

pH ORP Ion Conductivity
Resistivity Total Dissolved Solids Salinity

Benchtop Water Quality Instruments
Colour Touchscreen Meters

Benchtop Water Quality Instruments

Colour Touchscreen Meters

2003

F-50 (desktop) The world's first pH meter with colour LCD display. Navigation panel guides operators on how to use the meter as well as resolve errors.

D-50 (portable) Waterproof, IP67rated housing and multi-parameter.

LAQUA Benchtop Water Quality Instruments

2012

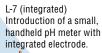
LAQUAtwin Pocket Water Quality Meters

LAQUA Handheld Water Quality Instruments

1993

F-20 (benchtop) The world's first wireless pH meter. Large graphical display gives user instructions on screen.

B-111 (Pen type) The pen type sensor allows small samples to be tested.


1987

C-1 (card) Development of the world's first flat sensor.

1980

Model F-80 (benchtop) The world's first instrument capable of measuring pH at 0.001 resolution includes an integral computer with automatic calibration and a self-diagnostic function.

History of the HORIBA pH Meter

The humble beginning of HORIBA...

In 1950, Dr. Masao Horiba pioneered and launched Asia's first pH meter in Kyoto, Japan. Since then, HORIBA has been introducing several of the world's firsts such as the first 0.001 resolution pH meter, the first flat sensor featured in the Cardy, the first wireless pH meter, the first colour LCD display, etc.

Model F-7AD (benchtop) Incorporating an industry-first LCD display, the combination of a glass electrode, a reference electrode and a temperature-compensating electrode, makes testing easier.

1964

M-5 (benchtop) conversion from vacuum tube to semiconductor allows miniaturization and development of fast response meter

- Large touch screen color graphic LCD—5.7 inches (115.2 x 86.4 mm)
- Chemical-resistant, 2mm thick super white glass panel with protection cover
- Easy to clean and elegant round body
- GLP / GMP compliant
- Switchable display—digital, graph, and analog

Protection Cover

21 CFR Part 11 Software

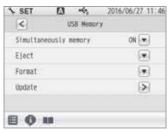
Intuitive Touch-Control Operation

6 types of international standard plugs included (US, UK, EU, Australia / New Zealand, Korea and China)

Data Management

Data Key

 Data key shows settings that allow users to search, view, delete, and copy data from meter to USB flash drive

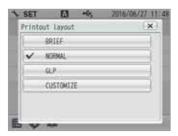

Sample ID


 Meter internal memory stores up to 2000 data with sample ID for easy reference

Data Storage

- Data can be stored simultaneously on both meter and USB flash drive (if inserted)
- Calibration and measurement data are logged automatically at set time interval

Data Search



• Data search by date, parameter, or sample ID

- Data output via USB to PC / USB flash drive or via RS232C to PC / printer (cables sold separately)
- Analog output adjustment—voltage output can be acquired from digital multimeter or recorder connected to the analog output connector

Custom Printout

- Auto or manual printing of calibration and measurement values for record keeping
- Printout contents can be customized based on user preference or GMP/GLP requirements—date and time, operator, electrode and meter information, electrode status, and calibration data

Meter Security

- Password setting for security
- Up to 25 administrators or operators can be registered

Intelligent Assistant

Provides step-by-step guidance on calibration, sample measurement, application methods, maintenance, inspection and troubleshooting

SMART

Calibration Support Function

Enjoy hassle-free calibration with on screen support. The meter will walk you through the steps of calibration.

- Auto Buffer Recognition
- Auto Calibration Function

Reading Stability Check

- Perform proper calibration with stable readings
- Determine the stability of reading at a glance in either digital or graph display during pH and ion calibration
- Stability value is a deviation between the maximum and minimum readings in the last 10 seconds

Electrode Status

- Electrode condition and results such as calibrated values, offset, acid and alkaline slopes, are shown at the end of calibration
- Programmable calibration reminder and alarm for measured values exceeding set limits
- Temperature indicator appears when a temperature probe or electrode with integrated temperature sensor is connected to the meter

- Electrode model, either selected from preset list or entered manually, and lot or MFG no. (entered manually) are included in stored data and printouts
- Temperature sensor calibration function

Inspection Function

Easy navigation for meter and electrode inspections using a simulator. Various industrial standards (JIS, USP, EP, JP, CP) are also supported.

Convenient for IQ / OQ / PQ validation

NAVIGATION

Troubleshooting Function

On-screen support for resolving a problem that occurs during calibration or sample measurements. A user's guide is incorporated in the software to assist with any operational difficulties.

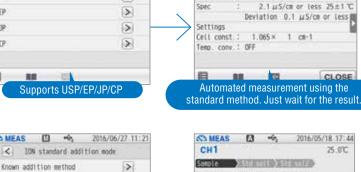
USP Stage 2 Measurement result

0.00 µS/cm

0.000 µS/cm

Heas, Value:

Application Functions


Various industry standard methods are supported by the instrument. Conductivity measurement for several pharmaceutical pure water guidelines and ion standard addition methods are incorporated in the meter.


Sample addition method

TEMP setting

>

ATC IN

рН

- 5 pH buffer groups
 - ° USA (1.68, 4.01, 7.00, 10.01, 12.45)
 - o NIST (1.68, 4.01, 6.86, 9.18, 12.45)
 - o NIST2 (1.68, 4.01, 6.86, 10.01, 12.45)
 - o China (1.68, 4.01, 6.86, 9.18, 12.46)
 - Custom (any pH buffers)

Resolution 0.001 of
Resolution 0.001 of

TEMP setting 0.001 pH 0.001 pH Auto

Atara, upper limit 0FF

Electrode model Customize

Resolution 0.001 pH 0.001 pH Auto

Continue 0.001 pH Auto

Continue 0.001 pH Auto

Customize

Electrode model Customize

In the continue of

Electrode model Customize

In the customize

In the continue of

Electrode model Customize

In the customize

- Up to 5 calibration points
- 0.01 and 0.001 pH Resolutions
- Auto setting allows the meter to toggle between 0.01 and 0.001 resolution depending on the stability of the reading
- Auto calibration / Auto buffer recognition

m\/

• Display absolute potential and relative potential

ADVANCED

ORP

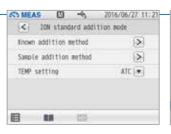
Capable of 1-point calibration

Ion

- Make your own calibration curve with maximum of 5 points or perform standard addition techniques
- Programmed with standard addition methods—known addition and sample addition (single and double are available for both methods)
- Measurement units μg/L, mg/L, g/L, mmol/L, mol/L

