2012 年末よりISO化され,普及を目指している。 交通事故死亡者減少に対して,運転者の技能が向上した とは言い切れない。逆に若者の自動車離れに見られるよ うに運転機会は減少しているためプライベートでの運転 により運転技能が向上することは期待できない。そこで 急務と考えられるのが,安全運転教育となる。ところで, 運転者の意識としてほぼ全員が「自分は安全運転を実施 している」と考えており,実際の行動との間にズレがある ことがわかっている。したがって,一般的な安全運転教 育を実施しても,改善の効果はほとんど期待できない。こ れまでのような座学ではなく,より実践に近い各人の弱 点を補うような形の教育が必要となってくる。国土交通 省も『映像記録型ドライブレコーダ活用手順書』を作成し て,映像記録型ドライブレコーダーの導入からデータの 収集,教育に至るPDCAのサイクルを回して改善を進め ることを推奨している。 本稿では,これらの課題を解決する手法として車両の走 行状態(速度や加速度,位置情報など)と共に映像監視を 行い必要に応じて記録を行う映像記録型ドライブレコー ダーの新製品2機種,そこで得られたデータをクラウド上 で処理し運転者に定量的にフィードバック(教育)するシ ステム(HSSE)についての紹介を行う。

デジタコとドライブレコーダー

当社では、1983年にトラックの運行管理装置のデジタル 化を推進し、運行管理システムの提供を開始して以来、 1999年にはデジタル式運行記録計(通称:デジタコ*2)の 認証を取得した。2005年には、映像記録型のドライブレ コーダー*3を開発し、交通安全、省エネ活動に貢献して きた。2012年末には、これまで培ってきた技術の集大成 ともいえるドライブレコーダー機能内蔵のデジタコDRT-7000と二輪用のドライブレコーダーDR-2000を新規開発 し市場への提供を開始している。

DRT-7000(Figure 1)はデジタコとドライブレコーダーの ハイブリッドタイプで通信装置を内蔵しており, 運行が

終了すると取得したデータを自動的に データセンターへ送信し,解析処理を 行うシステムとなっている。これにより 記録されたデータを運転者などが操作 することなく自動処理が可能となる。ま た,国土交通省のデジタコの型式指定 も受けており,認定番号は, @TDII-34 となっている。運輸事業者においては 運行管理のためのデジタコが必須の機 器であるが,安全運転指導の要となる ドライブレコーダー機能搭載の本製品 は,非常に有用なツールとなる。

DR-2000(Figure 2)は、業務用の二輪車 を対象にした連続記録型のドライブレ コーダーである。荷台への水滴の侵入 を想定した防滴構造となっているのが 特徴である。走行中の前方画像、加速 度、位置、車速・ウィンカー・ブレーキ の状態をSDカードに記録し、そのデー タをサーバーにアップロードする。アッ プロードされたデータは総合運行管理 システムHSSEで帳票等に出力し、安全 運転管理を行うことが出来る。二輪車に特化した部分と して、激しい振動の発生する設置場所であることと、風 雨にさらされる環境での評価を重視した。これら2製品 は、共に速度や位置情報と共に映像を記録する。事故あ るいはその予兆となる不安全な運転を正確に記録するも のである。

- *2:デジタコ:デジタコとは、タコグラフ(運行管理計)の一種で車両の 運行にかかる速度・時間等を自動的にメモリーカードに記録する装 置である。管理者が事務所のPCでメモリーカードを解析すること により法定速度や休憩時間を容易に確認でき、事故防止等の安全 管理に用いることができる。1962年にタコグラフ装着が義務付けさ れて以降対象車両は拡大し、現在では貸切バス・路線バス・トラッ ク、総重量8トン以上および最大積載量5トン以上のトラック・トレー ラー等、国内15都市のハイヤー・タクシー、他事業用自動車が対象 となっている。
- *3:ドライブレコーダー:事故やニアミスなどにより急ブレーキ等の衝撃を受けると、その前後の映像とともに、加速度、ブレーキ、ウイン カー等の走行データをメモリーカード等に記録する装置のことであ る。

Figure 1 DRT-7000

Figure 2 DR-2000

ソフトウェア

従来のデータ処理システムは、事務所のコンピューター にデータを取り込み、スタンドアロンでデータ処理をして いた。これに対し近年のデータ処理システム(Figure 3) は、クラウドシステムを採用しデータ処理を行うものへと 置き換わっている。当社においては総合運行管理システ ム「HSSE」がこれを実現する。

インターネットをベースとしたクラウドコンピューティン グによって,解析結果を得ようとするユーザーが用意す べきものは,最低限の接続環境(PCや携帯情報端末など のクライアントデバイス,その上で動くブラウザー,イン ターネット接続環境など)のみとなった。これにより,ユー ザーにとって負担となっていたデータ管理などの手間は

軽減され, アプリケーションのアップ デートの必要もなく、常に新しいコンテ ンツの提供を受けることが可能となっ ている。また、解析結果はインターネッ ト経由での配信となるため、必ずしも会 社の事務所で確認する必要はなくイン ターネットに接続可能な状態であれば いずれの場所でも確認が可能となり、オ ンデマンドな環境を提供できる。このた め、いつでもどこでも「PDCA」のサイク ルを回すことが可能となっている。事故 やヒヤリハット事例から、リスク回避の 方法を抽出し、できるだけ早いタイミン グにそれを復習することで、安全運転 を身につけることができる。自分の欠点 を認識して、安全運転に反映させること が重要である。また、保有台数が少ない ところでも環境の準備さえできれば、た とえ1台からでも導入することが可能と なる。

活用例

HssE^{*4}(Figure 4)では, ISO39001に 準拠した管理が可能で下記のように PDCAを回すことにより, 安全管理体 制を構築することが可能となっている。 PLAN(計画)段階では, 社内の事故・ ヒヤリハットの映像を確認し, 全社的 な安全運転方針を決定し,事故・ヒヤリハットの削減目 標を設定する。DO(実施)段階では,事故・ヒヤリハット データ収集,要因の分析を行い,教育・訓練を実施する。 CHECK(監視)段階では,事故・ヒヤリハット件数の減 少など目標に対する実績の把握を行う。ACTION(改善) 段階では,体制・方針見直,教育・活用方法改善を行う。

*4:HssE:総合運行管理支援システム「HssE」(HORIBA SaaS for Safety and Eco)は、堀場製作所のデジタコおよびドライブレコー ダーのために開発された、インターネットを使った総合運行管理シ ステムです。運行データはネットワーク上のサーバに集約された後、 解析され、データセンターのサーバ上で一元管理。サーバ上のデー タにはインターネットに接続できるパソコンであればどこからでも アクセスが可能なので、ユーザーは、「情報閲覧」「帳票作成」「動画再 生」など運行管理や安全運転教育のために必要な作業を、インター ネット上で簡単に行える。

Figure 3 近年のデータ処理システム

今後の課題

インターネットを活用することにより,限りなくデータを 集約することが可能となった。これらのインターネット時 代のコンテンツのあり方として求められるのは、消化しき れないほどの膨大な情報量のデータを余すことなく活用 することである。しかし、現時点ではまだ活用しきれてい ないのが現状である。これらのデータの活用方法を検討 し, 顧客ひいては社会に対してより有効なフィードバック をかけられるように進めていく必要がある。

おわりに

ほとんどの企業において車両は活用されており、これら の機器を活用し安全・省エネ環境に貢献することで企業 や個人のブランディングに役立たせていただきたいと考 えます。

参考文献

[1] 国土交通省自動車交通局『映像記録型ドライブレコーダ活用手順書』 (2009)

石倉 理有 Masatomo ISHIKURA

佐渡 泰之

株式会社 堀場製作所 開発本部 設計センター 自動車テレマティクス設計部 マネジャー

Yasuyuki SADO 株式会社 堀場製作所 開発本部 設計センター 自動車テレマティクス設計部 マネジャー

橋本 明浩 Akihiro HASHIMOTO

株式会社 堀場製作所 開発本部 設計センター 自動車テレマティクス設計部

Column

堀場製作所の基礎技術 1

pH計,イオン計の検出部としてのガラス電極,各種イオン電極

青海 隆

Takashi AOMI

はじめに

pH計およびその検出部としてのガラス電極,ならびにそれから派生したイオ ン計および各種のイオン電極は,当社の創立以来連綿として続く製品であり, 今なお水質分析全般の技術のバックボーンとなっている。その歴史的な経 緯,著者自身の関与,技術の伝承・拡大の重要性および今後の製品展開につ いて,特にこの分野の技術者の方々の参考となることを願って,本稿を記し た。

歴史的な経緯

この分野に詳しい技術者の方々には常識となっていると思われるが,先ずその歴史的な経緯を著者の認識に基づいて述べる。

20世紀初頭にCremer^[1], Haberら^[2]によりガラス膜の水素イオン応答に関す る先駆的な研究がなされた。当時は増幅機能・インピーダンス変換機能を有 しないブリッジ方式の装置との組合せであり、その取扱いは極めてデリケー トであったと思われる。1930年代半ば、当時米国カリフォルニア工科大の助 教授であったBeckmanにより、真空管増幅方式の本体^[3]、ナトリウム系ガラ ス(SiO₂+Na₂O+…)を用いたガラス電極^[4, 5]、比較電極を組合せたpH計(当 時は酸度計と呼ばれていた様である。)が作られた。この計器は現在のpH計 の直接の元祖と言われることがある。

第二次大戦後(以下,大戦,終戦後と記す。)当時圧倒的な技術力を誇った米 国による各分野での技術開示と大戦中閉ざされていた欧米の学会誌,特許公 報の流入があり,その中にはナトリウム系ガラスよりも格段にアルカリ誤差*1 の少ないリチウム系ガラス(SiO₂+Li₂O+…)に関する資料^[6,7]もあった。我国 でも終戦後早々に,京都大学工学部電気化学研究室(岡田 辰三(オカダ シン ゾウ)教授,主担当 西 朋太(ニシ トモタ)講師)によるリチウム系ガラスに関 する詳細な研究が始められた。終戦直後に当社の現最高顧問・堀場雅夫に より設立された堀場無線研究所において,用途の多い電気部品である電解コ ンデンサに充填される電解液のpH調整用として,真空管増幅式の本体と前 記京都大学の研究による応答ガラスを用いたガラス電極,比較電極の組合せ によるpH計が内作された。朝鮮戦争勃発前後の事と聞いており,当社内の統 一見解としてこれが国産第1号(図1)のpH計と判断されている。終戦後,当初 は輸入品優位の中で,当社を始め国内各メーカの努力により,季節変動(気温, 湿度等)の激しい我国の条件に合った国産pH計に置換えられていった。伝え 聞くところによれば,当時輸入品の中には高温多湿の梅雨期に絶縁不良を起 こすケースがしばしばあったとの事である。

1950年代半ばには(社)日本計測学会に「pH研究部会」が設置され,大学,国 公立研究所,各メーカから活発な研究発表がされた^[8-10]。同部会ではJIS原案 すなわち現行の"pH測定方法(現JIS Z8802)"および"pH測定用ガラス電極 (現JIS Z8805)"の起案もなされた^[11]。

*1:高アルカリ性領域においてpHガラス電極がアルカリ金属イオン(Na⁺等)に応答し, pH測定の誤差となる現象

著者の入社前後から現在まで

以下,主に当社での事項を中心に記す。なお著者は1971年の入社であり,入 社後の社内資料の閲覧および先輩方からの伝聞による知見を含んでいる。

pH計およびガラス電極

1960年代中頃, 電気回路のオールトランジスタ化が図られ, 当時のモデル (H-5:図2および電池駆動のD-5)は現在でも稼動状態で当社の分析センター に展示されている。展示されているモデルは製造後40年以上を経過している が, pH計は保存環境ならびに日々のメンテナンスが良ければこのように長期 間の寿命が保てるものである。もちろんガラス電極(このモデルではガラス電 極と比較電極を一体化した複合電極)は適宜交換すべき物であり, また各種 部品の供給は原則としてそのモデルの最終生産・販売から原則として7年と しているメーカが多い。

