An Overview of the Concept, Measurement, Use and Application of Zeta Potential

David Fairhurst, Ph.D. Colloid Consultants, Ltd

Fundamental Parameters that control the Nature and Behavior of all Particulate Suspensions

Surface(interfacial)Tension Contact Angle

How Particle Surfaces Acquire a Charge in Water

(a) Differential ion solubility

Net positive surface charge

Net negative surface charge

How Particle Surfaces Acquire A Charge in Water

(b) Direct ionization of surface groups

(c) Isomorphous ion substitution

How Particle Surfaces Acquire a Charge in Water

(d) Specific ion adsorption

(e) Anisotropic crystals

Origin of Charge in Clays

In neutral water, *net* charge will usually be *negative*

Particle Association: F - F = E - F = E - E

Many structures are possible

Particle Charges of Various Surfaces in Neutral Water

Positive

Ferric Hydroxide Aluminium Hydroxide Chromium Hydroxide Thorium Oxide Zirconium Oxide Basic Dyes (Methylene Blue) Base Proteins (Protamines, Histones) **Negative** Silicon Dioxide Au, Ag, Pt, S, Se As₂S₃, PbS, CuS **Acidic Dyes** (Congo Red) **Acid Protein** (Casein, BSA) Viruses, Microbes Air bubbles

Charge in non-aqueous media often opposite in sign! (Electron Donor - Acceptor Theory)

The Electric Double Layer

The Debye-Hückel parameter, κ , defined as:

$$\kappa = [2e^2N_Acz^2/\epsilon\epsilon_0k_bT]^{\frac{1}{2}}$$

The Debye length, κ^{-1} is a measure of the "electric double layer thickness"

For single symmetrical electrolyte:

 $\kappa^{-1} = 0.3041/ZC^{\frac{1}{2}}$

c is the concentration of electrolyte of valence, z

The electric potential *depends* (through κ) *on the ionic composition of the medium.* If κ is increased (i.e. the electric double layer is "compressed") then the potential must decrease.

Effect of addition of electrolyte on the zeta potential

Effect of specific adsorption of an anion on the zeta potential of a cationic surface

Distance from surface

Zeta Potential is the "effectiveness" of the surface charge in solution

Depends upon:

- Fundamental "surface" sites how many, what type
- Solution conditions temperature, pH, electrolyte concentration

Useless to quote a zeta potential value without specifying suspension conditions

Calculation of the zeta potential

 ζ is not determined directly

Most common technique: microelectrophoresis (ELS/PALS)

Electrophoretic mobility, $U_E = V_p / E_x$

 V_p is the particle velocity (µm/s) and E_x is the applied electric field (Volt/cm)

Relation between ζ and U_E is non-linear: $U_E = 2\epsilon\epsilon_0 \zeta F(\kappa a)/3\eta$

The Henry coefficient $F(\kappa a)$ is a complex function of ζ

Simplest solution: use electrophoretic mobility, U_E as the measurement metric

Effect of Electrolyte Concentration on Particle Charge

Zeta Potential of Corundum (Al₂O₃) in Solution of Various Electrolytes

Effect of pH on Particle Charge

Aqueous Isoelectric Points

Isoelectric Points of some Oxides

Oxide	pH value of I.E.P.
Oxide	pH value of I.E.P.

Silicon Dioxide	2
Manganese Dioxide	3
Zirconium Dioxide	4
Titanium Dioxide (Rutile)	6
Chromium Oxide	7
Iron Oxide	8
Aluminium Oxide	9
Lead Oxide	10
Cadmium Oxide	11
Magnesium Oxide	12

Force of Repulsion $V_R \approx D \ a \ \zeta^2 \exp(-KH)$

D is a constant related to the permittivity (dielectric constant) of the material.

- a is the particle or droplet radius.
- ζ is a measure of the surface potential (charge).
- K is proportional to the ionic strength ("conductivity").
- H is the distance between particle surfaces.

For a fixed medium, particle size and zeta potential: repulsive force decreases as the ionic strength increases

For a fixed medium, particle size and ionic strength: repulsive force becomes larger with increase in zeta potential

Zeta potential and stability

Effect of Zeta Potential on Suspension Properties

Any material added into solution can affect suspension stability

Water soluble polymers – "thickeners', viscosity modifiers.

Presence in solution affects Repulsive Potential via the **DIELECTRIC** term:

 $V_R \propto D a \zeta^2$ [Geometric term]

Surface Modification

Care needed when dispersing!

Effect of Surface Modification on the IEP of TiO₂

Bulk%coating IEP (pH units)

SiO ₂	Al_2O_3	
		6.8
	4.5	8.4 (R900)
6.5	3.5	5.8 (R960)
8.0	8.0	4.6 (R931)

Bulk percentages (elemental analysis) of each chemical coating not reliable indicator of how the surface will behave in solution

Imperative to check ZP vs pH profile for any material prior to use

Surface Modification

Typical "coatings" on TiO2InorganicOrganicMetal oxidesFatty acidsSiliconesOrganosilanes

Check the material MSDS! Care needed in choice of dispersing aids!

Zeta Potential of Non-oxides

Surface impurities and contamination

In Conclusion

Zeta potential (ζ) measurement very useful technique

- provides information about the material surface-solution interface
- knowledge of ζ used to predict and control stability of suspensions/emulsions
- Measurement of ζ often key to understanding dispersion and aggregation processes
- The presence/or absence of surface charged moieties on materials (revealed by their ζ) directly affect their performance and processing characteristics in suspension
- The sign and magnitude of ζ affects process control, quality control and product specification
- □ at simplest level: help maintain a more consistent product
- □ at complex level: can improve product quality and performance

Q&A

Keep reading the monthly HORIBA Particle e-mail newsletter!

Visit the **Download Center** to find the video and slides from this webinar.

Jeff Bodycomb, Ph.D. P: 866-562-4698 E: jeff.bodycomb@horiba.com

Thank you