Conductivity

- Automatic / manual calibration up to 4 points
- Adjustable temperature coefficient and reference temperature for temperature compensated readings
- Selectable cell constants 0.1, 1.0, 10.0
- Auto ranging S/cm and S/m units, fix mS/cm unit
- Support conductivity standard methods for pharmaceutical water—USP, EP, JP and CP


Total Dissolved Solids (TDS)

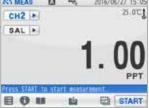
- Programmed with 4 predetermined TDS curves for accurate measurement—Linear, EN27888, 442, and NaCl
- Select the TDS curve suitable for your application
- Calibration only in conductivity mode is required

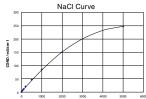
START

8 0 m

■ 0 m

START


TDS Calibration Curves


Application	Key chemical species	TDS selection		
Aquaculture, pickling	NaCl	NaCl		
Boiler water, HVAC	Na ₂ SO ₄ , NaHCO ₃ , NaCl	442 (Myron)		
Environmental	EN standard for environmental water	EN 27888		
General application	Not known	KCI (linear factor) Default: 0.5 Selectable: 0.4 to 1.0		

Salinity

- Programmed with 2 predetermined salinity curves—NaCl and seawater
- Salinity value is calculated based on measured conductivity value
- 1-point calibration using standard solution
- Measurement units—percentage (%) and parts per thousand (ppt)

SAL 2016/06/27 14:56 CH2 24:97C] Set: 1 PPT A Press STARI to start calibration START

Auto Stable / Auto Hold

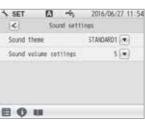
- In measurement mode, the meter displays live readings continuously
- Activate auto hold by tapping START
- Auto hold settings—Exact, Normal, Brief, Time, Customize, and Manual

FEATURES

Auto Log Data

 Log data automatically by setting time interval from 1 to 999 seconds

AUTO HOLD AUTO HOLD Sample name Interval memory USB Memory Printer Screen settings


Multi-Language

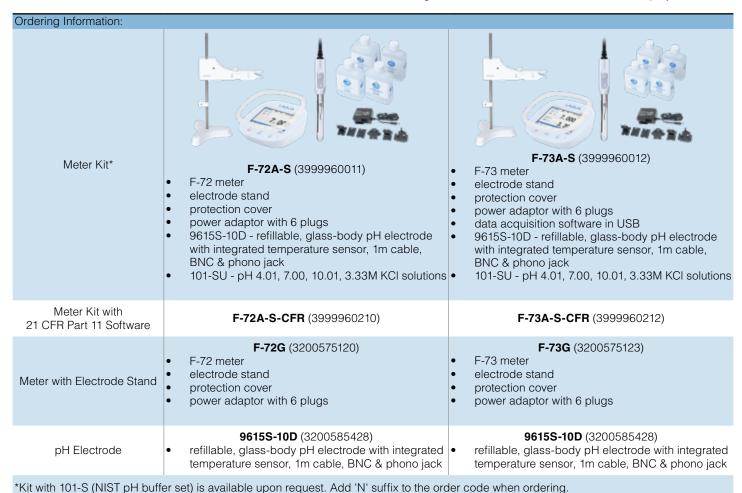
 Choose a language that you are familiar with—English, Japanese, Chinese, Korean, and Vietnamese

Sound Setting

 Play a click sound every time you tap a key

Screen Settings

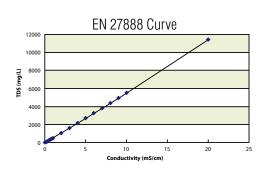
- Set stylish theme on your meter screen—Standard, Cool, Monotone, and Kyoto
- Power saving mode—turns off the backlight to save power

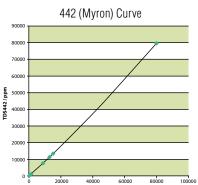


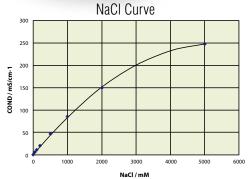
Features:

- Up to 5 calibration points for pH and Ion
- 5 pH buffer groups USA, NIST, NIST2, China, and Custom
- 0.01 and 0.001 pH resolutions
- pH calibration interval setting 1 to 999 days

- 1-point ORP calibration
- Ion calibration curve and standard addition methods
- Temperature sensor calibration function
- Single channel for F-72 and dual channel display for F-73


Model	F-72G pH/ORP/lon/Temp (°C)	F-73G Dual Channel pH/ORP/lon/Temp (°C)
pH Range	-2.000 to 20.000 pH	-2.000 to 20.000 pH
Resolution	0.01 / 0.001 pH	0.01 / 0.001 pH
Accuracy	± 0.001 pH	± 0.001 pH
Calibration Points	Up to 5	Up to 5
Buffer Options	USA, NIST, NIST2, China, Custom	USA, NIST, NIST2, China, Custom
ORP Range	± 1999.9 mV	± 1999.9 mV
Resolution	0.1 mV	0.1 mV
Accuracy	±0.2 mV	±0.2 mV
Ion Range	0.000 μg/L to 9999 g/L (mol/L)	0.000 μg/L to 9999 g/L (mol/L)
Resolution	4 significant digits	4 significant digits
Accuracy	± 0.3% of full scale	± 0.3% of full scale
Calibration Points	Up to 5	Up to 5
Temperature Range	-30.0 °C to 130.0 °C	-30.0 °C to 130.0 °C
Resolution	0.1 °C	0.1 °C
Accuracy	±0.4°C	±0.4°C
Calibration Option	Yes	Yes
Navigation Function	Yes	Yes
Memory	2000	2000
Auto Data-Logging	Yes	Yes
Data Search	Yes	Yes
Custom Printing	Yes	Yes
Real Time Clock	Yes	Yes
Date / Time Stamp	Yes	Yes
Sample ID Input	Yes	Yes
Operator ID Input	Yes	Yes
Password Setting	Yes	Yes
Auto Stable / Auto Hold	Yes	Yes
Offset / Slope Display	Yes (independent acid and alkaline slopes depending on calibration)	Yes (independent acid and alkaline slopes depending on calibration)
Calibration Alarm Limit	Yes	Yes
Electrode Status	On screen display	On screen display
Diagnostic Messages	Yes	Yes
Display	Touch screen color graphic LCD	Touch screen color graphic LCD
Languages	English / Japanese / Chinese / Korean / Vietnamese	English / Japanese / Chinese / Korean / Vietnamese
Inputs	BNC, phono, DC socket	Dual BNC, dual phono, DC socket
Outputs	USB, RS232C, analog output	USB, RS232C, analog output
Power Requirements	AC adaptor 100 ~ 240V, 50/60 Hz	AC adaptor 100 ~ 240V, 50/60 Hz
Electrode Stand	Stand alone	Stand alone
Weight	700g	700g
Dimensions	170 (W) x 174 (D) x 73 (H) mm	170 (W) x 174 (D) x 73 (H) mm