1960年代後半には当社のガラス電極等の技術が,中国上海の中国技術進口 公社に輸出された。当時は日-中国交回復前,かつ中国はいわゆる文化大革 命の最中であり,技術指導を担当された先輩方の苦労は並大抵ではなかった と思われる。中国への入出国にしても,香港(当時は英国領)経由であったと聞 いている。著者は入社直後にこの技術輸出に関する多量の資料(日本語)に目 を通し,ガラス電極等に関する幅広い知識を得た事を覚えている。

1970年代には環境面への配慮から、それまでガラス電極の内部極および比較 電極として主に用いられていた甘こう電極(Hg・Hg₂Cl₂)を塩化銀電極(Ag・ AgCl)に置換え、水銀および水銀化合物をpH計から排除することが進めら れた。著者は同一ロット内での電位のばらつきが少なく量産性に優れた溶融 塩化銀を用いる製作方法の実験を担当した。

当社が用いている3.33 mol/l塩化カリウム(KCl)溶液中でのこの塩化銀電 極の標準水素電極(SHE: Standard Hydrogen ElectrodeまたはNHE:

図1 P型pH計(復元モデル)

図2 H型pH計

図3 F-20型pH計(コードレスモデル)

Normal Hydrogen Electrode)に対する電位は次式で示される。

E=206-0.7(t-25) mV vs. SHE t=0~60 ℃ 本式は3.33 mol/l KCl中での甘こう電極の電位^[12]と本方法により製作された 同一溶液中の110本の塩化銀電極の電位の平均値^[13]から算出された。

1970年代後半から1980年代には分析計全般のデジタル化およびマイクロコ ンピュータ技術の取込みが進み,pH計もその例外ではなかった。pH計に温 度測定機能を付加することにより,各種標準液のpH値についての温度に関 する多項式^[14]を用い,又pH標準液の種別の自動判別機能^[15]を組合せて,ワ ンタッチ自動校正化が進められた^[16]。

pHs=(A/T)+(B)+(CT)+(DT²) pHs;各pH標準液のpH値 T;絶対温度

A~D; 各pH標準液についての特定の係数

その後pH計は各メーカで後述のイオン電極によるイオン測定機能を組込ん だ複合機が開発され、又当社では電極応答部からの信号を電極上部でイン ピーダンス変換して無線送信し、離れた場所に設置した本体で測定値を表 示するコードレス機能付の機種(図3)も実用化された^[17](現在は製造完了済 み)。

一方ガラス電極は見かけ上変化の少ないものの代表の様に言われることもあ るが、近年応答ガラスの改良により応答性能の向上とともに、少々の事では 割れないガラス電極(例えばビーカの中で掻き混ぜ用ガラス棒の代用として 扱っても割れない。但しこの操作を推奨するものではない。)が実用化され^[18] 使い勝手が格段に向上している。その後もガラス電極のボデイ(ステム管)に 重金属の鉛を含まない完全鉛フリーのガラス電極も実用化され、既述の水銀 および水銀化合物の排除と合わせて有害重金属を一切含まないこととなっ た。又特定の用途向けではあるが、比較電極のいわゆる液絡部にイオン液体 を用いた電極も開発され^[19, 20]当社から発売されている。この比較電極は液絡 部からKClo流出が一切無い事が大きな特徴となっている。

イオン計および各種のイオン電極

ここからイオン電極(Ion Selective Electrode)について述べる。古くは1937 年Kolthoffによって第二種の基準電極*²の一種である塩化銀電極(Ag・ AgCl)を用いて溶液中の塩化物イオン(Cl⁻)濃度測定の可能性が検討され た^[21]が, pH以外のイオン濃度測定用の電極が実用化されたのは1950~1960 年代に開発されたナトリウムイオン(Na⁺)応答ガラス電極^[22, 23]ならびに1960 年代以後に開発された各種のイオン電極である。

単結晶膜を用いたフッ化物イオン(F⁻)電極^[24], ニュートラルキャリア(バリノ マイシン)を応答物質とする液膜カリウムイオン(K⁺)電極^[25], Ag₂S+AgX(X =Cl, Br, I)の難溶性銀塩の成形膜を用いたX⁻イオン電極^[26]等は実用的価 値の高いものである。F⁻電極に用いるフッ化ランタンLaF₃(Euドープ)単結 晶は、赤外線透過窓材あるいは放射線計測用のシンチレータとしてのアルカ リハライド単結晶等の製作技術のある当社ではその製作は容易であり、具体 的には不活性ガス雰囲気中で引き下げ法により作る事が出来た^[27]。またCl⁻, Br⁻, I⁻, S²⁻, SCN⁻, CN⁻, Cu²⁺, Cd²⁺, Pb²⁺, Ag⁺等の各イオン電極の応答 膜はホットプレス法で作ることが出来た^[28, 29]。さらに当初液膜として用いら れたバリノマイシン、クラウンエーテル、4級アンモニウム塩等を応答物質と する各イオン電極(K⁺, Na⁺, Ca²⁺, Cl⁻, NO₃⁻等)は現在ではそのすべてが取 扱いのしやすいプラスチック固化膜となっている。応答物質を含有させるプ ラスチックには塩化ビニル(PVC)が多用されているが、PVCとエポキシ樹脂 の混合物を用いた場合耐久性等の向上に繋がることが報告されている^[30, 31]。

各種のイオン電極は早くから河川水, プロセス水に含まれる特定イオンの濃 度を連続モニターするイオンモニターとして用いられ, F⁻モニター, CN⁻モニ ター, NH₃モニター等が良く知られている。これらのモニターが順調に稼動す る為には妨害イオン, 妨害物質に対する対策(マスキング剤, pH調整剤, イオ ン強度調整剤等の添加)および, 長期ドリフトに対する対策(間欠自動洗浄, 自 動校正等)が必須である。また火力発電所, 原子力発電所等のボイラー復水 への, 熱交換器に発生したピンホール等からの冷却水(日本ではほぼすべて が海水)の混入を早期に検知する微量Na⁺モニター^[32]も重要な装置である。

臨床検査分野では、Na⁺, K⁺, Ca²⁺, Cl⁻等のイオン電極の, 血液, 尿等の電 解質分析装置への応用が検討され, 当社でも早くからその開発に着手され た^[33]。その後, 装置内部への組込みに適した流通型の前記各イオン電極を用 いた電解質分析装置が実用化された^[34-36]。現在この分野でのイオン電極の 活用は一時期に比べて下火となっているが, 今後ともイオン電極の重要な応 用技術分野であることに変わりない。

いわゆるラボ(実験室)用途でのイオン電極の応用としては、当社ではこれま でに複合型Na⁺応答ガラス電極を用いた食塩濃度計^[37, 38]Cl⁻電極を用いた コンクリート骨材(海砂)の塩分計^[39], K⁺電極を用いた食品中のK⁺の測定^[40] 等があった。さらに当社での平面(シート)型のガラス電極およびイオン電極 の開発[41, 42]はそれらの用途を広げるものであった。このシート型電極の基本 構成は従来の電極と同じであるが,半導体分野の加工技術ならびに高絶縁 接着技術を用いたものである。性能面でも従来の電極と同様に信頼出来る 事がその開発早々に報告された^[43]。1980年代末に実用化されたシート型の pH計およびイオン計(商品名カーディCardy)はその後ペン型(商品名ツウィ ンTwin)となり、また極最近リニューアルおよび品種の充実(商品名ラクアツ ウィンLAQUAtwin:図4)が図られ^[44]従来のラボ用イオン計に比べて安価 かつ野外への持ち出しに適した防水機能を有する機種として昨秋(2012年) の展示会等で大変注目された。このLAQUAtwinシリーズには、pH. Cond(導 電率), 塩分(Na⁺測定方式)およびNa⁺, K⁺, Ca²⁺, NO₃⁻の各イオン計があり, その応用技術の充実[45-47]によって用途の更なる拡大が期待される。また測定 対象イオン種についても、用途およびアプリケーションさえ明確となれば、そ の拡大を図ることは容易である。

図4 LAQUAtwin pH計, Cond(導電率)計, 塩分計 (Na⁺測定方式)およびNa⁺, K⁺, Ca²⁺, NO₃⁻ の各イオン計

*2: "金属・金属難溶塩・難溶塩を構成する陰イオンを含む溶液"からなる基準電極であり、この 陰イオンの濃度(正式には活量)により電位が決定される。

ISFET

ここで、ISFET(Ion Sensitive or Selective Field Effect Transistor)について付記しておく。ISFETは当社でも製品化され発売されているが、元々オランダ出身の半導体分野の技術者であったBergveldが1970年にショート・コメントとして発表^[48]したのが最初であった。当初このコメントには比較電極が不要と記載され、入社後に本コメントに接した著者は電気化学を専門とする者として少々奇異に感じた事を記憶している^[49]。溶液中に浸漬された耐水性を有するトランジスタのソース~ドレイン間の抵抗変化(すなわち一定電圧が加えられたソース~ドレイン間を流れる電流の変化)から試料液のpH等を測定する為には、試料液と閉回路を形成しながら試料液の性質(pH等)に影響されないポイントが必須であり、その目的には比較電極が必要とされる。本件はそののち修正されたが、Bergveldの発想はすばらしく最初の発表の価値が損なわれる事はない。なお一時期大手半導体メーカ等がISFETの商品化に乗り出したが、その市場規模および分析アプリケーションの不足等によりそのほとんどが撤退した。

おわりに

以上コラムとしては少々長文となったが、株式会社 堀場製作所の創立60周 年(2013年)に当たり本分野のホームページの見直しおよび充実^[50]に関与し、 また本稿を残せる事をOBとして大きな喜びとしている。

分析計メーカにおいては各種の測定技術,基礎技術を先輩から後輩に伝承 し,拡大し,適宜必要とされる製品に適用することが重要な命題である。その 為には特許,学術論文,図面,社内資料等にビジュアル化して残すことを必 要条件とすれば,その技術分野の先輩から後輩へいわゆるFace to Faceで 継いで行く事が十分条件であると思われる。企業等の組織内において,人か ら人への技術の伝承・拡大が途切れた時,その回復は極めて困難であると言 える。

