Particle Size Determination and Raman Spectroscopic Evaluation of a Semi-solid Vaginal Dosage Form

> 2011 Horiba Webinar 07-Dec-2011

Philo Morse and Robert W. Lee





# What We Do

- Complete post-discovery CMC development
  - World leader in BCS II formulation based on data driven systematic approach
- API characterization
- Analytical methods development
- Drug product formulation
  - Leveraging physicochemical properties against array of drug delivery technologies across all dosage forms and routes of administration
- Preclinical and clinical trial material manufacture
  - Highly potent, sterile and non-sterile
- cGLP/cGMP analytic and bioanalytic support
- Full ICH compliant stability programs



## Corporate

- Founded in 1991, privately held, profitable
- Bethlehem, PA, 25,000 sqft, 40+ employees
- State-of-the-art cGLP/cGMP analytical/ bioanalytical and physical characterization
- Sterile, non-sterile and high potency cGMP production suites
- Full ICH compliant stability programs
- Dedicated highly potent compound handling infrastructure
- DEA licensed, FDA registered



 CRO servicing Pharmaceutic al and Biotech companies





- Decades of experience
- Zero turnover of senior management over last 6 years other than additions
- Advanced degrees ranging from Medicine to Peptide Chemistry to Colloid and Polymer Sciences
- Previous Director level oversight of analytical, quality, formulation, clinical and cGMP production groups
- Experience in international, large/small/startup pharma, biotech, government and not-for-profit
- Multiple commercialized technologies
- > 100 patents pending / issued ranging from nanoparticles to NCE's to medical devices, well published





- Provide our clients with the best possible solutions
- We do this by consolidating technologies across disciplines and industries
- PSI-originated and in-licensed technologies
- Partnerships with industry leading equipment manufacturers
- Partnerships with API suppliers
- Partnerships with industry leading key excipient suppliers



## **Our Work**

- 40% parenteral
- 30% mucosal
- 10% ocular
- 20% oral

- 80% small molecules
- 20% large molecules 30% clinical •
- 40% high potency •

- 70% preclinical
- 30% sterile/aseptic

#### AQUEOUS SOLUBILITIES OF API'S FORMULATED AT PARTICLE SCIENCES (2010-2011)







- Post-discovery through clinical development
- Moving into commercial production with our clients
- Routine work through true innovation & invention







#### **Client Mix**



- Not-for-profit
- Governent backed
- Major Pharma
- Major Biotech
- Small Pharma/Biotech



## **Special Expertise**

- Drug Delivery across variety of dosage forms
  - Micro / Nano-particulates
  - Solid solutions
  - Solvent systems
  - Drug/device combinations
- Analysis, characterization & cGMP production of particulate systems
- Analysis, characterization & cGMP production of combination (drug/device) products
- Highly potent compounds



 DEA licensed with full containment for high potency compounds



## **Industry leading**

- cGLP/cGMP analytic and bioanalytic services
- cGLP/cGMP physical characterization
- Clinical trial manufacturing

   Sterile and non-sterile products
- Formulation development
- Particle size reduction
- ICH compatible stability programs
- Handling of highly potent compounds



- Particle Sciences analyzed over 50,000
- samples in the past two years alone



## **Process Equipment**

- Injection molders (lab and pilot scale)
- Hot Melt Extrusion: Compounder / Extruders / Pelletizer (lab and pilot scale)
- Class 100K, 10K, and 100 clean rooms
- Dedicated potent compound Class 100K clean room
- Laminar flow hoods
- Laboratory homogenizers, Admixer
- Microfluidics<sup>®</sup> high pressure homogenizers
- Microfluidics PureNano<sup>™</sup> Continuous Crystallizer system
- Three ultrasonic dispersers / Homogenizers with in-line capability
- High energy media mills
- Two 1.5 liter jacketed double planetary mixer with vacuum
- Two mini-spray dryers with organic solvent capability





Extensively equipped to ensure process viability

## **Analytical Tools**

- Multiple HPLC, UPLC
- LC/MS Ion Trap
- Multiple LC/MS Triple Quads
- Dried blood spot analysis
- NMR, SEM, XRPD by third parties
- Raman imaging with particle size/morphology integration
- Percutaneous absorption (IVRT)
- Detectors include Ultraviolet, Photo Diode Array, Refractive Index, Evaporative Light Scattering
- FTIR
- DSC / TGA
- Microscopic image analysis
- Fluorophotometer
- Gel electrophoresis
- USP dissolution apparatus
- Karl Fischer Volumetric and Coulometric



State-of-the-art separation and detection techniques



## **Physical Chacterization**

- Particle Sizing
  - Dynamic light scattering (DLS)
  - Fraunhofer laser diffraction (wet/dry)
  - X-ray and photo disc centrifuge sedimentometry
  - Optical counting (SPOS)
  - Image analysis
- Zeta Potential
  - Electrophoretic light scattering
  - Phase analysis light scattering
  - Streaming potential
- Rheology
  - Oscillating rheometer
  - Rotational viscometer
  - Tack & compressive force
- Raman with particle size/morphology analysis
- Advanced Instruments 3320 Osmometer
- Kruss Contact Angle/Surface Energy Measuring
- Turbiscan sedimentation-stability analyzer