Features:

- Wide conductivity range
- Automatic / manual conductivity calibration
- Up to 4 calibration points
- Adjustable temperature coefficient, reference temperature, and cell constant
- Temperature sensor calibration function
- Auto ranging S/cm and S/m and fix mS/cm conductivity units
- Parts per thousand (ppt) and percentage (%) salinity units
- NaCl and seawater salinity curves
- 4 Total dissolved solids (TDS) curves EN27888, Linear, NaCl, 442

Meter Kit DS-72 meter electrode stand protection cover power adaptor with 6 plugs 3552-10D - Platinum/Platinum black, glass-body k=1.0 conductivity cell with integrated temperature sensor, 1m cable, BNC & phono jack 103-S - 84µS/cm, 1413µS/cm, 12.88mS/cm & 111.8mS/cm conductivity standard solutions Meter Kit with 21 CFR Part 11 Software DS-72 meter DS-72 meter

3552-10D (3014081545)

Platinum/Platinum black, glass-body k=1.0 conductivity cell with integrated temperature

electrode stand protection cover

power adaptor with 6 plugs

sensor, 1m cable, BNC & phono jack

Meter with Electrode Stand

Conductivity Cell

Model	DS-72G EC/TDS/Res/Sal/Temp (°C)
	0.000 μS/cm to 19.99 mS/cm (k=0.1)
EC Range	0.00 μS/cm to 199.9 mS/cm (k=1.0)
	0.0 μS/cm to 1.999 S/cm (k=10.0)
Resolution	0.05% of full scale
Accuracy	±0.6% of full scale (±1.5% full scale > 18.0 mS/cm)
Reference Temperature	15 to 30°C (adjustable)
Temperature Coefficient	0.00 to 10.00% (adjustable)
Cell Constants	0.1 / 1.0 / 10.0
Calibration Points	4 (Auto / Manual)
Measurement Units	Auto-Ranging / Manual S/cm, S/m, Fix (mS/cm)
TDS Range	0.01 mg/L to 1000 g/L
Resolution	0.01 mg/L
Accuracy	±0.1% of full scale
TDS Curves	EN27888, Linear (0.40 to 1.0), 442, NaCl
	0.00 kΩ.cm to 199.9 MΩ.cm (k=0.1)
Resistivity Range	0.000 kΩ.cm to 19.99 MΩ.cm (k=1.0)
,	0.0 Ω.cm to 1.999 MΩ.cm (k=10.0)
Resolution	0.05% of full scale
Accuracy	$\pm 0.6\%$ of full scale ($\pm 1.5\%$ full scale > 1.80 M Ω .cm)
Salinity Range	0.00 to 80.00 ppt / 0.000 to 8.000%
Resolution	0.01 ppt / 0.001%
Accuracy	0.2% of full scale
Salinity Curves	NaCl / Seawater
Temperature Range	-30.0 °C to 130.0 °C
Resolution	0.1 °C
Accuracy	± 0.4 °C
Navigation Function	Yes
Memory	2000
Auto Data-Logging	Yes
Data Search	Yes
Custom Printing	Yes
Real Time Clock	Yes
Date / Time Stamp	Yes
Sample ID Input	Yes
Operator ID Input	Yes
Password Setting	Yes
Auto Stable / Auto Hold	Yes
Diagnostic Messages	Yes
Display	Touch screen color graphic LCD
Languages	English / Japanese / Chinese / Korean / Vietnamese
Inputs	BNC, phono, DC socket
Outputs	USB, RS232C, analog output
Power Requirements	AC adaptor 100~240V, 50/60 Hz
Electrode Stand	Stand alone
Weight	700g
Dimensions	170 (W) x 174 (D) x 73 (H) mm

Features:

- Combine the functions of F-72 and DS-72 models
- Dual channel and simultaneous measurements
 - Channel 1: pH, Ion, mV, ORP
 - Channel 2: Conductivity, Salinity, Resistivity and TDS
- Switchable single or dual channel display

Channel 1: pH

Channel 2: Conductivity

Dual Channel

*Kit with 101-S (NIST pH buffer kit) is available upon request. Add 'N' suffix to the order code when ordering.

Models	F-74G Dual Channel pH/ORP/lon/EC/TDS/Res/Sal/Temp (°C)
pH Range	-2.000 to 20.000 pH
Resolution	0.01 / 0.001 pH
Accuracy	± 0.001 pH
Calibration Points	Up to 5
Buffer Options	USA, NIST, NIST2, China, Custom
ORP Range	± 1999.9 mV
Resolution	0.1 mV
Accuracy	± 0.2 mV
Ion Range	0.000 μg/L to 9999 g/L (mol/L)
Resolution	4 significant digits
Accuracy Calibration Points	± 0.3% of full scale Up to 5
Calibration Foliats	
EC Range	0.000μS/cm to 19.99mS/cm (k=0.1) 0.00 μS/cm to 199.9 mS/cm (k=1.0) 0.0 μS/cm to 1.999 S/cm (k=10.0)
Resolution	0.05% of full scale
Accuracy	±0.6% of full scale (±1.5% full scale > 18.0 mS/cm)
Reference Temperature	15 to 30°C (adjustable)
Temperature Coefficient	0.00 to 10.00% (adjustable)
Cell Constants	0.1 / 1.0 / 10.0
Calibration Points	4 (Auto / Manual)
Measurement Units	Auto Ranging / Manual S/cm, S/m, Fix (mS/cm)
TDS Range	0.01 mg/L to 1000 g/L
Resolution	0.01 mg/L
Accuracy	±0.1% of full scale
TDS Curves	EN27888, Linear (0.40 to 1.0), 442, NaCl
Resistivity Range	0.00 kΩ.cm to 199.9 MΩ.cm (k=0.1) 0.000 kΩ.cm to 19.99 MΩ.cm (k=1.0) 0.0 Ω.cm to 1.999 MΩ.cm (k=10.0)
Resolution	0.05% of full scale
Accuracy	$\pm 0.6\%$ of full scale ($\pm 1.5\%$ full scale > 1.80 M Ω .cm)
Salinity Range	0.00 to 80.00 ppt / 0.000 to 8.000 %
Resolution	0.01 ppt / 0.001%
Accuracy	0.2% of full scale
Salinity Curves	NaCl / Seawater
Temperature Range	-30.0 °C to 130.0 °C
Resolution	0.1 °C
Accuracy	± 0.4 °C
Navigation Function	Yes
Memory	2000
Auto Data-Logging	Yes
Data Search	Yes
Custom Printing	Yes
Real Time Clock	Yes
Date / Time Stamp	Yes
Sample ID Input	Yes
Operator ID Input	Yes
Password Setting	Yes
Auto Stable / Auto Hold	Yes
Offset / Slope Display	Yes (independent acid and alkaline slopes depending on calibration)
Calibration Alarm Limit	Yes
Electrode Status	On screen display
Diagnostic Messages	Yes
Display	Touch screen color graphic LCD / dual channel display
Languages	English / Japanese / Chinese / Korean / Vietnamese
Inputs	Dual BNC, dual phono, DC socket
Outputs Dever Requirements	USB, RS232C, analog output
Power Requirements	AC adaptor 100~240V, 50/60 Hz Stand alone
Electrode Stand Weight	Stand alone 700g
Dimensions	•
פווחפוואווווס	170 (W) x 174 (D) x 73 (H) mm