青海 隆 Takashi AOMI 株式会社 堀場製作所 OB 業務委託者 工学博士

T.

~~~~	考义歌
[1]	M. Cremer, Z. Biol., 47, 652(1906).
[2]	H. Haber and Z. Klemensiewicz, Z. Physik. Chem., 67, 385(1909).
[3]	例えばベックマンコールター株式会社 http://www.beckmancoulter.co.jp, https://www.
	beckmancoulter.com/wsrportal/wsr/company/about-us/our-history/index.htm
[4]	W. S. Huges, J. Chem, Soc., 491(1928).
[5]	D. A. MacIness and M. Dole, J. Amer. Chem. Soc., 52, 29(1930).
[6]	G.A. Perley (Leeds and Northrup Co.)USA Patent 2444845, Application1946,
	Patented1948.
[7]	G.A. Perley, Anal. Chem., 21, 394(1949).
[8]	梶浦正孝, "海外pH計の紹介", 第1回pH研究部会資料(1954).
[9]	堀場雅夫, "堀場製作所製pH測定器について", 第2回pH研究部会資料(1955).
[10]	筒井清二, "pH検出系の温度特性について(1)ガラス電極の温度特性", 第3回pH研究部会資料
	(1955).
[11]	第5回~第11回pH研究部会資料(1955~1957).
[12]	尚田辰三, 西 朋太, 高穡(松下)寛, <i>工業化学雑誌</i> , <b>61(8)</b> , 922(1958).
[13]	H. Matsushita, H. Maruyama, T. Aomi and N. Ishikawa, <i>Memories of Chubu Institute</i>
F4 43	of Technology, <b>10-A</b> , 117(1974).
[14]	K. G. BARES, J. Ke. N. B. S., 00A, 1/9(1901). 最現制佐託(及田本・現、金本) 歴新八代八朝 歴八四(2010) (7(1000年世頃)
[10]	始物教TF71(光明有,死 恶沙), 特許公司公報, 特公昭03-13147(1980平田熙). 書海 陈 化学甘蕉硅MOI 昭和56年0月号 96(1091)
[10] [17]	日 (呼 ) (ビーブズ)(別前)(MUOL)、町1(41)(00年3月 5, 20(1901)). 「 「 「 「 「 「 「 「 」 「 」 「 」 「 」 「 」 「 」
[1/] [18]	堀場製作所(発明者: 岩太恵和 武市伸二)特許公園公報 駐園平10.81541特許筆2400078(1006
[10]	年出題)
[19]	京都大学 堀場製作所(発明者: 垣内 隆 芝田 学 他3名)再公表公報WO 2008-032790(2007
[]	年出願).
[20]	芝田 学, 京都大学学位論文(2012).
[21]	カーク・オスマー化学大辞典, p116記載(1988), 丸善.
[22]	M. M. Schults and L. G. Ais., Chem. Abst., 50, 6762e(1956).
[23]	岸本長彦, 松下 寛, 弘中博二, 丸山 博, <i>電気化学</i> , <b>30</b> , 355(1962).
[24]	M. S. Frant and J. W. Ross Jr., Science, 154, 1553(1966).
[25]	W. Simon, USA Patent 3562129(Filed1967, Patented1971).
[26]	J. W. Ross Jr. and M. S. Frant., USA Patent 3563874(Filed1967, Patented1971).
[27]	青海 隆, <i>電気化学</i> , 47, 733(1979).
[28]	青海 隆, <i>電気化学</i> , 46, 259(1978).
[29]	青海 隆, <i>電気化学</i> , <b>46</b> , 343(1978).
[30]	宮崎 毅,青海 隆, <i>電気化学</i> , <b>53</b> , 726(1985).
[31]	植松发彰,河野 猛, 臼井誠次, 青海 隆, <i>電気化学</i> , <b>55</b> , 532(1987).
[32]	· 堀場製作所(考案者: 秋山重之, 青海 隆), 実用新案出願公告, 実公平2-10456(1982年出願)
[33]	珊瑚裂作所(轮明者; 吉野健二, 青海 隆)特許公告, 特公昭57-32771(1976出願). 思想制你玩(孫明老, 持切(宋慈, 仲內尔)特許 八明八起, 特比明(70,00051(100,011)55)
[34] [25]	////////////////////////////////////
[ວວ]	[5]」に回し、 書海 陈 恒堪制作所技報 <i>Deadout</i> No <b>3</b> 10(1001)
[37]	F199 F2, 747377177777777777777777777777777777777
[38]	青海 降,宮崎 毅,市岡達郎, <i>電気化学</i> , 50, 111(1982)
[39]	(財)国土開発技術センタ、"技術評価コ塩測第860402号"申請者; 堀場製作所.
[40]	宮崎 毅, 青海 隆, <i>電気化学</i> , <b>52</b> , 521(1984).
[41]	堀場製作所(発明者;小谷晴夫,冨田勝彦)特許公告,特公平4-4545(1986出願).
[42]	Horiba Ltd.,(H. Kotani and K. Tomita)USA Patent 5024951(Filed1988, Patented1991).
[43]	瀬戸口一恵,津田泉,巽 典之,臨床検査, 32, 925(1988).
- [44]	小松祐一郎, 桑本恵子, 堀場製作所技報 Readout No. 41(2013)掲載予定.
[45]	堀場製作所, "LAQUAtwinによる飲料水中のカルシウムの測定"
-	http://www.horiba.com/jp/application/material-property-characterization/water-
	analysis/water-quaruty-electrochemistry-insturumentation/
[46]	堀場製作所, "LAQUAtwinによる牛乳および乳飲料中のカルシウムの測定"[45]に同じ).
[47]	堀場製作所. "LAQUAtwin塩分計によるトマトジュースの塩分測定"[45]に同じ).

- [48] P. Bergverd, *IEEE. Trans. on Biochem. Eng.*, 5, 70(1970).
- [49] 青海 隆, 堀場製作所 社内技術報告会 報告資料, 1976年3月29日.
- [50] 堀場製作所,"やさしいpH・水質の話"[45]に同じ).

# Topics

特許

# 第1回HORIBA Group IP World Cup Gold Award受賞案件の紹介





図1 HORIBA Group IP World Cup

技術開発とその成果である知的財産はHORIBAブランドの本質的な要素で ある。HORIBAグループで生まれた数々の独創的な技術や知的財産が事業 の推進力となってきたためである。HORIBA Group is One Companyの精 神のもと、事業を牽引する技術・知的財産をグループ全体で賞賛し、次なる 成長の起爆剤となる技術・知的財産の創出を奨励していくことを趣旨として HORIBA Group IP World Cup(図1)は創設された。

第1回HORIBA Group IP World Cupでは, 海外を含むHORIBAグループの 開発拠点から18件の応募があった。2012年3月21日に第1回HORIBA Group IP World Cupの受賞式が行われ,株式会社堀場エステックの「マスフローコ ントローラの高速応答技術」がGold Awardを受賞した(図2)。HORIBAグルー プを代表する技術として以下に紹介する。

Gold Award受賞案件「マスフローコントローラの高速応答技術」は以下の2件の技術を含んでいる。

## ①開き出し応答改善に関する技術

従来のマスフローコントローラ(以下MFC)における開き出しについて,以下 のような課題があった。つまり,流量設定値が小さくなるほど流量設定値と 流量との偏差が小さく,開度制御信号が小さくなる。そのため特に低流量域 で制御バルブが開き出すまでの遅れ時間が長くなり,応答性が遅くなってい た。この応答性には個体差があるため,MFC同士の互換性や再現性などが 悪くなっていた。この課題を解決する方法として個々のMFCごとにPID係数 を調整することも考えられるが,非常に煩わしいという問題がある。さらにこ のPID係数を調整する方法でも制御が不安定になりオーバーシュートを起こ すなどの問題が生じることがあった。

本技術では,流量設定信号が入力された時点から流量センサによる測定値が 所定の閾値になるまでの間,応答改善回路がPID回路に対して開度制御信号 を大きくなるような補正信号を出力し,かつ,応答改善回路に,前記閾値を調 節するための閾値調節回路が設けられており,この閾値調節回路に流量設定 信号が入力されるようにしてある(図3参照)。そのため,バルブが開き出すま での時間を短縮することができる。また,一方,流量センサによる測定値が所



図2 Gold Award表彰状の贈呈

定の閾値になることにより,通常のPID制御に戻されるので, 制御が不安定になったりオーバーシュートを起こすこともな い。流量センサによる測定値を応答改善回路の閾値調節回 路にフィードバックしているので制御バルブが開き始める時 点をより正確に検知してこれに合わせた制御を行うことがで きるので,個体差を相殺する高速応答制御を行うことができ る。この閾値調節回路に流量設定信号が入力されるようにし てあるので,応答改善回路による高速応答制御を行なう時間 の長さを流量設定信号による設定値の大きさによって調節 することが可能となり,応答速度のさらなる改善を図ること ができる。以上のように,従来と比較して低流量域における 応答性,互換性,再現性などに優れた制御が可能となった。



図3 開き出し応答改善に関する技術を示すブロック図

#### ①特許3637270号

山口 正男

#### ②可変PIDに関する技術

従来のMFCで用いられる通常のPID制御方式では,全流量領域で適切な応 答を確保するために,流量領域0-100%の範囲を,0-10%,10-20%,20-100% というように,分割してそれぞれの流量領域でPID調整を行うのが一般的で ある。しかしこの方法だと各流量領域でのPID調整が必要となるため,煩雑 で工数も増加し,熟練を要するといった問題がある。また調整が不十分だと 安定した制御が行えず,適切な応答を得るまでに時間がかかるという問題が あった。

本技術では、PID演算結果に以下の式のような流量設定値Sに基づく関数を 乗算する(図4参照)。この関数は設定値が大きいほど小さい値となる関数で ある。

f(S) = (100 + K) / (K + S)

(Sは%フルスケールで表された流量設定値, Kは調整係数。) この乗算結果を制御信号として出力することで, 複数の流量 領域であっても容易に流量の調整を行うことができ, 広範囲 の流量領域にわたって最適な制御を行うことが可能となる。 また上記の関数は流量100%で1となる。このことにより, PID 係数を求めるためには流量100%で, 調整係数Kを求めるた めには100%以外のある1つの流量値で調整するだけでPID 調整を容易に行うことができるというメリットもある。

#### ②特許3893115号

米田 豊, 霜村 光造, 高橋 明人, 野山 智史, 古川 幸正, 鹿島 利弘



図4 可変PIDに関する技術の概略図 1…流路, 2…制御バルブ, 3…流量センサ部, 7…演算制御部, S…流量設定値, Q…流量測定値, C…PID演算結果, C'…開度制御信号, F…流体。

# 何を測る?何で測る?

HORIBAは、その60年の歴史の中で、さまざまな対象に「はかる」を追求し続け、いろいろな手法を用いた数多くの分析・計測機器を世に出してきました。 それは、何を(どんなものを)何で(どんな手法で)測るのか、の最適解を探す 過程だったといえます。

本号から, 堀場製作所が製品化してきた分析・計測手法の解説の連載をス タートさせます。その第1回にあたって, 我々が追求してきた「何を測る? 何 で測る?」の概要を, 次ページ以下の分析・計測技術マップとしてまとめまし た。現在, HORIBA製品の測定対象は, 下図に示すように, 自然物から人工 物まで, またその大きさは, 原子・分子レベルから地球レベルまで, 多岐にわ たります。マップは, それらの対象を物質の三態(気体・液体・固体)に分類し, それらに最適な「何で?」を一覧にまとめています。本マップが, 今後の連載を ご覧いただく上でのご参考となれば幸いです。

第1回の本号(40号)および41号は,液体の分析・計測手法について解説しま す。また,以後の,42号・43号は気体,そして44号・45号は固体の分析・計 測手法についての解説を予定しています。



HORIBA製品の測定対象

# HORIBA の分析・計測技術マップ(気体)

大田 星本 よく コイン キ		ガスクロマトグラフ法 触媒酸化法					ダスト濾過サンプリング・ 除湿		全流希釈サンプリング法 全流希釈サンプリング法 分流希釈サンプリング法 直接サンプリング法		全流希釈トンネル (フルトンネル) 分流希釈トンネル) (マイクロトンネル)	
