AFM-Raman (co-localized measurements & TERS)

AFM-Raman and Nano-Raman

Physical and Chemical imaging

HORIBA's leading Raman technology is now integrated with AIST-NT’s scanning probe microscopy (SPM). The NanoRamanTM platform integrates Atomic Force Microscopy (AFM) that can provide physical sample information on the nanometer scale, including topography, hardness, adhesion, friction, surface potential, electrical and thermal conductivity, temperature and piezo response (among many others), near-field optical techniques (SNOM or NSOM), Scanning Tunneling Microscopy (STM), tuning fork techniques (Shear-force and Normal-force imaging modes), electrochemistry, all together with the chemical information obtained from Raman spectroscopy and Photoluminescence. The end result is a more comprehensive sample characterization in one versatile instrument, for fast simultaneous co-localized measurements, Tip-Enhanced Raman Spectroscopy (TERS) and Tip-Enhanced PhotoLuminescence (TEPL).

Testimony

from Customers

With our NanoRaman instrument from HORIBA, we have the full power of Raman, AFM, TERS, TEPL, and many other related modes bundled into one system operating in reflection. Every member of my group from bachelor student level to postdoc researcher enjoys the easy usage of this fully motorized/automated system that can deliver correlated surface characterization data from microscale down to nanoscale resolution. We are using this AFM/Raman platform for research on optical and electrical properties of nanomaterials every day and we are appreciating the enormous potential of the TERS technique for studying nanomaterials such as CNTs and 2D TMDCs with unprecedent spatial resolution down to 2 nm.”

Prof. Dietrich R.T. Zahn

Head of the Semiconductor Physics Research Group                                                                                                                                                                                                                                                 

Technische Universität Chemnitz, Germany

 

"We are using the NanoRaman platform from HORIBA Scientific for research on carbon-based nanomaterials and especially the characterization of graphene oxide for energy applications. This AFM/Raman system is easy-to-use with help of the state-of-art hot spot search function and has number of unique build-in SPM techniques, including a unique imaging mode that makes TERS possible. HORIBA (and former AIST-NT) has developed one of the most stable and versatile scanning probe microscope for the combination with Raman spectroscopy. With the clever, fully motorized and automated instrument alignment, every advanced measurement at the nanoscale become an easy to configure experiment."

Prof Masamichi YOSHIMURA

Head of the Surface Science Laboratory                                                                                                                                                                                                                                                                  

Toyota Technological Institute, Japan                                                                                                                                                                                                                                                                  

 

“We have been working for two years on a versatile configuration of the NanoRaman platform from HORIBA that allows both reflection and transmission measurements. As researchers in an electrochemistry Lab, we were searching for analytical tools which enable the characterization of materials at the nanoscale and under the condition of their operation. The stability of the SPM system (true atomic/molecular resolution) and the robustness of the optical coupling, which enables fast and effective TERS mappings, totally met our expectations. The versatility of the Horiba system already made possible new characterization pathways such as TERS in liquid and electrochemical TERS. We have also greatly enjoyed the technical assistance from Horiba which has definitively boosted our instrumental developments”.

Dr. Ivan T. Lucas and Prof. Emmanuel Maisonhaute

Laboratory “Interfaces and Electrochemical Systems”                                                                                                                                                                                                                                           

Sorbonne University, France.

 

“The nano-Raman team of LPICM lab, Ecole Polytechnique, developed jointly with HORIBA Scientific the first HORIBA TERS system prototype a dozen or so years ago. Later commercialized, the prototype featured STM and AFM SPM modes combined with side illumination in Raman backscattering configuration. Owing to its excellent performance and relative ease of use, it was applied with success to the study of various materials and nanostructures such as self-assembled organic monolayers, carbon nanotubes, patterned semiconductors, etc. Among the outstanding scientific successes achieved with the system, the world premiere demonstration of stimulated (pump - probe) TERS is to be mentioned. Being quite user-open and versatile, the prototype measurement configuration could be successfully adapted to accommodate a polarization control of both excitation and scattered radiations, an external laser pump, as well as an additional detector for Tip-Enhanced Photoluminescence.

Since the pioneering years of the TERS prototype, HORIBA Scientific have developed a novel, module-based TERS system featuring a large number of SPM modes (STM, AFM, tuning-fork, etc.) implementable under various illumination – collection conditions (off-axis, top and bottom backscattering). Thanks to the customer-oriented culture of HORIBA, the nano-Raman team of LPICM is currently updating its “historical” prototype with the novel TERS system. It will allow us not only to pursue our actual research topics by adding new measurements, but also to initiate new research areas, impossible to address with the present system.”

Prof. Razvigor OSSIKOVSKI

NanoRaman team leader                                                                                                                                                                                                                                                                                                 

LPICM, Ecole Polytechnique, France

Browse Products

AFM-Raman - LabRAM Nano
MoreAFM-Raman - LabRAM Nano
Physical and Chemical imaging
AFM-Raman - XploRA Nano
MoreAFM-Raman - XploRA Nano
Physical and Chemical imaging

REQUEST FOR INFORMATION

Do you have any questions or requests? Use this form to contact our specialists.