n⊔ EI	aatra	40					3-	in-1 ELE	CTRODE	S					COM	BINATIO	N ELECT	RODES	
pH EI					PLASTIC			STANDARD ToupH	LONG ToupH	MICRO ToupH	SLEEVE ToupH	SLEEVE	NON- AQUEOUS	NEEDLE	PLASTIC	STANDARD ToupH	MICRO ToupH	SLEEVE ToupH	
Selec	tion (auide	9625-10D	9630-10D	9631-10D	9632-10D	9651-10D	9615S-10D	9680S-10D	9618S-10D	9681S-10D	6367-10D	6377-10D	6252-10D	9425-10C	9415-10C	9418-10C	9481-10C	
	Applicable te range (°C)	mperature	0-100	0-100	0-60	0-100	0-60	0-100	0-100	0-60	0-60	0-60	0-60	0-60	0-100	0-100	0-60	0-60	
Specification	Diameter (mr	n)	16	16	16	16	16	12	8	3	12	12	12	12	16	12	3	12	
	Length (mm)		150	150	155	150	150	198	283	185	203	150	150	150	150	198	185	203	
pH - Sam	ple Con																		
		Normal (over 100 mS/m)		•	•	•	•		•	•	•	•	•	•	•	•	•	•	
	0 1 11 11	Low (approx.10 ~100 mS/m		•							0		•					0	
	Conductivity	Very low (approx. 5~100 mS/m		0							0		•					0	
		High (approx. 5 S/m)	0	0	0	0	0	0	0		•				0	0		•	
Aqueous	Strong alkalir					•		0	0		0	0				0		0	
Solution		/ (pH 0-2) * Except			•			•								•			
	HF sample Quick heat ch	ange (within 50°C)	•	•	•	•	•								•				
		y (approx. 5 Pa·S)	•								•	0	•					•	
	Containing n	, , , ,						0	0	0	0	0	•			0	0	0	
	solvent Suspension							0	0	0	•		•			0	0	•	
	Inside							0						0					
Solid/ Semisolid														0					
	Surface																		
	Microtube/pl	ate (> 50 μL)								•							•		
	Ampule	> ø4 mm								•							•		
	Micro contair	ner (> 2 mL)							0	•							•		
Sample	Tube	ID:13 mm, L:100 ~ 150 mm							•										
Containers	Beaker	10 mL ~ 1 L	•	•	•	•	•	•	0	0	0	0	0	0	•	•	0	0	
	Large contair	ner (> 1 L)	0	0	0	0	0	0	•						0	0			
	Petri dish																		
	Droplet																		
W	Pure/ion-exc	hanne water																	
		nS/m)/ Distilled						0					•			0			
Water		water (approx.	0	•			0	0			0		•		0	0		0	
Wator	Surface water	.		•				0			0		•			0		0	
	Pharmaceutic Environmental	cal water/ water/acid rain	0	0			0	0			0		0		0	0		0	
	Caustic/stror	ig acid (Except			•			•			0					•		0	
Chemical	HF sample) Hydrofluoric	acid			•														
reagent/ solvent	Surfactant							0			•		0			0		•	
30146111	Water-based	:						0			•		0			0		•	
	Dye/coloring										•		0					•	
	Medicinal pre	aining sample						0		0	0	0	0			0	0	0	
Pharmaceutical/	Enzyme solut	•							0	•				0			•		
biological sample	Tris buffer							•		0	0					•	0	0	
	Suspension							0			•		•			0		•	
	Agar medium																		
	Jam Meat/fish/Fr	uit/vegetable/						0			•		0	0		0		•	
Food	Dough	an, vogotablo,												•					
Food	Honey Chaese/butte	ır											•						
	Cheese/butte Yogurt	-	0	0			0	0			0	0		0	0	0		0	
	Beer			0			0				•	0	•		0	0		•	
Beverage/	Milk/Carbona	ated drink/juice/						0			•	0	0			0		•	
seasoning	sauce/soy sa Mayonnaise/							0			•		0			0		•	
	Beauty cream	/mascara						0			•		0	0		0		•	
Cosmetic/ lotion	Gel/soap/sha lotion	mpoo/Hair dye						0			•		0			0		•	
	Emulsified lic	uid						0			0		•			0		0	

			ISFET
	LONG		ISFET ELECTRODE
LONG	ToupH	FLAT	GENERAL
6069-10C	9480-10C	6261-10C	0040-10D
0-60	0-100	0-50	0-60
3	8	12	16
291	283	150	190
•	•	•	•
	0		
	0		
	0		0
	0		0
			<u> </u>
		•	•
0			
OOO	0		
	OImage: Image: Image		
			\sim
0	0	0	0
	•		-
		•	•
		•	•
	0		
		0	
			(surface)
		U	(surface)
		0	O(surface)
		0	(surface)
			(surface)

Stable measurement for a wide range of samples. Standard ToupH glass electrode (9615S-10D)

STANDARD ToupH

High stability and drift reduction. No more worries about the timing of your measurement value readings.

- Uses responsive glass that is 10 times stronger than JIS standard. The domed shape provides strength in all directions, greatly reducing damage concerns
- Constructed with smooth surfaces for easy wiping and cleaning.

Recommended

Perfect for preparing buffers. Can be used on a wide range of aqueous test solutions.

Stable measurement for routine testing. Standard plastic electrode (9625-10D)

STANDARD

The electrode has a plastic body which is ideal for general purpose measurement

- Can be submerged up to 1m depth and 30mins. (with refilling port closed)

Recommended

Ideal for general purpose use. For measurement of tap water and drinking water.

For extremely small samples Micro | ToupH | glass electrode (9618S-10D)

ToupH

This pH electrode with temperature compensation sensor can take measurements from samples as small as 50µL, the smallest in the world.