₹ ve	1111-02-2		B 線吸収法								フィルタ重量法 フィルタ熱焼法	超音波法 パトー管法 廃圧法
· · · · · · · · · · · · · · · · · · ·	围 WXX X V IZY	光イオン化法 (PID)			磁気圧力法 磁気ゲンベル法 四重穂質量分析法		磁気圧力法 磁気ダンベル法		磁気圧法 低MD) 質量分析法 (MS)		拡散電荷法 (DC)	
大正に	围入口上午这				固体電解算法 (ジルコニア式) ガルバニ電池式		固体電解質法 (ジルコニア式) ガルバニ電池式		固体電解質法 (ジルコーア式)	固体電解質法 (ジルコニア式)		
意在古芥子	甩 X(投)U(Z	水素炎イオン化法 (FID)			ズリッジ回路法	ブリッジ回路法	水素炎イオン化法 (FID)		水素炎イオン化法 (FID)		水素炎イオン化法 (Dual-FID)	
	X											
<b>該</b> 波測定法	紫外光	紫外線蛍光法 (UVF) 紫外線吸収法 (NDUV)			紫外線吸収法 (NDUV)		待原子分光法		紫外蛍光法 (UVF)			
分光法·電磁	可視光			CsI(Tℓ) シンチレーション式				光透過方式			凝縮粒子カウント法 (CPC) 光透過法	
	赤外光	非分散赤外線吸収 (NDIR) 化学発光法 (CLD)			非分散赤外線吸収法 (NDIR) 化等先光法 (CLD) フーリエ変換赤外分光法 (FTIR)		非分散赤外線吸収法 (NDIR) 化学発光法 (CLD)		非分散赤外線吸以法 北学発光法 化学発光法 7-リエ変換赤外分光法 量子カスケードレーザ (QCL/R) (QCL-R)			
日期小子票	网络马耳目	成分濃度 【CO/CO2/HC/N0x/SO2/O3/H2S/NH3/ HAP\$】	浮遊粒子状物質濃度	環境放射線量 【y線】	成分濃度 [CH_/C,H_/C,H_/C,H_/HC/CO/CO_/NOx/ SO_/H,S/O_/NH_/H_/IPA]	画髪	成分濃度 [CO/CO2/NOx/SO2/O2/NH3/CH4/VOC/ Hg]	6分濃度 GO/CO, NOX/SO, O ₂ /NH ₃ /CH/VOC/ GO/CO, NOX/SO, O ₂ /NH ₃ /CH/VOC/ 5分濃度 H/O ₂ /CH(SO, THC(HC)/NOX(NONO ₃ )/N ₂ O/ H/O ₂ /CH(SO, THC(HC)/NOX(NONO ₃ )/N ₂ O/ MML		空熱比	粒子状物質濃度 [PM(質量)/PN(粒子数)/スモーク]	減量
(世) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	刚走刘家	+	公気		יאאלםע	<	気が運道排が	<b>∉</b> ⊀⊀	ЧУ	ジン井	<u>ж</u> к	

(液体)
マップ
計測技術で
の分析・
HORIBA

\$	the state state but		分光法·電磁	該波測定法					i I I	
正刈業	測定項目	赤外光	可視光	紫外光	X線 X	电风抵机法	电风化子法	电燃入法	その間	サノノリノク・肌処理法
	pH						電位差測定法			
	電気伝導度						電気伝導度法			
	酸化還元電位						電位差測定法			
環境水	洛存イオン、洛存物質濃度 【イオン濃度(Na ['] )K ['] /Cu ^{2*} /Cu ^{2*} /CSN ^{-/} NIL ['] /Cl ^{-/} NO ₃ )、有機体汚濁物質・化学的 酸素要求量(COD)・金リン量/全チッ素量・ 洛存酸素】	近赤外線分光	勝導結合 (ICC 蛍光5) 吸光头	7ラズマ法 (P) 5代法 6度法			電位差測定法 酸性過マンガン酸カリウム法 アルカリ性過マンガン酸カリウム法 隔膜ボーラログラブ法 ガルバニ電池法			紫外線酸化分解法
	油分濃度	非分散赤外吸収法 (NDIR)								
	獨度		透過散乱法							
	рН						電位差測定法			
臣令	電気伝導度						交流電極法			
(用款	酸化還元電位						電位差測定法			
<b>※</b>	溶存イオン、溶存物質濃度 【イオン濃度(Na ⁺ /K ⁺ /Ca [*] /Cu [*] /CSN ⁻ / NH ₁ ⁺ /Cl ⁻ /NO ₃ )、溶存化合物一般、溶存酸素】		誘導結合フ (IC 蛍光分	<b>ゲラズマ法</b> (ア) )光法			電位差測定法			
	Hd						電位差測定法			
	電気伝導度						交流電極法			
	酸化還元電位						電位差測定法			
ブロセス水	浴存イオン、物質濃度 1. オン、物質濃度 1. カイオン濃度、レドラン、濃度、効用濃速 度、半導体素液濃度、SC 1溶液(NH ₂ /H ₂ ), AL0, AL0, NSC2治溶(HC1-L0, AL0, DH2), PHP溶液(NH ₂ /H ₂ ), HE7A, DN5PM溶液(HzO,H ₂ O,H ₂ O), FPM 溶液(HF/H ₂ O,H ₂ O), FD> 「酸濃度]	比色法	可視光分光 (近紫外~近赤外)				電位差測定法	交流電極法 電磁勝導法		
	獨度		透過散乱法							
	色度								超音波法	
	流量					ブリッジ回路法				
	Hq						電位差測定法			
	電気伝導度						交流電極法			
	酸化還元電位						電位差測定法			
工場排水	溶存物質濃度 【有線性汚濁物質・化学的酸素要求量 【COD】・全リン量/全チッ素量・溶存酸素・ 残留進素】	近赤外線分光	誘導結合 7 (IIC 蛍光分	<b>グラズマ法</b> (P) 5代法			電位差測定法 酸性過マンガン酸カリウム法 アルカリ性過マンガン酸カリウム法 ポーラログラブ法 腐酸ポーラログラブ法 ガルバニ電池法			樂外線酸化分解注
			吸光光	(度法						
	油分濃度	非分散赤外吸収法 (NDIR)								
	灣度		透過散乱法							
石油	石油中硫黄濃度			紫外蛍光法 (UVF)	蛍光X線法					
	溶存イオン・溶存物質濃度 【血中CRP濃度, 尿, 血中電解質濃度 (Na [*] /K [*] /Cl ⁻ )】		ラテックス免疫比濁法				交流電極法			
豊怒	血糖値						酵素電極アンペロメトリー法			
	血球数		シアンメトヘモグロビン法			コールター法				

# HORIBA の分析・計測技術マップ(固体)

→ 小光 電磁波測定法 小光 電磁波測定法 小小光 可視光 紫外光 X(4) 水分光法 ア-リ1 工変換赤外分光法 アーリ工変換赤外分光法 テーレム変換赤分分光法 スーリー工変換赤分分光法 テーレー工変換赤分分光法 (DDS) (DDS) (DDS) (DDS) 第次、 電気抗法 素化分析法 第小光 X(4) (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) 第一、 (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (DDS) (	サンプリング・前処理法																						
加定項目     加定項目     ホハ・エ     ホー	その街																		熱起電力法				
加速項目 かかれ 「酸化剤油は法 かんしい 「酸化剤油は法 小子 「酸化剤油は法 小子 「酸化剤」では 「酸化物油は 小子 「酸化物」では 「酸化物」では 「酸化物」では 「酸化物 の合理 ・ 酸化 かん しょう いく いっこう いっこう いっこう いっこう いっこう いっこう いっこう いっこう	電磁気法																						
通連項目         介州北<         小桃北<         小桃北         電磁波測定法         電気抵抗法           赤州光         小州北         小州北         米州北         常州北         電気抵抗法           元素や化合物の含有量・濃度         フーリエ変換赤外分光法         第光分光法         第光分光法         第分分析法         第分分析法           元素や化合物の含有量・濃度         モンムホホ         第分分析法         第分分析法         第分分析法         第小公報         第	電気化学法																						
浙定項目 赤小光 可説法 小光法・電磁波測定法 赤小光 可視光 紫小光 X線小光 元素や化合物の含有量・濃度 7-1)工変換赤外分光法 (GDS) ホテノムが法 発光分析法 第先分子法 (GDS)	電気抵抗法																						
<ul> <li>         通定項目         <ul> <li></li></ul></li></ul>	X線	蛍光X線分析法				蛍光X線分析法							蛍光X線分析法								蛍光X線分析法		
通連項目         赤外光         分光法:電影           満外光         赤外光         可視光           市素や化合物の含有量・濃度         7-1)工変換赤外分光法         60           5-5-254244         第光         8先先	紫外光	分光法 DS) 分析法 :He-MIP)				分光法 DS) 分析法 :He-MIP)							分光法 DS) 分析法 :He-MIP)								分光法 DS) 分析法 :He-MIP)		
測定項目 赤外光 元素や化合物の含有量・濃度 元素や化合物の含有量・濃度 ティンムが生		発光 (G 発光 (プラズマ	レーザ回折・散乱法	CsI(Tℓ) シンチレーション式	レーザ回折・散乱法	発光 (G 発光 (プラズマ	屈折率法		レーザ回折・散乱法	蛍光分光法	蛍光法		発光 (G 発光 (プラズマ		レーザ回折・散乱法	蛍光分光法	蛍光法	酵素免疫測定法 (可視)		CsI(Tℓ) シンチレーション式	発光 (G 発光 (プラズマン	蛍光分光法	蛍光法
測定項目 元素や化合物の含有量・濃度	赤外光	フーリエ変換赤外分光法 (FTIR) ラマン分光法			非分散赤外吸収法	7ーリエ変換赤外分光法 (FTIR) ラマン分光法	偏光解析/	ラマン分光法				近赤外パルス法	フーリエ変換赤外分光法 (FTIR) ラマン分光法	ラマン分光法							フーリエ変換赤外分光法 (FTIR) ラマン分光法		
	測定項目	元素や化合物の含有量・濃度	粒度分布	放射線量 【7 線】		元素·化合物含有量·濃度	膜厚	結晶性	粒度分布	蛍光強度	蛍光寿命	光沢度	元素·化合物含有量·濃度	結晶性	粒度分布	蛍光強度	蛍光寿命	残留農薬	温度	放射線量 【2 線】	元素·化合物含有量·濃度	蛍光強度	蛍光寿命
□ □ □ □	山定対象	+	- 東					工業材	·菜				14		H	一業生産	惠				÷	H¥	

# Topics

# 電気化学測定を応用した計測機器

Measuring Instruments based on Electrochemical Methods

#### はじめに

電気化学とはイオンや電子といった荷電粒子が関与する化学現象一般を取 り扱う学問であり、その応用範囲は計測機器や分析機器を始めとして、電池、 メッキ、半導体素子など広範にわたる。計測および分析の観点で見ると電気 化学測定は、他の分析手法に比べて比較的簡便な装置構成で良いという特 長があり、その他の化学実験操作や分析手法と組合せて使用されることも多 い。例えば、滴定や液層クロマトグラフィ、水晶振動子マイクロバランスとの 組合せは有名である。その汎用性や簡便性から研究開発に留まらず、臨床検 査や環境計測など幅広い分野にて応用されている。

市販の参考書^[1-3]を読めばお分かりの通り, 電気化学を理解するためには多 くの数式とそれらの相互関係の理解が不可欠であるが, 初心者にとってはそ れらを理解するのは容易ではない。本稿では理論的な解説は可能な限り排除 し, 株式会社 堀場製作所が計測機器に応用している測定手法を中心に, 実 用上で必要と思われる原理やノウハウを紹介する。電気化学測定法を応用し た計測機器を利用しているが, もう少し詳しく知りたい, 上手に利用したい, と思っている方々の一助となれば幸いである。

#### 電気化学測定法

本稿では測定している項目によって, 電気化学測定法を3種類に分類する。す なわち電流, 電圧(電位差), 抵抗のいずれを測定しているか, という見方であ る。電流測定法はアンペロメトリー, 電圧測定はポテンシオメトリー, 抵抗測 定はコンダクトメトリーと呼ばれる。測定項目が同じであれば, 測定方法も似 通ってくる。項目毎に分類することで理解が深まるのではないかと考え, 以下 では上記の分類に従う。

電気化学測定手法を応用した計測機器の中で,最も多く使われているのが電 圧測定を応用した機器ではないだろうか。代表的なものはpH(水素イオン濃 度指数)計であるが,他にも各種イオン濃度計や酸化還元電位(ORP)計など が知られている。電流測定を応用した機器には溶存酸素濃度(DO)計や残留 塩素濃度計がある。抵抗測定を応用した機器としては電気伝導率計や抵抗 率計がある。

#### 電圧を測る

#### 測定手法

電圧測定では多くの場合,作用電極と比較電極の間に発生する起電力をエレ クトロメータにて測定する。正確な測定のためには電極反応の抵抗値と比較 してエレクトロメータの内部抵抗が十分に大きいことが重要である。通常は 電極内部抵抗および電極反応抵抗よりも1,000倍程度は高くなるよう設計さ れる。

