Raman Imaging of Holographic Gratings Inscribed on Polymer Thin Films.

F. Lagugné-Labarthet and David Talaga
LPCM, UMR 5803 CNRS, Université Bordeaux 1, 351, Cours de la Libération, 33405 Talence cedex, France

Raman image (Figure 1) from a thin film of azobenzene-containing polymer thin film (300 nm) that is periodically structured (periodicity of ~1 µm). Raman measurements were recorded with a Labram HR 800 (HORIBA JobinYvon) spectrometer combined with an inverted microscope (Olympus IX 71) and a X,Y Piezoelectric stage to position the sample with the best accuracy and repeatability. A 100X, 0.9 NA microscope objective was used. A Raman spectrum (Fig. 2) was recorded every 100 nm along the X and Y directions with an integration time of 5 seconds per spectrum (λ excitation=752.4 nm). The variation of the Raman signal was integrated over the [1060-1180]cm⁻¹ spectral domain (Figure 3). It must pointed out that details on the Raman profile are obtained with a spatial resolution better than λ/2 (at the diffraction limit).
About the inscription of the two-dimensional grating…

Using holographic techniques we have structured the surface in a one step procedure (no wet nor photocuring processing) along the X and Y directions. A grating is first inscribed with grooves along the X direction, the sample is rotated by 90° and a second grating is inscribed with grooves along the Y direction. The intensity of the 1st diffracted orders is monitored to have equal intensities in both X and Y directions. The atomic force microscopy (AFM) images shown in Fig.3 exhibit a periodic structure on large surfaces with a height amplitude varying from 50 to 110 nm.

Figure 3: AFM images in 3D and 2D representations and profile of the height variations.

References