- Our original manufacturing technology (Japanese Patent No. 4054245) is used to produce 2-ply piping 3mm in diameter
- Compatible with extremely small containers such as micro tubes etc.
- The temperature sensor is located at the tip for high-speed temperature response. Refrigerated samples can be measured without needing to wait for them to return to room temperature.

Recommended

Can be used for a wide range of aqueous solutions, including those that cannot be obtained in large quantities. We recommend using our specialized cleaning solution after measuring samples that contain proteins

Gel-filled pH Electrode (9651-10D)

STANDARD

- 150 mm length & 16 mm diameter. BNC & phono jack.
 The plastic body of the electrode is filled with gel electrolyte. Less maintenance is needed as refilling is not required.
- Can be submerged up to 1m depth of water for 30mins.
- Waterproof, Pb-free glass

Recommended

Use in the field

For highly viscous samples Sleeve | ToupH | glass electrode (9681S-10D)

Stable measurement can also be achieved for high viscous samples.

The liquid junction section is constructed with a movable sleeve that can be rinsed clean, preventing highly viscous samples from clogging the liquid junction, and maintaining stable measurement performance

Recommended

For highly viscous samples and solutions, and samples that contain non-aqueous solvents (such as cosmetics or paints). We recommend that you take measurements while using the graph display function

(We recommend washing with a neutral detergent after use with samples that contain oil.)

For the surface of solid samples General ISFET pH electrode (0040-10D)

The sensor is located on the flat surface of the electrode tip,

less than a 100 µm protrusion from the housing.

- Measurements can be made from a minute amount of moisture on the solid sample surface.
- Use of a semiconductor sensor means there are no concerns that the electrode will be damaged.
- Also perfect for measuring samples in shallow containers such as Petri dishes.
- Replaceable sensor

Recommended

For highly viscous samples and solutions, and samples that contain non-aqueous solvents (such as cosmetics or paints). We recommend that you take measurements while using the graph display function to confirm stable responses

(We recommend washing with a neutral detergent after use with samples that contain oil.)

Combination ISE

Ion-selective electrodes are responsive to concentration of particular ions in the test liquid and are variable-potential electrodes. They are used in conjunction with reference electrodes to measure the concentration of particular ions. HORIBA's years of experience and know-how in this field are behind the wide range of ion electrodes we offer.

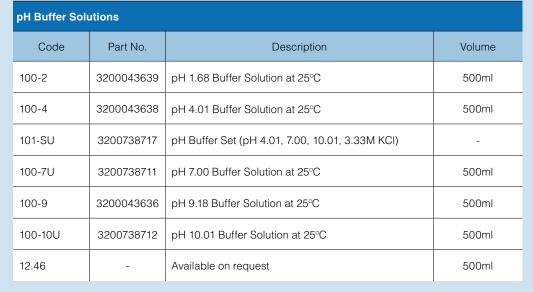
When measurements are made using an ion meter, calibrating it with various standard solutions will give direct readings of the ion concentration. Note that since volume-detection level changes with temperature, measurements must be taken at a fixed temperature.

detection level changes with temperature, measurements must be ta	ken at a fixed temperature.	Temp.	Measurement	
Model	Accessories Included	Range (°C)	Range	pH Range
Ammonia ion (NH ₃) electrode 5002S-10C 3200698386 Overall length: 161 mm Diameter of probe: 15 mm Connector: BNC	membrane cap, 3pcs 1000mg/L ammonium ion standard solution, 50ml 100mg/L ammonium ion standard solution, 50ml ammonia electrode filling solution, 50ml syringe dropper protective pipe manual	0 - 50	0.1 - 1,000 mg/L NH ₃	Adjust more than pH 12
Calcium ion (Ca²+) electrode 6583S-10C 3200697410 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	calcium electrode tip, 2pcs 1000mg/L calcium ion standard solution, 50ml 100mg/L calcium ion standard solution, 50ml calcium electrode filling solution, 50ml calcium ionic strength adjustor, 50ml syringe dropper protective pipe manual	0 - 50	0.4 - 40,080 mg/L Ca ²⁺ (10 ⁻⁵ to 1 mol/L Ca ²⁺)	4.0 mg/L (10 ⁻⁴ mol/L) Ca ²⁺ , pH 5 to 11
Chloride ion (Cl ⁻) electrode 6560S-10C 3200697407 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	chloride electrode tip 1000mg/L chloride ion standard solution, 50ml 100mg/L chloride ion standard solution, 50ml chloride electrode filling solution, 50ml chloride ionic strength adjustor, 50ml syringe dropper protective pipe water-resistant abrasive sheet manual	0 - 50	0.35 - 35,000 mg/L Cl ⁻ (10 ⁻⁵ to 1 mol/L Cl ⁻)	350 mg/L (10 ⁻² mol/L) Cl·, pH 3 to 11
Fluoride ion (F ⁻) electrode 6561S-10C 3200693774 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	Illuoride electrode tip Oliver in the content of	0 - 50	0.2 - 19,000 mg/L F ⁻ (10 ⁻⁶ to 1 mol/L F ⁻)	20 mg/L (10 ⁻³ mol/L) F ⁻ ; pH 4 to 10
Nitrate ion (NO ₃ -) electrode 6581S-10C 3200697408 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	nitrate electrode tip, 2pcs 1000mg/L nitrate ion standard solution, 50ml 100mg/L nitrate ion standard solution, 50ml 100mg/L nitrate ion standard solution, 50ml nitrate electrode filling solution, 50ml nitrate ionic strength adjustor, 50ml syringe dropper protective pipe manual	0 - 50	0.62 - 62,000 mg/L NO ₃ - (10 ⁻⁵ to 1 mol/L NO ₃ -)	62 mg/L (10 ⁻³ mol/L) NO ₃ -, pH 3 to 7
Potassium ion (K+) electrode 6582S-10C 3200697409 Overall length: 150 mm Diameter of probe: 16 mm Connector: BNC	potassium electrode tip, 2pcs 1000mg/L potassium ion standard solution, 50ml 100mg/L potassium ion standard solution, 50ml potassium electrode filling solution, 50ml potassium ionic strength adjustor, 50ml syringe dropper protective pipe manual	0 - 50	0.04 - 39,000 mg/L K ⁺ (10 ⁻⁶ to 1 mol/L K ⁺)	3.9 mg/L (10 ⁻⁴ mol/L) K ⁺ , pH 5 to 11