#### pH計

pHは水溶液の性質を示す代表的な指標の1つで,農水産,食料品,医薬,化 学工業,環境水など多くの分野で利用されている。pHは水溶液中の水素イオ ン濃度(正確には活量)を示す指標である。水分子の一部は水素イオンと水酸 化物イオンという2種のイオンに電離しているが,中性では2種のイオンの濃 度は拮抗している。ここに酸性物質が加えられると水素イオン濃度が増加し, 一方でアルカリ性(塩基性)物質が加えられると水酸化物イオン濃度が増加 する。そのような2種のイオンの濃度バランスの崩れを指標として示したもの で,pH7付近を中性,pHが小さいと酸性,大きいとアルカリ性と呼ばれる。

pHを測定する多くの場合,ガラス電極法が使用される。ガラス電極法とは, ガラス電極と呼ばれる作用電極と比較電極間の起電力からpHに換算する方 法である(図1)。近年ではガラス電極と比較電極が一体となった複合電極が 主流となっている。

ガラス電極は、pH応答性のガラス膜、それを支えている高絶縁の支持管、ガ ラス電極内部液、内部電極、リード線およびガラス電極端子などから構成さ れる。最も重要なのはガラス膜である。pH応答性ガラスは表面で水素イオン と選択的に反応するよう組成が調製されており、通常は薄い膜状に加工され ている。ガラス薄膜の内外にpHの異なる溶液があるとき、薄膜部分にpH差に 比例した起電力が生じる。例えば25℃で水溶液であれば、理想的にはpHが1 異なる毎に約60 mVの起電力が生じる。

ガラス電極がpHに比例した電位を発生させることに対して,比較電極はpH と無関係に一定の電位を示すことが求められる。比較電極は液絡部,内部液, 補充口,比較電極支持管,比較電極内部液,内部電極および電極リード線な どから構成される。内部電極にはほとんどの場合,銀/塩化銀電極が,内部 液には塩化カリウム水溶液が用いられる。内部液とサンプルとが接する部分 を液絡部と呼び,多くの比較電極では,液絡部から微量の内部液をサンプル 側へと流出させることで電位を一定に維持している。液絡部は用途に合わせ ていくつかの種類が常用される(図2)。直径数10マイクロメートルの穴があい ているピンホール型,摺り合わせ面をもつ袴を履いたスリーブ型,異種の物質 を接合させたセラミック型あるいはファイバー型などが主流である。一般的







図2 比較電極液絡部の種類

opics

に内部液の流出量が多い方が、液絡として安定する傾向にあるが、その分サ ンプルを内部液で汚染するため用途に合わせた選択が必要である。

近年,内部液を流出させない液絡部,イオン液体塩橋を採用した電極が販売 開始され注目を集めている。イオン液体塩橋は、イオン液体の溶解平衡によっ て電位を決定するため、従来と比べてサンプルの汚染を1/10,000以下に抑え ることが可能である^[4]。ガラスを用いないpH電極として、半導体技術を応用 したISFET (Ion Sensitive Field Effect Transistor)電極がある。これは、 ガラス膜とガラス電極内部液,内部電極の機能を半導体センサに置き換え たものである。pHに反応する物質をゲート部に形成させて、センサの配置に よって様々な電極の形状を作製することができる。先端を尖らせた突き刺し タイプの電極や、センサ部を平面構造にしたフラットタイプの電極が販売さ れている。ガラス電極と異なり応答部の破損の恐れが少なく, 直接サンプル にセンサを突き刺して、もしくは押し当てて測定することができる。

pH測定では既知の標準液による校正が必須である。JISではpH値が異なる 6種類の標準液が定められており、測定したいpH値に合わせて選択する。測 定においては温度管理も重要である。最も正確なのは校正もサンプル測定も 25 ℃で実施することであるが、難しい場合も多い。温度補償機能を有する pH計であれば、ガラス電極の起電力変化は補償されるが、サンプル自体も温 度によってpHが変化する。特に経時的な変化を観察する場合などは、測定時 の温度も同時に記録しておくことで、温度によるpH変化を分けて考察できる ため有益である。正確なpH測定のためには他にもいくつかのポイントがある。 まず電極は適切に洗浄することである。使用に伴う劣化のほとんどは汚れに よるものである。汚れは付着したら速やかに除去することが必要であり、毎回 の洗浄が望ましい。また内部液を流出させる比較電極の場合、内部液は多め に入れておくこともお奨めしたい。内部液を多めに入れることで、流出量を安 定化させ、外部雑音電流の影響を軽減させる効果が期待できる。

#### 各種イオン濃度計

一言でイオンと言ってもその種類は膨大で、様々な分野で計測が行なわれて

#### 表1 主なイオン電極

電極の種類	電極の構造	主な測定可能 イオン種
ガラス電極	ガラス薄膜を応答膜とする電極	Na ⁺ , H ⁺ (pH)
固体膜電極	難溶性金属塩の単結晶もしくは難溶性金属塩を主成 分とする粉末を加圧成形した膜を感応膜とする電極	$\begin{array}{c} {\sf CI}^-,\;{\sf Br}^-,\;{\sf I}^-,\;{\sf SCN}^-,\\ {\sf CN}^-,\;{\sf S}^{2-},\;{\sf Ag}^+,\;{\sf Pb}^{2+},\\ {\sf Cu}^{2+},\;{\sf Cd}^{2+} \end{array}$
	F [−] 電極はフッ化ランタンLaF3単結晶を感応膜とし、 内部にF [−] 含む中性内部液を有する	F [−]
液体膜電極	液状イオン交換体などを有極性有機溶媒に溶解し, これを多孔性隔膜で保持したものや,高分子物質に しみ込ませて固定したものを感応膜とする電極	NO ₃ , Ca ²⁺ , K ⁺
隔膜型電極	pHガラス電極と比較電極を組み合わせた内部電極 を支持管に挿入し、内部液を人れ、ガス透過性膜で 覆った電極	NH ₃

いる。例えばナトリウムだけに着目しても. 食品や医薬品はもちろん環境水調査.血液 検査,ボイラー水の管理など利用例は多い。

イオン濃度を測定する手法はいくつか知 られているが、イオン電極法による測定 は装置構成が簡単であるだけでなく、測 定範囲が広いことが特長の1つである。例 えばナトリウムイオン電極では2.3 ppm~ 23,000 ppmまでが測定できる。一方で電極 電位が濃度(正確には活量)の対数に比例 するため、少しの電位変化が濃度換算する

と大きな誤差となるため,正確に測定するためにはいくつかの注意点がある。 エレクトロメータは,共通でイオン電極を交換するだけで測定対象を変更で きる点も特長の1つである。イオン電極は大きく4種類に分類され,現在は20 種類程度が市販されている(**表1**)。

イオン濃度計の構成はpH計とほとんど同じで,ガラス電極を各種イオン電極 に置き換えるだけで良い。ただし測定イオン種によっては比較電極の内部液 は塩化カリウムからの変更が必要である。塩化物イオンやカリウムイオンを 測定する場合はもちろんであるが,後述する妨害影響が懸念される場合も変 更することが必要である。

妨害影響とは測定対象と類似の性質を有するイオンが共存する場合に測定 値に影響が見られる現象である。影響の程度は,目的イオン種や妨害イオン 種によって様々で,妨害の強さを選択係数もしくは共存許容限界値で表す。 選択係数が小さい場合(共存許容限界値が大きい場合)や妨害イオン濃度が 小さい場合には影響は無視できるが,正確な測定を行なう上では,妨害イオ ンがどの程度含まれているかについて把握しておくことが必要である。イオ ン電極法で正確に測定する場合には,校正濃度と測定温度が重要である。測 定したい濃度が大まかに分かっている場合には,その濃度より低い標準液と 高い標準液の2種類で校正をかけることが望ましい。また,それらは10倍程度 ずらしておくのが良い。例えば測定対象濃度が0.05 mol/L程度と分かってい るのであれば,校正濃度は0.01 mol/Lと0.10 mol/Lを選択すると良い。更に サンプルのイオン強度が高い場合には,校正液に適切な無関係塩(支持塩)を 加えることが必要である。また校正温度と測定温度を同一にすることで電極 の温度特性をキャンセルすることができる。

#### 酸化還元電位(ORP)計

酸化還元電位(ORP)は水溶液の液性の1種で,高い場合は酸化性,低い場合 は還元性があると言われる。酸化還元滴定での指示電極や下水処理などの 生物反応プロセス運転管理として使用される。ORPが既知の単一物質によっ て決定される場合であれば,理論式から濃度比(正確には活量比)を求めるこ とができる。しかし,複数の未知物質が含まれる試料では,ORP値からそれ らの濃度を求めることは困難である。ORP電極の構成もpH電極やイオン電 極とほぼ同等で,作用電極を金属電極へと置き換えるだけで良い。金属電極 には白金や金が多用される。ORPでは,校正作業は特に必要としないが,測 定値の確かさを確認するために,既知の標準物質を使用される。標準物質と しては,ハイドロキノン類や金属錯体が用いられることが多い。測定の注意 点としては,やはり温度管理が挙げられる。溶液のORPが温度によって変化 するため,測定値と同時に温度を記録しておくことが有益である。

#### 電流を測る

#### 測定手法

電流測定は作用電極で目的物質を電気分解してそこで発生する電流を測定 する。測定の構成としては3電極式が基本形であるが、比較電極と対象電極 を一体化させた2電極式とすることで簡略化させたものも多い。

#### 溶存酸素(DO)計

溶存酸素(DO)は水中に溶け込んでいる酸素量のことで,一般的にはmg/Lも しくは%(水中の溶存酸素飽和率)で示される。DOは,河川や海域の自浄作 用や魚類などが水生するために不可欠なものであり,DO濃度は水質汚染の 指標の1つとして使用される。また,下水処理などの生物反応プロセス運転管 理やボイラの腐食管理のためにモニタリングされる。

主に2種類の測定方式が知られている。1つは隔膜形ガルバニ電池式で,もう 1つは隔膜形ポーラログラフ式と呼ばれる。隔膜形ポーラログラフ式の電極模 式図を図3に示した。酸素に対して透過性が高い隔膜で極と内部液をサンプ ルから隔離し,電圧が印加された作用電極表面にて,隔膜を透過してきた酸 素が還元される。作用電極は金や白金など貴金属が選ばれることが多いが, 最近では炭素素材を採用した電極も販売されている。

DO計の校正はゼロ液と大気で校正されることが多い。ゼロ液は過飽和の亜 硫酸ナトリウム水溶液など,化学的に酸素を消費させた水溶液を使用する。 隔膜と作用電極は密着していることが重要である。密着が弱くなるとゼロ電 流が上昇や応答速度の低下が見られる。膜を交換できる電極であれば,定期 的な膜交換を行なうことにより長く使用できる。密着が低下する原因は経年 劣化もあるが,温度変化や圧力変化によって膜のテンションが変化する場合 もある。内部液中に大きな気泡が存在するとテンションの変化幅が大きくな る。内部液を交換する際には内部液に大きな気泡が入らないよう注意するこ とが必要である。

#### その他の計測装置

水道水は上水施設にて塩素による消毒が行なわれているが,残留塩素濃度 は上水施設から各家庭に配分される間に徐々に減少する。残留塩素濃度が 低すぎると消毒が不十分となり,高すぎると臭いが強くなる。適正な濃度を維 持するために残留塩素濃度のモニタリングが行なわれている。残留塩素電極 はDO電極とほぼ類似の構成であるが,透過膜はない。また作用電極に金属 の析出が起こるため連続研磨が必要である。

一定の電位で電解するだけでなく、一度電極表面に電析させた後に電解する 手法をストリッピングボルタンメトリと呼ぶ。電極表面での濃縮過程を踏むこ



とで微量物質の定量が可能である。銅,カドミウム,鉛, 亜鉛, 水銀, ヒ素などの定量が可能であり, 条件によっては,同時に複数種の定量が測定可能である。作用電極には水銀,金やイリジウムなどが使用されることが多いが,炭素材料を使用した報告もある。S.Fierroらは導電性ダイヤモンドを作用電極としてカドミウムの10⁻⁶ mol/Lオーダーまでの定量に成功している^[5]。

#### 抵抗を測る

#### 電気伝導率計/電気抵抗率計

電気伝導率とは電気抵抗率の逆数であり,物質中での電気の流れやすさを示 す指標である。純粋な水はほとんど電気を通さないが,不純物が混入すると 電気を通しやすくなる。高純度の水が要求される半導体産業の洗浄水や食 品,医薬業界での材料水の管理に利用される。その他にも環境水や工場廃水 の監視として使われることが多い。また溶解している物質が分かっていれば 電気伝導率から物質の濃度を求められる場合もあり,濃度計としても使用さ れる。

電気伝導率の測定方法には交流電極法と電磁誘導法がある。交流電極法と は、溶液をはさむ電極の間に流れる電流の大小を測定する方法で、電磁誘導 法では溶液をはさむ二つのコイルの間で生じる誘導電流の大小を測定する (図4)。

交流電極法は,検出器の構成が簡単で測定系を小さくできることが特徴であ る。また,純水のような低電気伝導率の水溶液の測定にも適している。一方, 電極表面を汚しやすい試料や電極表面を溶解させる試料には適用できない などの課題がある。電極には白金黒メッキ処理を施した白金電極や表面が 粗らされたチタンやステンレスといった金属電極が使用される。多くの場合 は図4に示した二電極式が採用される。二電極法は2枚の極板を向かい合わ せ,交流電圧を印加した時の電流値から抵抗を算出する。2極板の距離や面 積,極間の電場を規定するセル形状によって電極毎にセル定数と呼ばれる固 有値が決まる。セル定数が大きいほど高い電気伝導率を測定することが出来 る。

二電極法は電気伝導率が高くなるほど電流が大きくなるため,分極の影響で 測定誤差が生じやすくなる。そのような問題点を解決するのが四電極式であ る。電圧検出極および電圧印加極の計4つの電極から構成されており,二電 極式における分極の影響を受けにくい構造で,電気伝導率が高い領域まで測 定が可能である。電磁誘導法は検出器の接液部をプラスチック等の耐食性の 優れた材料で作ることが可能であり,高濃度の酸やアルカリ溶液の測定に適 しているが,純水のような低電気伝導率の水溶液の測定には不向きである。 電気伝導率計は既知の標準液を測定して,定期的にセル定数を確認すること が必要である。通常は塩化カリウム水溶液が使用される。塩化カリウム水溶 液は,温度によって電気伝導率が変化するため,温度を一定にするか,温度