PARTIC

Full validation of characterization techniques

## **Intravaginal Dosage Forms**

- Intravaginal Rings (IVRs): drug-eluting polymeric rings
- Creams: semi-solid emulsions typically applied topically to skin
- Pessaries: vaginal suppositories
- Ovules : oval vaginal suppositories that are applied using an applicator
- Inserts: tablet vaginal suppositories that are applied using an applicator
- Strips: dissolvable filmstrips
- **GELS**: semi-solid, jelly-like materials which exhibit no flow on standing



#### **Microbicidal Gels for Prevention of HIV**

- Gels represent a viable approach
  - Allows women to protect themselves
  - Can be used without the knowledge of their partner
  - Aqueous-based vehicle that can contain one or more active pharmaceutical ingredients (API's)
    - Some API's are not water soluble and are present as particulate suspension in gel
    - Need to be able to measure particle size distribution of API at release and on stability



## **Particle Sizing of Particulate API in Gels**

- Two methods evaluated
  - Horiba LA-950V2 light scattering particle size analyzer using paste cell
    - Robust, fast
    - Ensemble technique samples millions of particles
  - Light microscopy with Clemex image analysis
    - Gives data on particle size and morphology
    - Count technique limited number of particles sampled (i.e., 10,000)
    - "Gold" standard
  - Both methods demonstrated to be suitable and validatable



## Horiba LA-950V2

- Method development and assessment using polystyrene standards
  - Method details
    - Performed using the paste cell
    - Polystyrene (PS) particles (1 40 μ) spiked into Placebo Gels at ~0.1% (v/v)
    - Sample measurement immediately following placebo blank. Sample held to the placebo blank thickness
    - Sample thickness generally between 100 and 250  $\mu$  with 90% Transmittance
    - $D_v(50)$  used in assessment
    - Bubbles, bubbles, bubbles!!!
  - 2 Gel Types: A clear, B translucent, hazy





#### • Good Linearity Demonstrated for Both Gel Types





## Horiba LA-950V2

#### **Precision Study**

| Gel   | Expected | Replicate | RSD  |
|-------|----------|-----------|------|
| Gel A | 5 μ      | 3         | 0.7% |
| Gel B | 2 μ      | 4         | 0.4% |
|       | 20 μ     | 3         | 2.4% |

#### Accuracy Study

| Gel   | Expected    | % Accuracy |
|-------|-------------|------------|
| Gel A | 1 μ         | 103.9      |
|       | 2 μ         | 98.6       |
|       | 5 μ         | 89.7       |
|       | 20 μ        | 100.8      |
|       | 40 μ        | 97.7       |
| Gel B | 1 μ         | 97.4       |
|       | 2 μ         | 97.4       |
|       | 5 μ         | 90.8       |
|       | <b>10</b> μ | 98.5       |
|       | 20 μ        | 92.3       |
|       | 40 μ        | 97.0       |



## Horiba LA-950V2

- Conclusions
- Particle size determination of aqueous gels using laser diffraction is possible
- Sample preparation critical need to eliminate/minimize bubbles
- Linear response for a range of polystyrene standards demonstrated
- Excellent precision can be obtained
- Good to excellent accuracy can be obtained



- Particle sizing method development
  - Two API's in an aqueous gel formulation
    - API-1 soluble
    - API-2 insoluble
    - Developed to monitor particle size on stability
  - Clemex Image Analysis
    - 400X count routine using multilevel grab with combined grayscale and contrast thresholding
    - All objects less than 5 x 5 pixels rejected (~1.1  $\mu$ m square)
    - Automated, 300 field pattern loaded and allowed to acquire 10,000 counted objects. (Overkill in the case of PS standards)
    - Sample thickness held to a 25  $\mu$  thickness
    - Assessed using  $D_n(50)$  and  $D_v(50)$



#### • Linearity (Average n = 3)

| Standard<br>Added | Number Mean | Number Median<br>(D <sub>n</sub> (50)) | Volume Mean | Volume Median<br>(D <sub>v</sub> (50)) |
|-------------------|-------------|----------------------------------------|-------------|----------------------------------------|
| 3 µ (3.005)       | 3.11 µ      | 3.10 µ                                 | 3.19 µ      | 3.11 µ                                 |
| 5 µ (4.987)       | 4.92 µ      | 5.06 µ                                 | 5.28 µ      | 5.07 µ                                 |
| 12 µ (12.01)      | 11.22 µ     | 11.96 µ                                | 12.13 µ     | 11.98 µ                                |
| 25 µ (25.09)      | 21.10 µ     | 24.93 µ                                | 26.65 µ     | 25.07 µ                                |