						Manne
Selection Coefficient	Replacement Tip	Electrode Filling Solution	100mg/L Standard Solution	1000mg/L Standard Solution	Ionic Strength Adjustor	Applications
_	NH ₃ electrode membrane caps 3200705774	500-NH3-IFS 3200697173	500-NH4-SL 3200697172	500-NH4-SH 3200697171	500-NH3-ISA 3200697174	Agriculture, Soil, Power Station Water, Fish Tanks, Sea Water, Waste Water, Plating Baths, Air / Stack Gases and Biological Cultures or Samples
Fe ³⁺ = 0.1, Fe ²⁺ , Zn ²⁺ = 1, Sr ²⁺ = 50 Ni ²⁺ , Cu ²⁺ = 70, Co ²⁺ = 350 Mn ²⁺ = 500, Mg ²⁺ = 1,000 Na ⁺ , K ⁺ , Ba ²⁺ , NH ₄ ⁺ = over 1,000	7683S 3200697414 Calcium	500-CA-IFS 3200697177	500-CA-SL 3200697176	500-CA-SH 3200697175	500-CA-ISA 3200697178	Agriculture / Plant Tissue, Soil, Water Softening Systems, Boiler Feed Water, Drinking / Mineral Water, Biological Cultures, Dental / Clinical Analysis and Dairy / Food / Beverages Applications
S ₂ O ₃ ² ·, S ² ·, I ⁻ , Ag ⁺ , Hg ²⁺ = Not acceptable SCN ⁻ = 0.3, MnO ₄ ⁻ = 0.1 Br = 0.03 NO ₃ ⁻ , F ⁻ , HCO ₃ ⁻ , SO ₄ ²⁻ , PO ₄ ²⁻ = 1,000	7660S 3200697411 Chloride	500-CL-IFS 3200697169	500-CL-SL 3200697168	500-CL-SH 3200697167	500-CL-ISA 3200697170	Agriculture, River / Tap Water, Plant Tissue, Soils, Boiler Feed Water, Clinical Analysis, Sweat, Urine, Cement, Plating Baths and Dairy / Food / Beverages Samples
Possible interference when multiply-charged ion (ex. Al ³⁺ , Fe ³⁺) coexisted and foamed the complex.	7661S 3200693606 Fluoride	500-F-IFS 3200697165	500-F-SL 3200697164	500-F-SH 3200697163	500-F-TISAB 3200697166	Dental / Toothpaste / Mouth Wash, Drinking / Seawater, Wastewater, Air / Stack Gases, Acids, Soils, Food, Biological Fluids, Plant Tissue, Coal, Carbonated Beverages and Bone
CIO_{4}^{-} , I^{-} = Not acceptable, Br = 2 $NO_{2}^{-} = 3$, $CI^{-} = 300$ HCO_{3}^{-} , $H_{2}PO_{4}^{-}$, SO_{4}^{2} = over 1000	7681S 3200697412 Nitrate	500-NO3-IFS 3200697181	500-NO3-SL 3200697180	500-NO3-SH 3200697179	500-NO3-ISA 3200697182	Agriculture / Plant Tissue / Fertilizers, Surface / Seawater / Drinking Water, Sewage Effluent, Soils, Meats, Vegetables, Foods / Beverages
Rb ⁺ = 0.4, Cs ⁺ = 3, NH ₄ ⁺ = 70 Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ = over 1,000	7682S 3200697413 Potassium	500-K-IFS 3200697185	500-K-SL 3200697184	500-K-SH 3200697183	500-K-ISA 3200697186	Agrculture / Plant Tissue, Soils, Wastewater, River / Tap Water, Clinical Analysis, Saliva, Serum, Fertilizers, Soils and Wines, Dairy / Foods / Beverages

Metallic Electrode (For ORP Measurement)

Model	Operating Temperature Range (°C)	Electrode Material	Internal Solution	Applications
ORP Electrode 9300-10D Waterproof platinum 3-in-1 type				
LAQUA	0-60	Pt / Glass	#300 (KCI)	Waterproof; Platinum on the flat tip allows measurement of small volume samples
Overall length: 150 mm Diameter of probe: 12 mm 3014046710 Connectors: BNC & phono jack				


Conductivity Cells (Submersible Type)

٨	Model	Cell Constant	Measurement Range	Temp. Range (°C)	Cell Material	Thermistor	Minimum Sample Volume (ml)	Application
3551-10D	LAQUA	0.1 cm ⁻¹	0.1 µS/cm - 10 mS/cm	0 - 60	Pt-Pt black /	Built-in	50	Low conductivity
3014081712	Overall length: 175 mm Diameter of probe: 23 mm Connectors: BNC & phono jack	10 m ⁻¹	10 μS/m - 1 S/m	0-60	Glass	Dulit-iri	30	water (e.g., deionized, distilled)
3552-10D	LAQUA	1 cm ⁻¹	1 μS/cm - 100 mS/cm	0 - 100	Pt-Pt black /	Built-in	15	General
3014081545	Overall length: 150 mm Diameter of probe: 12 mm Connectors: BNC & phono jack	100 m ⁻¹	0.1 mS/m - 10 S/m	0 - 100	Glass	Built-iii	10	purpose use
3553-10D	LAQUA MICE	10 cm ⁻¹	10 μS/cm - 1 S/cm	0 - 60	Pt-Pt black /	Built-in	50	High conductivity
3014081714	Overall length: 175 mm Width of probe: 28 mm Connectors: BNC & phono jack	1000 m ⁻¹	1 mS/m - 100 S/m	0-60	Glass	Dulit-III	30	water
9382-10D	LAQUA M	1 cm ⁻¹	1 μS/cm - 100 mS/cm	0 00	Ti-Pt black /	Dudle in	00.00	General
3014046709	Overall length: 150 mm Diameter of probe: 16 mm Connectors: BNC & phono jack	100 m ⁻¹	0.1 mS/m - 10 S/m	0 - 80	Plastic	Built-in	20-30	purpose use; Waterproof

Conductivity Cells (Flow Type)

Conductivity	Conductivity Cens (Flow Type)								
	Model	Cell Constant	Measurement Range	Temp. Range (°C)	Cell Material	Thermistor	Minimum Sample Volume (ml)	Application	
3561-10D	- Comment	0.1 cm ⁻¹	0.1 µS/cm - 10 mS/cm	0.00	Pt-Pt black /	D 111.	10	Low conductivity water (e.g.,	
3014082350	Overall length: 143 mm Diameter of probe: 18 mm Connectors: BNC & phono jack	10 m ⁻¹	10 μS/m - 1 S/m	0 - 60	Glass	Built-in	10	deionized, distilled)	
3562-10D	1000	1 cm ⁻¹	1 μS/cm - 100 mS/cm	0 - 60	Pt-Pt black /	Built-in	16	General purpose	
3014082350	Overall length: 205 mm Diameter of probe: 18 mm Connectors: BNC & phono jack	100 m ⁻¹	0.1 mS/m - 10 S/m	0-60	Glass	- Bullt-III	10	use	
3573-10C	S Man	10 cm ⁻¹	10 μS/cm - 1 S/cm	0 - 60	Pt-Pt black /		4	High	
3014082590	Overall length: 222 mm Diameter of probe: 18 mm Connector: BNC	1000 m ⁻¹	1 mS/m - 100 S/m	0-60	Glass	_	4	conductivity water	
3574-10C		10 cm ⁻¹	10 μS/cm - 100 mS/cm	0.00	Pt-Pt black /		0.05	Small volume sample (e.g.,	
3014082592	Overall length: 136 mm Diameter of probe: 66 mm Connector: BNC	1000 m ⁻¹		0 - 60	Glass	_	0.25	column chroma- tography)	