図4 交流電極法(上)と電磁誘導法(下)

を測定して補正をかける。水道水,地下水,河川水,雨水,ボイラー水などは 不純物が少ないため,測定容器の汚れや,大気中の二酸化炭素の影響を受け やすい。清浄な容器を使用する,密閉容器を使用することで影響を除去する。

#### おわりに

以上のように、電気化学を応用した測定機器は多く、応用範囲も多岐に渡る。 本稿の趣旨と紙面の都合上、電気化学の理論を割愛したため、理解が難しい 点もあったかと思われる。参考文献に電気化学の測定法について詳しい参考 書を記載した。また堀場製作所のホームページ^[6]にも詳しい解説があるので、 是非併せて参考いただきたい。

#### 参考文献

- [1] 電気化学測定法,藤嶋昭ほか,技報堂出版株式会社(1984)
- [2] 電気化学法 基礎測定マニュアル, 逢坂哲彌ほか, 講談社サイエンティフィク(1989)
- [3] ベーシック電気化学, 大堺利行ほか, 化学同人(2000)
- [4] 株式会社堀場製作所ホームページ「イオン液体塩橋搭載pH複合電極PUREIL9600-10D」
- [5] S Fierro et al., J. Electrochem. Soc. 2011,158, 11, 173-178
- [6] 株式会社堀場製作所ホームページ「やさしいpH, 水質の話」



#### 石井 章夫

Akio ISHII 株式会社 堀場製作所 開発本部 アプリケーション開発センター 液体計測開発部



#### 山内 悠

**Hisashi YAMANOUCHI** 株式会社 堀場製作所 開発本部 アプリケーション開発センター 液体計測開発部


# B to B No.1のデザインを目指して

HORIBAグループの商品デザインは、単に外見のよさを追求するのではなく、 デザインそのものが機能であり性能であると考えている。なぜなら、デザイン はお客様に喜んでいただける商品の価値を創造すると同時に、商品の価値を 体現する重要な要素のひとつだからだ。同時にデザインは、お客様のみなら ずステークホルダーすべてに、HORIBAブランドの価値を的確に伝え、かつ 我々HORIBARIAN^{*1}個々が、HORIBAブランドに対する誇りと自信を再認識 する機能も有していると考えている。以下、2012年のデザイン関連受賞例の 紹介を通じ、デザインによる機能と性能の創出、およびその体現事例を報告 する。

*1:HORIBAグループに所属する従業員の社内での愛称

# 「グッドデザイン賞2012」

# 卓上型pH・水質分析計 LAQUA F-70/DS-70シリーズ

# 「実験室の徹底した観察」から生まれた 「機能を創出するデザイン」が評価

グッドデザイン賞 受賞紹介サイト http://www.g-mark.org/award/describe/39189?token=wUIYOImZRE

株式会社 堀場製作所は、1950年に日本初のガラス電極式pHメーターをはじめ、常に時代の最先端を行く、pH・水質分析計を開発してきた。"pHといえばHORIBA"というお客さまの期待に応えるべく開発した「LAQUA F-70/ DS-70シリーズ」(図1)は、最もポピュラーな実験室で使われる卓上型pH・水 質分析計である。

このデザインプロセスには、以下の2つの重要なポイントがある。 まず、開発の初段で開発メンバーとデザイナーが自ら現場を訪問し、徹底的 にユーザーの生の声を聞いたことである。そして訪問した現場の状況をビデ オカメラで動画として撮影。次に、抽出した重要な状況を動画で製品に関わ るメンバーと共有するとともに、500枚以上の気付きをキャプチャーした静止 画と共にカード化し、KJ法*2やブレインストーミングを駆使して顧客も気付

# LAQŮA



図1 卓上型pH・水質分析計 LAQUA F-70/DS-70シリーズ



図2 徹底した現場観察とビデオエスノグラフィに 依る分析

いていない潜在ニーズを探し出した。(この手法は「ビデオエスノグラフィ法」 と呼ばれる:図2)このデザインプロセスから,水質分析の現場では,わかりや すく快適で正確な測定のために,機器をいつもきれいに保ちたいという課題 を抽出。「Clean・Clear・Comfort」というデザイン・コンセプトを導き出し製 品へと具現化した(図3)。

"Clean" 測定現場で正確な測定値を得るために, 計器本体や電極をいつ もコンタミネーション(汚れ)のないきれいな状態に保つことができる滑ら かで凹凸や隙間のない表面を採用。

"Clear" 今何をしているかをわかりやすく伝え,何をすればいいのか直 感的にわかるためのフルカラーのタッチパネル液晶表示とナビゲーション 機能を充実させたグラフィカルユーザーインターフェース(GUI)を採用。

"Comfort" さまざま場所や用途に適合し,よどみのないスムーズで自在 な測定を実現するために,計器本体だけではなく電極スタンドやビーカー などの測定容器など,測定に関わる要素の操作を含めた測定作法をデザイ ン。360°回転でき,また測定容器を自在に配置でき,アームの上下や回転 半径を容易かつ自在に操作できる電極スタンドを採用。

グッドデザイン賞の審査委員からは、「実験室という, 耐薬品性や耐候性が 強く求められる過酷な条件で使用される試験機の為, 測定器としては初めて

の,汚れや傷に強いガラスパネル(ガラストップ)の採用により,フラットで凹凸のない,シンプルで美しい,測定器デザインが高いレベルでまとめあげられている。又,スタンドベースの柔らかくカーブしたベース形状や本体側面形状もビーカーや計測用容器を,より近くレイアウトして測定器の安定性を高められる工夫等,細部にわたる配慮が高く評価された」との評価コメントを得た。(グッドデザイン賞ウェブサイトより引用)

今後も"pHといえばHORIBA"というお客さまの期待に応え るための独創性のみならず,期待を超える機能を創出するデ ザインを進めていく。

*2:川喜田二郎氏(東京工業大学名誉教授)が考案された、データをカード に記述して、グループ毎にまとめ、データを整理していく手法

# 統合計測プラットフォーム HORIBA ONE PLATFORM

# エンジン排気ガス計測における 新しい計測環境の構築と優れた拡張性が評価

グッドデザイン賞 受賞紹介サイト http://www.g-mark.org/award/describe/39261?token=wUIYOImZRE

実験室の「徹底した観察」から生まれた 正しい測定に自然と導く「機能のデザイン」



図3 機能性を謳った3つのデザインコンセプト

株式会社 堀場製作所のエンジン排気ガス測定装置は,自動車メーカーの研 究開発などで使用される世界シェア80%を占める主力製品である。2012年度 のグッドデザイン賞を受賞した統合計測プラットフォームは,このエンジン排 気ガス測定装置をはじめ,試験室に並ぶ複数の計測機器や試験評価装置を, まるで一つの機器であるかのように運用・管理できる世界初の新システムと して開発した。

世界的な環境意識の高まりに応え,最先端のハイブリッド車,電気自動車な ど車両全体を精密に制御する研究開発が活発化するなかで,効率的で柔軟 な自動車試験を提供するシステムである。最新の排ガス測定装置"MEXA-ONE"を始めとする,今後リリース予定の「ONEシリーズ」はもちろん,既存の HORIBA製品や他社製品を含む計測装置を統合し,統合グラフィカルユー ザーインターフェース(GUI)における画面操作作法の統一を行なうことで,オ ペレータの負荷を軽減する(図4)。システムの構成などの詳

細は(次世代統合排ガス計測プラットフォーム; P74)に譲り, 本稿ではデザイン面について述べる。

従来の排ガス測定装置から抜本的に改善したポイントは,操 作性に直結するGUIである。特に、「システム全体がわかりや すい画面構成」と「直感的な操作性」の2点に注力した(図5)。 「システム全体の状態がわかりやすい画面構成」を実現する ために,画面内で「個々の装置」と「システム全体」を扱う画面 領域を明確に区別した。また,測定に関わる測定値などの表 示エリアと操作エリア,およびシステムに関わる操作エリア の3つを明確に区別し,視認性と操作性を向上させた。同時 に、「個々の装置」を操作しながら「システム全体」の状態を平 行して確認できるようにし、複数の個々の装置を組み合わ せても簡単な操作を実現した。また、「直感的な操作性」を実 現するために、操作ボタンはわかりやすいアイコンと文字を

組合せ併記すると共に,タッチパネル操作とマウス操作いずれでも操作しや すいレイアウトのチューニングを行った(図6)。更に,アラーム時のトラブル シューティングなど,ユーザーの立場を考慮したユーザーサポートも充実さ せ,操作の習熟に長時間のトレーニングを必要とせず,誰でも簡単に排気ガ ス計測を可能とした。

審査委員からは、「自動車開発に不可欠な排ガス測定機器や自動車試験評価 機器は、ハイブリッド車の増加で、測定対象や項目、手法などが多様化・複 雑化し、一層の高機能化が求められてきている。また、実験室内にある従来 の試験・計測機器を統合的に制御し、効率的に試験・評価できることが望 まれている。このプラットフォームは、その要望に応えるために排ガス測定機 器と自動車試験評価装置を統合的に管理運用できるものである。ユーザーの 測定シーンを徹底的に検証しながら、従来からの操作法を十分に配慮した上 で、新しい計測環境を構築した点や、拡張性に優れた点などが評価できるも のである」との評価を得た。(グッドデザイン賞ウェブサイトより引用)



図4 HORIBA ONE PLATFORM システム統合イメージ図



図5 HORIBA ONE PLATFORM使用シーン イメージ図



図6 システム全体がわかりやすく直感的な操作性 を実現したGUI

図7 ポータブルガス分析計 PG-300シリーズ

今回ソフトウエア・インタラクションを対象とした領域でグッドデザイン賞を 受賞できたことを機に、今後のHORIBA製品のデザインにおいて、ハードウ エアはもちろんのこと、今まで以上にわかりやすい操作を実現し、BtoB製品 である分析計測機器として、持てる性能と機能をお客様が最大限に発揮でき るためのデザインを一層追求して行きたい。

# 「第42回機械工業デザイン賞 審査委員会特別賞|



# 高精度な機動性を実現。国際認証を取得した 世界対応モデルとしての完成度を評価され受賞

機械工業デザイン賞 受賞紹介サイト http://www.nikkan.co.jp/cop/prize/priz08415.html

ポータブルガス分析計[PG-300シリーズ」(図7)では、製品開発をスタートする に当たり、「一目見ただけで、分析計としての性能の良さが伝わるデザインを 創りたい!」という,強い思いがプロジェクトメンバーにあった。まず,ユーザー (分析会社)を開発メンバーと共にデザイナー自ら訪問し、現場で何が求めら れているかという声を直接聴くことから潜在的ニーズを探った。すると、これ までのポータブルガス分析計は、「持ち運ぶことはできるが、十分に持ち運び



に適しているとは言えない」ことがわかっ た。また、「私達の仕事は測定することでは なく分析すること。より良い報告書を作り たい。というユーザーの熱い思いを知った。

そこで、ユーザーと移動を共にする"頭脳明 晰なパートナー"というコンセプトを立て、 工場や焼却場, 煙突を上るような過酷な測 定現場での測定が多いユーザーが."パー

図9 検証中のペーパーモックアップ



トナー"に愛着を感じるような頼もしさ(堅牢)と身軽さ(軽量 化)とわかりやすさ(やさしい操作性)を大切にしてデザイン した。測定現場や移動環境は厳しい条件下であることが多 い。階段の上り下りなど足元が悪い道での移動,狭い通路 での障害物への衝突にも配慮が必要だった(図8)。そこでボ リューム感を確認し、プロジェクトメンバーで共有するため の原寸大のペーパーモックアップ(図9)を作り,可搬性と操 作性の検証を繰り返した。そして、衝突による衝撃から装置 を守るため、樹脂製のサイドガードを軽量化のためアルミ板 金でできた本体と一体感のあるデザインで考案。さらに、持 ち運びに適するグリップ性が良くコンパクトになる専用取 手も開発した。当初デザイン案が実現困難と思われた部分 は、設計部署や加工業者と一緒になって検討と試作をくり返 し,新しい加工方法を取り入れて実現した。さらに,操作部

図8区

はカラータッチパネルディスプレイを搭載。現場に合わせた表示成分数の切 替,測定値とグラフの表示切替,ガイドページでの操作説明という内容をソ フトウェア設計部署と連携して,機能的に分かりやすく整理することで,イー ジーオペレーションを実現した。さらに,はっきり見やすくバランスの良いプ ロポーションの数値やグラフをそのまま画面キャプチャで保存できることで, ユーザーの作成する報告書のクオリティアップに応えた。

今回の賞では企画力, 社会性, 機能, 品質, 操作, 安全性, 造型処理を総合的 に評価され, 可搬型分析計の世界標準確立を目指す, 今後の展開に期待され た受賞となった。なお, このポータブル分析計「PG-300シリーズ」は2011年度 のグッドデザイン賞も受賞していることを申し添える。

グッドデザイン賞 受賞紹介サイト http://www.g-mark.org/award/describe/37900?token=wUIYOImZRE

# 【グッドデザイン賞について】

1957年に創設されたグッドデザイン商品選定制度を発端とする、日本で唯一の総合的なデザイン評価・推奨の運動。これまで55年以上にわたって、デザインを通じて日本の産業や生活文化を向上させる運動として展開されており、のべ受賞件数は38,000件以上にのぼり、今日では国内外の多くの企業や団体が参加。グッドデザイン賞受賞のシンボルである「Gマーク」は、すぐれたデザインを示すシンボルマークとして広く親しまれている(図10)。