#### • Accuracy (Average n = 3)

| Standard<br>Added | Number Mean | Number Median<br>(D <sub>n</sub> (50)) | Volume Mean | Volume Median<br>(D <sub>v</sub> (50)) |
|-------------------|-------------|----------------------------------------|-------------|----------------------------------------|
| 3 µ (3.005)       | 103.4%      | 103.1%                                 | 106.3%      | 103.3%                                 |
| 5 µ (4.987)       | 98.7%       | 101.4%                                 | 105.8%      | 101.7%                                 |
| 12 µ (12.01)      | 93.4%       | 99.6%                                  | 101.0%      | 99.7%                                  |
| 25 µ (25.09)      | 84.1%       | 99.4%                                  | 106.2%      | 99.9%                                  |



#### Precision (RSD of n=3)

| Standard<br>Added | Number Mean | Number Median<br>(D <sub>n</sub> (50)) | Volume Mean | Volume Median<br>(D <sub>v</sub> (50)) |
|-------------------|-------------|----------------------------------------|-------------|----------------------------------------|
| 3 µ (3.005)       | 0.56%       | 0.59%                                  | 0.30%       | 0.61%                                  |
| 5 µ (4.987)       | 0.47%       | 0.86%                                  | 4.00%       | 0.93%                                  |
| 12 µ (12.01)      | 0.09%       | 0.19%                                  | 0.21%       | 0.93%                                  |
| 25 µ (25.09)      | 2.53%       | 0.20%                                  | 0.90%       | 0.22%                                  |

#### Conclusions

- Excellent Linearity (all  $r^2 > 0.9970$ )
- Good precision No relative standard deviation of greater than 4%
- Good accuracy using either volume or number weighted medians
  - Both volume and number means exhibit greater deviation



#### • Sample Determination

| Gel Sample | Number Mean | Number<br>Median (D <sub>n</sub> (50)) | Volume Mean | Volume Median<br>(D <sub>v</sub> (50)) |
|------------|-------------|----------------------------------------|-------------|----------------------------------------|
| Gel A      | 2.73 µ      | 2.65 µ                                 | 5.41 µ      | 3.29 µ                                 |
| Gel B      | 7.54 µ      | 5.99 µ                                 | 20.87 µ     | 19.87 µ                                |
| Gel C      | 7.90 µ      | 9.14 µ                                 | 11.26 µ     | 11.06 µ                                |
| Gel D      | 4.59 µ      | 3.89 µ                                 | 9.24 µ      | 8.73 µ                                 |

• Sample Precision (n = 6)

| Sample | Number Mean | Number<br>Median (D <sub>n</sub> (50)) | Volume Mean | Volume Median<br>(D <sub>v</sub> (50)) |
|--------|-------------|----------------------------------------|-------------|----------------------------------------|
| Gel D  | 0.41%       | 0.66%                                  | 3.61%       | 1.23%                                  |



- Spiked Whitehouse glass standards into placebo gel and measured using Clemex image analysis package and Horiba LA-950V2
  - Mixed Whitehouse Scientific PS 192 (polydisperse 1-10 μ) standard at @ 0.1% v/v (full 0.1 g vial) with Placebo A
  - Sample analyzed via Clemex image analysis
    - Particle size distribution (by number) imported into Excel
  - Sample analyzed via Horiba using paste cell
    - Particle size distribution (by number) imported into Excel (150 iterations)



#### Number Distributions for the Two Methods





Cumulative Distributions Overlaid with Published Error in Distribution of Standard





Average Cumulative Distributions Overlaid





That was nice for standards, but what about unknowns?

| Gel Type | Light Microscopy<br>(D <sub>v</sub> (50)) | Horiba<br>(D <sub>v</sub> (50)) | Aspect Ratio |
|----------|-------------------------------------------|---------------------------------|--------------|
| Gel A    | 3.3 μ                                     | 3.4 μ                           | 1.5          |
| Gel B    | 19.9 μ                                    | 49.9 μ                          | 2.4          |
| Gel C    | 11.1 μ                                    | 10.2 μ                          | 1.7          |
| Gel D    | 8.7 μ                                     | 5.3 μ                           | 1.6          |

Determinations spread possibly determined by particle shape factors. Aspect ratio mildly indicative.





- Both Horiba LA-950V2 and Light Microscopy with Clemex Image Analysis:
  - Are suitable for measuring particle size of particulates in gels
  - Give comparable particle size distributions both volume-based and number-based
  - Are capable of being validated



#### **Raman Analysis – Gel**



Step 1: Record a BF photomicrograph Mosaic for a large area









#### **Raman Analysis - Gel**

Step 3: Measure a Raman spectrum every 1  $\mu$ m in a XY map Step 4: Select the characteristic Raman band and map its intensity





#### Raman Analysis – Gel Advantage

- Objects selected by image analysis and confirmed by Raman as NOT API
- Objects selected by particle analysis as API and confirmed by Raman as API
- Object NOT selected by particle analysis as API but proved to be API by Raman.







#### EVA IVR cross section





EVA IVR cross section EVA Raman signal





## EVA IVR cross section API Raman signal





EVA IVR cross section EVA / API signal ratio