Conductivity Standard Solutions									
Code	Part No.	Description	Volume						
100-21	3200738713	84 μS/cm Conductivity Standard Solution	500ml						
100-22	3200738714	1413 μS/cm Conductivity Standard Solution	500ml						
100-23	3200738715	12.88 mS/cm Conductivity Standard Solution	500ml						
100-24	3200738716	111.8 mS/cm Conductivity Standard Solution	500ml						
103-S	3200738718	Conductivity Standard Solution Set (84 µS/cm, 1413 µS/cm, 12.88 mS/cm, 111.8 mS/cm)	-						

ORP Powders				
Code	Part No.	Description	Volume	
160-51	3200043618	89 mV at 25°C (for 250ml solution)	10 sachets/pack	
160-22	3200043617	258 mV at 25°C (for 250ml solution)	10 sachets/pack	

pH/ORP Electrode Filling Solutions			
Code	Part No.	Description	Volume
300	3200043640	3.33M KCI	250ml

230
Cleaning Solutions

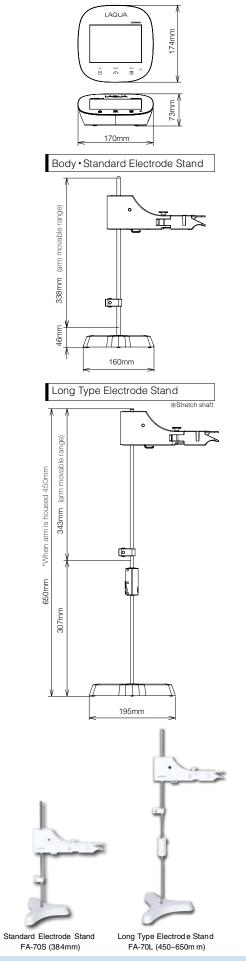
	pH Electrode Cleaning Solutions			
	Code	Part No.	Description	Volume
	220	3014028653	For removing inorganic residues from glass membrane and liquid junction	2 x 50ml
	230	3200530494	For removing inorganic and organic residues from glass membrane (30ml Solution A & 100ml Solution B)	30ml & 100ml
250		3200366771	For removing protein residues from glass membrane and liquid junction	400ml

Calcium Ion Electrode Solutions

Chloride Ion Electrode Solutions

Fluoride Ion Electrode Solutions

Potassium Ion Electrode Solutions


Ammonia Ion Electrode Solutions

Nitrate Ion Electrode Solutions

Ion Standard Solutions				
Code	Part No.	Description	Volume	
500-NH4-SH	3200697171	1000 mg/L Ammonium Ion Standard Solution	500ml	
500-NH4-SL	3200697172	100 mg/L Ammonium Ion Standard Solution	500ml	
500-CA-SH	3200697175	1000 mg/L Calcium Ion Standard Solution	500ml	
500-CA-SL	3200697176	100 mg/L Calcium Ion Standard Solution	500ml	
500-CL-SH	3200697167	1000 mg/L Chloride Ion Standard Solution	500ml	
500-CL-SL	3200697168	100 mg/L Chloride Ion Standard Solution	500ml	
500-F-SH	3200697163	1000 mg/L Fluoride Ion Standard Solution	500ml	
500-F-SL	3200697164	100 mg/L Fluoride Ion Standard Solution	500ml	
500-NO3-SH	3200697179	1000 mg/L Nitrate Ion Standard Solution	500ml	
500-NO3-SL	3200697180	100 mg/L Nitrate Ion Standard Solution	500ml	
500-K-SH	3200697183	1000 mg/L Potassium Ion Standard Solution	500ml	
500-K-SL	3200697184	100 mg/L Potassium Ion Standard Solution	500ml	
Ionic Strength	Adjustors			
Code				
	Part No.	Description	Volume	
500-NH3-ISA	Part No. 3200697174	Ammonia Ionic Strength Adjustor	Volume 500ml	
500-NH3-ISA	3200697174	Ammonia Ionic Strength Adjustor	500ml	
500-NH3-ISA 500-CA-ISA	3200697174 3200697178	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor	500ml	
500-NH3-ISA 500-CA-ISA 500-CL-ISA	3200697174 3200697178 3200697170	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor	500ml 500ml	
500-NH3-ISA 500-CA-ISA 500-CL-ISA 500-F-TISAB	3200697174 3200697178 3200697170 3200697166	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor Fluoride Ionic Strength Adjustor	500ml 500ml 500ml 500ml	
500-NH3-ISA 500-CA-ISA 500-CL-ISA 500-F-TISAB 500-NO3-ISA 500-K-ISA	3200697174 3200697178 3200697170 3200697166 3200697182	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor Fluoride Ionic Strength Adjustor Nitrate Ionic Strength Adjustor Potassium Ionic Strength Adjustor	500ml 500ml 500ml 500ml	
500-NH3-ISA 500-CA-ISA 500-CL-ISA 500-F-TISAB 500-NO3-ISA 500-K-ISA	3200697174 3200697178 3200697170 3200697166 3200697182 3200697186	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor Fluoride Ionic Strength Adjustor Nitrate Ionic Strength Adjustor Potassium Ionic Strength Adjustor	500ml 500ml 500ml 500ml	
500-NH3-ISA 500-CA-ISA 500-CL-ISA 500-F-TISAB 500-NO3-ISA 500-K-ISA	3200697174 3200697178 3200697170 3200697166 3200697182 3200697186 Electrode Fillin	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor Fluoride Ionic Strength Adjustor Nitrate Ionic Strength Adjustor Potassium Ionic Strength Adjustor g Solutions	500ml 500ml 500ml 500ml 500ml	
500-NH3-ISA 500-CA-ISA 500-CL-ISA 500-F-TISAB 500-NO3-ISA 500-K-ISA Ion Selective E	3200697174 3200697170 3200697166 3200697182 3200697186 Electrode Fillin Part No.	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor Fluoride Ionic Strength Adjustor Nitrate Ionic Strength Adjustor Potassium Ionic Strength Adjustor g Solutions Description	500ml 500ml 500ml 500ml 500ml Volume	
500-NH3-ISA 500-CA-ISA 500-CL-ISA 500-F-TISAB 500-NO3-ISA 500-K-ISA Ion Selective E Code 500-NH3-IFS	3200697174 3200697178 3200697170 3200697166 3200697182 3200697186 Electrode Fillin Part No. 3200697173	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor Fluoride Ionic Strength Adjustor Nitrate Ionic Strength Adjustor Potassium Ionic Strength Adjustor g Solutions Description Ammonia Electrode Filling Solution	500ml 500ml 500ml 500ml 500ml 500ml Volume 500ml	
500-NH3-ISA 500-CA-ISA 500-CL-ISA 500-F-TISAB 500-NO3-ISA 500-K-ISA Ion Selective E Code 500-NH3-IFS 500-CA-IFS	3200697174 3200697178 3200697170 3200697166 3200697182 3200697186 Electrode Fillin Part No. 3200697173 3200697177	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor Fluoride Ionic Strength Adjustor Nitrate Ionic Strength Adjustor Potassium Ionic Strength Adjustor g Solutions Description Ammonia Electrode Filling Solution Calcium Electrode Filling solution	500ml 500ml 500ml 500ml 500ml 500ml Volume 500ml 500ml	
500-NH3-ISA 500-CA-ISA 500-CL-ISA 500-F-TISAB 500-NO3-ISA 500-K-ISA Ion Selective E Code 500-NH3-IFS 500-CA-IFS	3200697174 3200697178 3200697170 3200697166 3200697182 3200697186 Electrode Fillin Part No. 3200697173 3200697177 3200697169	Ammonia Ionic Strength Adjustor Calcium Ionic Strength Adjustor Chloride Ionic Strength Adjustor Fluoride Ionic Strength Adjustor Nitrate Ionic Strength Adjustor Potassium Ionic Strength Adjustor g Solutions Description Ammonia Electrode Filling Solution Chloride Electrode Filling Solution	500ml	