# 【機械工業デザイン賞について】

日刊工業新聞社が経済産業省の後援,日本商工会議所,各工業団体の協賛 を得て,わが国工業製品のデザインの振興・発展を目的に1970年に創設さ れ,2012年で42回目を迎える。これまで受賞した多くの製品は,それぞれの 時代のデザインの方向性を示唆する先端的製品として高く評価されている (図11)。



GOOD Design

図10 グッドデザイン賞 シンボルマーク





# 熊内 智哉

**Tomoya KUMAUCHI** 株式会社 堀場製作所 管理本部 コーポレートコミュニケーション室

プロダクトデザインチーム

# 島 充子

Mitsuko SHIMA 株式会社 堀場製作所 管理本部 コーポレートコミュニケーション室 プロダクトデザインチーム

# **HORIBA** World-Wide Network

## JAPAN

HORIBA, Ltd.

2. Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto 601-8510

# Phone: (81)75-313-8121 Fax: (81)75-321-8312

HORIBA Advanced Techno Co., Ltd. 31, Miyanonishi-cho Kisshoin, Minami-ku,

Kvoto 601-8306

Phone: (81)75-321-7184 Fax: (81)75-321-7291 HORIBA STEC, Co., Ltd.

# 11-5, Kamitoba Hokodate-cho, Minami-ku,

Kvoto 601-8116

Phone : (81)75-693-2300 Fax : (81)75-693-2350 STEC Aso Factory

- Torikokogvodanchi, 358-11, Koumaibata, Toriko, Nishiharamura, Aso-gun, Kumamoto, 861-2401 Phone : (81)96-279-2921 Fax : (81)96-279-3364
- HORIBA TECHNO SERVICE Co., Ltd. 2, Miyanohigashi-cho, Kisshoin, Minami-ku,

Kyoto 601-8305

Phone : (81)75-325-5291 Fax : (81)75-315-9972 BRAZIL

### **HORIBA Instruments Brazil, Ltda**

Avenida das Nacoes Unidas, 21.735 PT QD 17 -Jurubatuba - Sao Paulo -SP - CEP 04795-100 Phone : (55)11-55-45-1500 Fax : (55)11-55-45-1570

TCA/HORIBA Sistema de Testes Automotivos Ltda. Rua Goi-s 191 Vila Oriental, Diadema, S-o Paulo, Brasil CEP 09941-690

Phone : 55-11-4224-0200 Fax: 55-11-4227-3133

# CANADA

HORIBA Canada, Inc.

Unit102, 5555 North Service Road Burlington, Ontario, L7L 5H7

Phone : (1)905-335-0234	Fax : (1)905-331-2362
. ,	. ,

# U.S.A.

**HORIBA Instruments Corporated** 

17671 Armstrong Avenue, Irvine, CA 92614 Phone : (1)949-250-4811 Fax : (1)949-Fax: (1)949-250-0924

# **HORIBA** International Incorporation

17671 Armstrong Avenue, Irvine, CA 92614 Phone : (1)949-250-4811 Fax: (1)949-250-0924 Austin Office

9701 Dessau Road, Suite 605, Austin, TX 78754 Phone : (1)512-836-9560 Fax : (1)512-836-8054 Albany Office

58 Clifton Country Rd, Clifton Park, New York 12065 Phone : (1)-518-331-1371 Chicago, IL Field Office

1725 Roosevelt Rd #115, West Chicago, IL 90185 Phone : (1)630-562-2298 Fax : (1)630-562-2324

### Edison Office 3880 Park Avenue, Edison, NJ 08820 Fax : (1)732-549-5125

Phone : (1)732-494-8660 Houston, TX Field Office 240 Springhill Drive, Suite 410, Spring, TX 77386

Phone : (1)281-367-7422 Fax : (1)281-367-7423 **Irvine South Office** 

34 Bunsen Drive, Irvine, CA 92618 Phone : (1)949-453-0500 Fax : (

Fax : (1)949-453-0600 New Hampshire Office

315 Derry Road, SUITE 13 Hudson, NH 03051 Phone : (1)603-886-4167 Fax : (1)603-886-4267 Portland Office

10110 SW. Nimbus Avenue, Suite B-11, Portland, OR 97223 Phone : (1)503-624-9767 Fax: (1)503-968-3236 **Reno Office** 

605 Spice Island Drive, #5, Sparks, NV 89431 Phone : (1)775-358-2332 Fax : (1)775-358-0434

Santa Clara Office 3265 Scott Blvd.Santa Clara, CA 95054 Phone : (1)408-730-4772 Fax : (1)408-730-8975

AnnArbor Facility

5900 Hines Drive, Ann Arbor, MI 48108 Phone : (1)734-213-6555 Fax : (1)734-213-6525 Trov Facility

2890 John R Road, Troy, MI 48083

Readout No.40 March 2013

114

Phone : (1)248-689-9000 Fax : (1)248-689-8578

## AUSTRIA

# HORIBA (Austria) GmbH

Kaplanstrasse 5, A-3430 Tulln Phone : (43)2272-65225 Fax: (43)2272-65230

# BELGIUM

### **HORIBA ABX SAS** Belgium Office

Luchthavenlei 7A, 2100 DEURNE

### Phone : (32)3-281-49-08 Fax: (32)3-281-65-04 **CZECH REPUBLIC**

# **HORIBA Czech**

**Prague Office** 

Petrohradska 13, CZ-10100 Praha 10 Phone : (420)2-7174-6480 Fax : (420)2-7174-7064 Olomouc Factory

Zeleznicni 512/7, 772 00 Olomouc

Phone : (420)588-118-365 Fax : (420)585-310-725 FRANCE

# HORIBA ABX SAS

Parc Euromédecine, rue du Caduce, BP7290, 34184 Montpellier Cedex 4

Phone: 33(0)4-67-14-15-16 Fax: 33(0)4-67-14-15-17 **HORIBA France Sarl** 

12. Av des Tropiques Hightec Sud, F-91955 Les Ulis Phone : (33)1-69-29-96-23 Fax : (33)1-69-29-95-77 **Grenoble Office** 

BUROCLUB 2 Av de Vignate, Gieres 38610 Phone : (33)4-76-63-49-15 Fax : (33)4-76-54-03-99

# **HORIBA Jobin Yvon SAS**

16-18, rue du Canal, 91165 Longjumeau Cedex Phone : (33)1-64-54-13-00 Fax : (33)1-69-09-07-21

HORIBA Europe Research Center Avenue de la Vauve - Passage Jobin Yvon CS 45002

- 91120 Palaiseau Phone : (33)1-69-74-72-00 Fax : (33)1-69-31-32-20 Villeneuve d'Ascq Office

231 rue de Lille, 59650 Villeneuve d'Ascq

Phone: (33)3-20-59-18-00 Fax: (33)3-20-59-18-08 GERMAN

### **HORIBA Europe Automation Division GmbH** Zabergaeustr. 3, 73765 Neuhausen

Phone : (49)7158-933-300 Fax : (49)7158-933-399 **HORIBA Europe GmbH** 

### **Oberursel Office**

Hans-Mess-Str.6, 61440 Oberursel

Phone : (49)6172-1396-0 Fax : (49)6172-1373-85 Berlin Office

Fichtestr. 32, 10967 Berlin

Phone : (49)30-61625581 Fax : (49)30-61625584 Darmstadt Office

Landwehrstrasse 55, 64293, Darmstadt Phone : (49)6151-5000-0 Fax : (49)6151-5000-3865 **Dresden Office** 

Zur Wetterwarte 10, Haus 109, 01109 Dresden

Phone : (49)351-8896807 Fax : (49)351-8896808 Hanover Office Bayernstr. 29, 30855 Langenhagen

Phone : (49)511-7410-95 Fax : (49)511-7410-53 Korschenbroich Office

Friedrich-Ebert-Str. 9-11, 41352 Korschenbroich Phone : (49)2161-47537-0 Leichlingen Office

Julius-Kronenberg-Str. 9, 42799 Leichlingen Phone : (49)2175-8978-0 Fax : (49)2175-897850 Munich Office

Putzbrunner Str. 89, 81739 Munich

Phone : (49)89-634970-10 Fax : (49)89-67070-29 Potsdam Office

Dennis-Gabor-Str. 2, 14469 Potsdam Phone : (49)3316-4900-70 Fax : (49)3316-4900-74

Stuttgart Office (Boeblingen)

Hans-Klemm-Str. 56, 71034 Boeblingen Phone : (49)7031-677-9440 Fax : (49)7031-677-9450 Stuttgart Office (Neuhausen)

Zabergaeustr. 2, 73765 Neuhausen

Phone: (49)7158-933-800 Fax: (49)7158-933-899 Wolfsburg Office

John - F. - Kennedy - Allee 64 38444 Wolfsburg Phone : (49)5361-27648-11 Fax : (49)5361-27648-24

## **HORIBA Jobin Yvon GmbH**

Hauptstr. 1* 82008 Unterhaching Phone : (49)89-46-23-17-0 Fax : (49)89-46-23-17-99 **Bensheim Office** 

Neuhofstrasse 9, 64625, Bensheim

Phone : (49)89-62-51-84-750 Fax : (49)89-62-51-84-7520 ITALY

# HORIBA Jobin Yvon Srl

Via Cesare Pavese, 19/21 20090 Opera Millano

Phone : (39)2-57-60-30-50 Fax : (39)2-57-60-08-76 **Torino Office** 