Accessories		
Code	Part No.	Description
LAQUA-SW-21CFR11	3200707161	21 CFR Part 11 Software includes CD with PIN code, USB cable, and manual
Printer Printer	5700012747	Printer (for GLP/GMP compliance) Cable sold separately, Plain paper
cable	3014030148	Printer cable (1.5 m)
Ink Printer	3014030149	Printer paper (20 rolls)
ribbon paper	3014030150	Ink ribbon (5 pcs/set)
Universal AC adapter	3200647413	Multi-Voltage (100-240V) with 6 plugs, (US, UK, EU, ANZ, Korea and China) 1.8 m cable
686	3014028368	Digital simulator X-51 (pH, mV, Ion, DO, temperature simulator)
X-51 X-52	3014028370	Digital simulator X-52 (Conductivity, temperature simulator)
	3200382462	LCD protection sheet (2 pcs/pack)
LCD Protection protection cover sheet	3200382441	Protection cover (Protects the meter for F-70, DS-70, 1000 series)
	3200373941	USB cable (to connect meter and PC.)
2	3014030152	Analog cable (Analog (alarm) output cable)
USB Serial cable	3014030151	Serial cable (to connect meter and PC (Serial, 9 pins))
FA-70S	3200382557	Adjustable, free-standing electrode stand (Height: 384 mm) image on the right
FA-70L	3200382560	Long, free-standing electrode stand (Height: 450-650mm) image on the right
- 1212	3200373991	Arm for electrode stand FA-70A, FA-70S, & FA-70L
	3200373961	Electrode holders, 2pcs (for mounting electrode with round cap on electrode stand arm)
	3200382477	Electrode protection caps, 3pcs (for 9615S-10D, 9618S-10D, 9681S-10D pH electrode)
_	3200043508	Electrode protection caps, 5pcs (for 9621-10D, 9625-10D, 9630-10D, 9631-10D, 9632-10D, 6367-10D, 6377-10D, 6252-10D, 6261-10C, 1066A-10C, 1076-10C, 2060-10T, 9300-10D, 9382-10D, 3552-10D pH electrode)
	3200382482	Electrode protection cap for long electrode (for 9680S-10D, 9480-10C pH Electrode)

Water Quality Analyzers

www.horiba-laqua.com

With over 60 years of engineering excellence, HORIBA's diverse range of water quality analyzers and electrodes are ideal for everyday laboratory needs through to the most demanding of applications. Visit our website for a wealth of useful information and water quality measurement tips to help you obtain the best results in your work.

Electrodes

HORIBA's superior electrode technology has been employed in manufacturing our unparalleled tough pH glass bulbs and unique flat sensors. Our electrodes have different designs to cater a wide range of applications—from pure water to complex samples. Select the suitable electrode that is specially designed for your application.

Handheld Meters

In the lab, in the field or anywhere you need it. LAQUA Handheld meters are designed for use with one hand and with an IP67 waterproof rating and shock-resistant casing. Meters can be used for long periods, even in dark places, making it ideal for field measurements in rivers and lakes.

Pocket Meters

Analyzing water quality is simplified when using our LAQUAtwin range of meters. Designed to produce accurate and reliable results. Anyone, anywhere, at any time can measure samples easily with a LAQUAtwin meter. See just how good they are at our website.

LAQUAtwin pocket meters offer quick and convenient alternative to analyze important parameters with high accuracy. Several application notes are available at (http://goo.gl/znwE6i) detailing the use of LAQUAtwin and the results achieved for the respective applications. Additional application notes will be added when available.

SUPPORT HORIBA CUSTOMER SUPPORT SYSTEM

HORIBA offers a variety of services to conform to quality standards and international guidelines such as GLP, GMP and ISO

Technical Support

Please contact us with any technical questions about our products.

www.horiba.com/wq/support

User Support

Our support website is available for registered customers and features:

- Data collection software
- Instruction manual downloads
- Measurement tips, etc.

www.horiba.co.jp/register

Validation Support

Please contact us with any questions or requirements for your validation procedure.
 Traceability certification*
 IQ/OQ/PQ support*
 SOP guidance

*Optional services

Please read the operation manual before using this product to assure safe and proper handling of the product.

- The contents of this catalog are subject to change without prior notice, and without any subsequent liability to this company.
- The color of the actual products may differ from the color pictured in this catalog due to printing limitations It is strictly forbidden to copy the content of this catalog in part or in full.
- All brand names, product names and service names in this catalog are trademarks or registered trademarks of their respective companies.
- Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Complies with all ACMA RCM compliance requirements EMC Systems Doc Number: C160104-2

HORIBA Instruments Incorporation

9755 Research Drive Irvine, CA 92618 U.S.A. Tel: +1 (949) 250-4811 Fax: + 1 (949) 250-0924

Brochure HBTC-EN-03-2018B