Europalace, Corso, Torino 43/45, 10043 Orbassano, Torino Phone : (39)11-904-0601 Fax : (39)11-900-0448 **HORIBA ABX SAS** 

Phone: (39)6-51-59-22-1 Fax: (39)6-51-96-43-34

Science Park Eindhoven 5080 (Industrial park

Alfrapark - Estrada de Alfragide no 67, Edificio F -

Phone : (35)12-14-72-17-70 Fax : (35)12-14-72-17-89

Pitesti, B-dul Republicii Nr.38, Bloc 2 IRTA, Scara A,

Altufievskoe shosse, 13, building 5, 127106, Moscow

Avenida Caidos de la Division Azul 16, 28016 Madrid

Phone : (34)91-353-30-10 Fax : (34)91-353-30-11

PAE Neisa Norte Ed. II, Avenida Valdelaparra, 27,

Phone : (34)91-661-79-87 Fax : (34)91-661-66-58

Etaj 3, Ap.11 Judetul Arges 110011 Pitesti

Wal MIEDZESZYNSKI 598 - 03 994 Warzsawa

Fax: (31)40-2900624

Fax : (48)22-673-2026

Fax : (40)348-807118

Fax: (7)495-221-87-68

Fax: (46)31-644269

Fax : (46)8-550-80567

Fax : (44)1905-359332

### **Italy Office** Via Le Luca Gaurico 209/211, 000143 Roma

NETHERLANDS

HORIBA Europe GmbH

"Ekkersrijt") 5692 EA, Son

Phone : (31)40-2900240

HORIBA ABX Sp. zo. o.

Piso 0 Sul, 2610-008 Amadora

HORIBA (Austria) GmbH

Phone : (40)348-807117

Phone : (7)495-221-87-71

**HORIBA ABX SAS** 

**HORIBA Jobin Yvon** 

**HORIBA Europe GmbH** 

Phone : (46)31-644268

Sweden Office (Sodertalie)

Phone : (46)8-550-80701

HORIBA UK Ltd.

Northampton Office

Worcester, WR5 2ZX Phone : (44)1905-359359

Medical Division Office

HORIBA Jobin Yvon IBH Ltd.

Finnieston Street, Glasgow G3 8JU

**HORIBA Test Automation Ltd.** 

Sweden Office (Gotehnburg)

Kaerrlyckegatan 21, 418 78 Gothenburg

Sydhamnsvagen 55-57, 151 38 Sodertalje

2 Dalston Gardens, Stanmore, Middx HA7 1BQ Phone : (44)208-204-8142 Fax : (44)208-204-6142

Kyoto Close, Moulton Park, Northampton, NN3 6FL

Phone : (44)1604-542-500 Fax : (44)1604-542-699

Kyoto Close, Moulton Park, Northampton, NN3 6FL Phone : (44)146-281-4400 Fax : (44)146-285-1004

Skypark 5, level 1, The Clydeway Centre, 45

Phone : (44)141-229-67-89 Fax : (44)141-229-67-90

Evesham House, Whittington Hall, Whittington Road

28018 Alcobendas/Madrid Spain

Spain Office

Spain Office

SWEDEN

Phone : (48)22-673-2022

**HORIBA ABX SAS** 

**Portugal Office** 

**Romania Office** 

HORIBA OOO

RUSSIA

SPAIN

PORTUGAL

Netherlands Office

# HORIBA World-Wide Network

### CHINA

### Beijing HORIBA METRON Instruments Co., Ltd. Chaoyang District, Bei Yuan Road 40, Beijing

Phone : (86)10-8492-9402 Fax : (86)10-8492-7216 HORIBA INSTRUMENTS (SHANGHAI) CO., LTD No.200, Taitao Rd, Anting Town, Jiading District, Shanghai 201814

Phone : (86)21-6952-2835 Fax : (86)21-6952-2823 HORIBA (China) Trading Co., Ltd.

## Unit D, 1F, Building A, Synnex International Park,

1068 West Tianshan Road, 200335, Shanghai Phone : (86)21-6289-6060 Fax : (86)21-6289-5553 **Beijing Office** 

Room 1801, SK Tower, Tower 1, No. 6 Jia, Jianguomenwai Ave., Chaoyang District, Beijing 100022

Phone : (86)10-8567-9966 Fax : (86)10-8567-9066 **Guangzhou Office** 

Room 1611/1612, Goldlion Digtal Network Center, 138Tiyu Road East, Guangzhou 510620 Phone : (86)20-3878-1883 Fax : (86)20-3878-1810

Shanghai Service Center Rm.303, No.84, Lane887, Zu-Chong-Zhi Rd.,

Zhangjiang Hi-tech Park, Shanghai, 201203 Phone : (86)21-5131-7150 Fax : (86)21-5131-7660

Shanghai Technical Center No.200, Taitao Rd, Anting Town, Jiading District, Shanghai, China 201814

Phone: (86)-21-6289-6060 Fax: (86)-21-6289-5553

# **HORIBA India Private Limited**

246, OKHLA INDUSTRIAL ESTATE, PHASE 3 NEW DELHI - 110020

Phone : (91)11-4669-5001/(91)11-4646-5000 Fax : (91)11-4669-5010/(91)11-4646-5020 Bangalore Office

Kamadhenu, No.17/1 - 32, Bannerghatta Road, Audugodi, Bangalore - 560030 Phone : (91)80- 22210071

Pune Office

502, 5th Floor, Purushottam Plaza, Baner Road, Baner, Pune - 411045

Phone : (91)20-40766000 Fax : (91)20-40766010

### HORIBA Instruments (Singapore) Pte Ltd. Jakarta Office

Menara Bidakara 2 Unit 11-04, Jl. Jend. Gatot Subroto Kav. 71-73, Jakarta Selatan, 12870

Phone : (62)21-2906-9419/(62)21-2906-9420 Fax: (62)21-2906-9421

### HORIBA Automotive Test Systems Ltd. Room #906, World Meridian Venture Centre I, 60-24

Gasan-Dong, Geumcheon-Gu, Seoul, 153-781 Phone : (82)2-562-7706 Fax: (82)2-562-7630 HORIBA KOREA Ltd.

202-501, Bucheon Techno Park, 192, Yakdae-Dong, Wonmi-ku, Bucheon Kyunggido Korea Phone : (82)32-621-0100 Fax: (82)32-621-0105

Seoul Office

10, Dogok-ro 6-gil, Gangnam-gu, Seoul, 135-270 Phone : (82)2-753-7911 Fax: (82)2-756-4972 Suwon Office

D2f Hae Sung Bldg 307-9 Yuljun-Dong Changan-Ku Suwon, Kyunggi-Do

Phone : (82)31-296-7911 Fax : (82)31-296-7913 **Ulsan Office** 

601, Kaya Bldg, 193-5, Sinjeong 3Dong, Nam-Ku, Ulsan Phone : (82)52-275-0122 Fax: (82)52-276-0136 HORIBA STEC KOREA, Ltd.

# 110, Suntech-City, 513-15, Sangdaewon, Jungwon-

Ku, Sungnam-City, Kyungki-Do Phone : (82)31-777-2277 F Fax : (82)31-777-2288

HORIBA Instruments (Singapore) Pte Ltd. 10, UBI CRESCENT #05-12 LOBBY B UBI TECHPARK (408564)

Phone : (65)6-745-8300 Fax : (65)6-745-8155 TAIWAN

### HORIBA Taiwan, Inc.

3F., No.18, Ln. 676, Zhonghua Rd, Zhubei City, Hsinchu County 302 Phone : (886)3-656-1160 Fax: (886)3-656-8231 Tainan Office

1F., No.117, Chenggong Rd., Shanhua Township,

Tainan Country 741 Phone : (886)6-583-4592 Fax : (886)6-583-2409 THAILAN

# HORIBA ABX Diagnostics (Thailand) Ltd.

393, 395, 397, 399, 401, 403 Ladyah Road, Somdejchaopraya Sub-district, Klongsan District, Bangkok 10600

Phone : (66)2-861-59-95 Fax: (66)2-861-52-00

HORIBA Instruments (Singapore) Pte Ltd. Hanoi Office

Unit 10, 4 Floor, CMC tower, Day Tan Street, Dich Vong Hau Ward, Cau Giay district, Hanoi Phone : (84)4-3795-8552 Fax : (84)4-3795-8553

# Recidoul HORIBA Technical Reports MARCH 2013 No.40

発行日	2013年3月	31日	<readoul編集委員会></readoul編集委員会>		
発行人	石田 耕三		Readout編集委員長	石田 耕三	
発行元	株式会社 堀	場製作所	Readout副編集委員長	足立 正之	
〒601-8510 京都市南区吉祥院宮の東町2番地			編集委員	野村 聡 福島 宏和	
http://www.horiba.com/jp/publications/readout/			井上 香		
			編集局	関 秀世	
			お問い合わせ先		
			株式会社 堀場製作所 開発	隆本部 開発企画センター	
DTP・製版・F	卩刷・製本 🛛 株式会社 写真化学		Tel:075-313-8121 Fax:075-321-5648		
			e-mail:readout@horiba.co	o.jp	

©株式会社 堀場製作所 2010 無断掲載を禁じます。

本誌に掲載の商品の名称は、各社が商標としている場合があります。





